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Abstract. A fully automated colorization model that integrates image
segmentation features to enhance both the accuracy and diversity
of colorization is proposed. In the model, a multipath architecture is
employed, with each path designed to address a specific objective
in processing grayscale input images. The context path utilizes
a pretrained ResNet50 model to identify object classes while the
spatial path determines the locations of these objects. ResNet50
is a 50-layer deep convolutional neural network (CNN) that uses
skip connections to address the challenges of training deep models.
It is widely applied in image classification and feature extraction.
The outputs from both paths are subsequently fused and fed into
the colorization network to ensure precise representation of image
structures and to prevent color spillover across object boundaries.
The colorization network is designed to handle high-resolution in-
puts, enabling accurate colorization of small objects and enhancing
overall color diversity. The proposed model demonstrates robust per-
formance even when training with small datasets. Comparative
evaluations with CNN-based and diffusion-based classification ap-
proaches show that the proposed model significantly improves
colorization quality.
Keywords: colorization, multipath networks, convolutional neural
network, semantic segmentation
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1. INTRODUCTION
Since the advent of photography, the colorization of grayscale
images has been a topic of considerable interest. This tech-
nology can provide additional semantic information, en-
hancing the readability and interpretability of image content
while also improving visual effects. Traditional grayscale im-
age colorization methods typically require users to manually
provide color and image information for the process [1–3].
However, these approaches are labor-intensive and carry the
risk of inaccuracies due to user-provided erroneous color
information.
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Driven by the rapid development and technological
breakthroughs of deep learning, automatic colorization of
grayscale images has become an important research topic
in recent years. Early convolutional neural network (CNN)
architectures for colorization used simple and straightfor-
ward designs [4–6], primarily consisting of networks with
increased depth achieved by stacking multiple convolutional
layers. Although these architectures were well designed,
they required large datasets for effective learning, limiting
their practicality in scenarios with limited data availability.
In subsequent studies, some approaches reformulated the
colorization problem as a classification task by learning color
distributions from large-scale natural image datasets [7].
Other methods employed pixel histogram modeling to
capturemultimodal color possibilities and avoid single-point
estimation [8]. In addition, research combining local and
global semantic features has effectively improved color
consistency for objects such as buildings and the sky [9].
Exemplar-based methods, on the other hand, transfer colors
from reference images to grayscale inputs, thereby enhancing
the realism of specific objects in street scenes [10].

In CNN-based colorization methods, user inputs in the
form of dots or doodles are often incorporated [11–14].
However, this approach is associated with an increased
workload and requires a certain level of expertise from the
user. Consequently, the process can be time-consuming. The
employment of generative adversarial networks (GANs) or
variational autoencoders is a common practice in achiev-
ing diverse colorization. The GANs utilize a competitive
framework in which the generator endeavors to generate
colors that are indistinguishable to the discriminator while
the discriminator’s objective is to differentiate between
genuine and generated colors [15–19]. However, GAN-based
methods often exhibit suboptimal performancewhendealing
with objects that have consistent colors. Additionally, they
are characterized by high computational cost and significant
resource consumption.
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Figure 1. The architecture of the proposed colorization model.

Notwithstanding the elevated memory demands asso-
ciated with the training process, multipath neural networks
demonstrate a remarkable ability to accurately capture se-
mantic information [9, 20–24]. By capitalizing on both local
and global image features, these networks achieve en-
hanced colorization precision in grayscale images, thereby
improving the overall quality of the colorization process.
Transformer-based models [25–27] have recently garnered
considerable attention due to their capacity to extract salient
image features through multihead attention mechanisms.
Another notable approach is the diffusion model [28, 29],
which incorporates incremental noise during training to
augment image diversity through denoising. However, both
methods are highly data-dependent and necessitate substan-
tial datasets for effective implementation.

With the advancement of generative models, diffusion
models and multimodal conditional control methods have
been introduced into the field of automatic colorization,
further enhancing detail and texture. However, recent studies
have also revealed several limitations. First, the one-to-many
nature of mapping grayscale to color persists: models in
open-domain street scenes tend to generate low-saturation
or conservative colors, with limited ability to recover rare
hues, as shown in Figure 1 [28, 30, 31]. Second, insufficient
semantic understanding often leads to incorrect color
predictions when the model encounters uncommon objects
or distinctive signs, reducing the realism of the results [9, 28].
Furthermore, although exemplar-based methods can im-
prove colorization accuracy, they are highly dependent on the
structural similarity and alignment quality of the reference
image.When significant differences exist, these methods can
cause color shifts or unnatural transfers [10].

Another challenge lies in the trade-off between con-
trollability and stability. Although conditions such as text

descriptions, strokes, and reference images allow users
greater control over colorization results, current methods
still suffer from issues like color bleeding and unstable
condition alignment [32, 33]. On the data side, most ex-
isting approaches rely on natural image datasets such as
ImageNet and Places, which lack training sources specifically
tailored for street scene colorization. As a result, their
generalization ability in cross-domain applications, such as
low-light environments and historical photographs, remains
limited [31]. Although some studies have begun to adopt
street scene datasets, such as Cityscapes [34] and Mapillary
Vistas [35], these datasetswere initially designed for semantic
segmentation and autonomous driving, rather than being
optimized for colorization tasks.

In terms of colorization evaluation, existing assessments
still mainly rely on the peak signal-to-noise ratio and the
structural similarity index.However, these pixel-levelmetrics
cannot adequately reflect the realism and usability of street
scene colorization [36–40], for instance, whether traffic light
colors are correctly reproduced or how the results affect
autonomous driving tasks. Therefore, future research should
not only establish benchmark datasets specifically for street
scene colorization but also introduce evaluation metrics
grounded in human visual perception. Furthermore, inte-
grating human subjective assessments with task-oriented
performance measures will be essential for a more compre-
hensive evaluation of the practical value of these models in
real-world applications.

In image colorization, a thorough understanding of
semantic information is crucial to ensure the authenticity of
the results. Such understanding enables sensible color assign-
ments, for example, recognizing that cats are unlikely to be
blue while leaves are typically green. In the realm of image
segmentation, network architectures proposed in [41–45]
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exhibit a close correlation with semantic and spatial location
information despite adopting divergent design approaches.
Based on these concepts, this study proposes a similar
framework to support and enhance image colorization.

To meet the application needs of autonomous driving
and intelligent transportation, the automatic colorization of
grayscale street scene images has gradually attracted increas-
ing attention. However, in the extant literature on grayscale
image colorization, user-provided information or reference
images are often required, with limited emphasis placed on
road-specific colorization. This study introduces an auto-
mated method for colorizing grayscale road images. Image
segmentationwas incorporated into the design to address the
challenge of road colorization due to the presence of various
artificial objects. By capturing multiple local textures and
objects and integrating this information into the colorization
network, our model can effectively colorize elements such as
buildings, trucks, and the sky without human intervention.

Although diffusion models have gained popularity in
colorization, our CNN-based model exhibits superior learn-
ing capability, achieving improved performance on both
small and large datasets. Our approach leverages the CIELAB
color space to predict chromaticity components of an image.
The proposedmodel comprises three key elements: a contex-
tual network, a spatial network, and a colorization network.
The contextual network learns semantic information about
objects, the spatial network identifies their positions, and the
colorization network integrates this information to generate
the final colorized output. Experimental results demonstrate
that our method outperforms the state-of-the-art diffu-
sion model, achieving superior colorization accuracy and
diversity.

The motivation and objective of this study are to
enable the practical application of colorization in real-world
scenarios while delivering high-quality results. However,
due to the diversity of real-world colors, this task presents
considerable challenges. Our research primarily employs the
proposed model training architecture to first validate its
effectiveness on a specific dataset, with subsequent work
focusing on conducting a more comprehensive investigation
and optimization of the model’s generalization capability.

2. METHODS
This section presents a comprehensive account of the pro-
posedCNNarchitecture illustrated in Fig. 1. The architecture
comprises three principal components: the context pathway,
the spatial pathway, and the colorization pathway. The
context path furnishes data regarding the immediate content
of the image, including the sky, building, and tree. In
contrast, the spatial path provides information regarding the
exact spatial position of these contextual elements within
the image. The outputs of the context and spatial paths
were integrated after important features were extracted by
Efficient Channel Attention (ECA-Net) [46] and Squeeze
and Excitation (SE-Net) [47], which enhanced channel-wise
attention by adaptively weighting feature maps based on
their importance, thereby facilitating effective semantic

segmentation before being passed to the coloring path. A
detailed explanation of ECA-Net and SE-Net is provided
in Section 2.3. The incorporation of semantic information
into the colorization network yielded three primary benefits:
(1) improved precision in color prediction, (2) mitigation of
color overflow problems, and (3) enhanced diversity in color
applications.

In the early stages of this study, a single-path architecture
was tested, but the recognition and segmentation perfor-
mance on grayscale images was found to be suboptimal. This
was likely due to the absence of color information, which
typically provided important cues for semantic discrimi-
nation. To address this limitation, a dual-path architecture
was adopted. The contextual path, based on an ImageNet
pretrained model, enhanced semantic understanding and
improved generalization across diverse scenes. The spatial
path focused on preserving edge and structural details,
thereby helping to prevent color bleeding during the
colorization process.

In the proposed model, the process of downsampling
(DS) was achieved through the implementation of convolu-
tion (Conv2d) [48], a layer that extracts spatial features by
sliding filters over the input to generate feature maps. For
upsampling (US), transposed convolution (ConvT2d) [49]
was employed, which reverses the convolution operation to
increase spatial resolution in a learnable manner. Following
each convolutional layer, batch normalization (BN) [50]
was applied to normalize the activations within each
mini-batch, thereby accelerating training and improving
model stability. To introduce nonlinearity, the rectified linear
unit (ReLU) [51] was used.

The CNN pathways were connected and optimized
via an end-to-end training process. The entire framework
operated in a CIELAB-type color space, which consists of
three channels: the lightness channel (L∗) and two chromatic
channels (a∗ and b∗). The input of the three pathways was
a grayscale image. The input grayscale image was derived
from an RGB-to-grayscale conversion based on the ITU-R
BT.709 standard (Y709 = 0.2126R + 0.7152G + 0.0722B),
which is closely aligned with the sRGB standard. The outputs
from the contextual and spatial paths represented semantic
segmentation results while the chromatic path produced the
image planes for a∗ and b∗ color channels, separately. Since
the primary objective of image colorization is to generate
perceptually realistic chromatic channels from a grayscale
image, this study adopted themethod proposed by Iizuka [9],
where the input grayscale image is treated as the lightness
channel in the LAB color space transformation and the
calculation of color differences. The final colorized images
are represented in the sRGBcolor space. The conversion from
CIELAB to sRGB was carried out in OpenCV-Python using
the cvtColor function with the COLOR_Lab2RGB flag. This
process involved two steps: (1) transforming CIELAB values
into CIE 1931 XYZ values with the D65 illuminant as the
reference white and (2) converting the XYZ values into sRGB
in compliance with the IEC 61966-2-1:1999 standard [52].
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To leverage the superior feature extraction capabilities of
the pretrained ResNet50 [53] model, this study adopted the
recommended input size of 224× 224× 3 in the semantic
segmentation network. However, using the same resolution
in the coloring network may result in the loss of details
of small objects (such as brake lights and traffic signals).
To address this issue, this study adopted a high-resolution
input of 896× 896× 3 in the coloring network to preserve
the details of small objects and improve coloring accuracy.
This study assumed that the semantic information of large
objects is sufficient to provide the overall contextual guidance
required for coloring.

2.1 Context Path
An image is typically composed of both foreground and
background elements, with the background often occupying
a significant portion of the image area. In CNNs, extracting
features at multiresolution enables the capture of both global
and local information. This is typically achieved by adjusting
the stride, which is a parameter that determines how the
convolutional filtermoves across the image, thereby affecting
the resolution of the extracted feature maps. To this end, a
pretrained ResNet50 model was employed to construct the
contextual pathways. This approach can effectively capture
image features even when the input image is in grayscale.

Specifically, image features were extracted at resolutions
of 7× 7 and 28× 28 and then upsampled to 56× 56, thereby
ensuring a consistent resolution for subsequent processing.
This multiscale approach allowed for the extraction of de-
tailed image features while retaining the broader contextual
information essential for subsequent processing as presented
in Table I. Images typically consist of foreground and
background elements, with the background usually occu-
pying a large portion of the image area. In CNNs, feature
extraction atmultiple resolutions can capture both global and
local information. This architectural configuration aimed
to enhance the accuracy of image recognition. To this end,
ECA-Net and SE-Net were incorporated to refine and selec-
tively enhance relevant image features, thereby ensuring the
optimal representation of both foreground and background
information and ultimately improving model performance.

2.2 Spatial Path
Images commonly consist of multiple objects, whose spatial
arrangements are crucial for accurate interpretation. As the
depth of a neural network increases, its capacity to preserve
absolute position information decreases. To address this
issue, we have devised a wide and shallow architectural con-
figuration comprising just four convolutional layers in the
spatial path as detailed in Table II. The initial convolutional
layer employed a kernel size of 5 × 5 and a stride of 2,
enabling the capture of greater spatial detail at an early stage
while minimizing positional loss. This architectural config-
uration is advantageous because it preserves absolute posi-
tional information, which is vital for tasks that necessitate
precise localization. Furthermore, our design addresses color
overflow issues, guaranteeing accurate color differentiation
between adjacent objects or regions within the image.

Table I. Context path network architecture.

Output size Operator Stride Filter

112× 112 Conv2d 2 7× 7× 3× 64

56× 56
max pool 2 3× 3
Conv2d 1 ResNet50 layer1

28× 28
max pool 2 3× 3
Conv2d 1 ResNet50 layer2

14× 14
max pool 2 3× 3
Conv2d 1 ResNet50 layer3

7× 7
max pool 2 3× 3
Conv2d 1 ResNet50 layer4

Table II. Spatial path network architecture.

Output size Operator Stride Filter size

112× 112 Conv2d, BN, ReLU 2 5× 5× 3× 32
112× 112 Conv2d, BN, ReLU 1 3× 3× 32× 32
56× 56 Conv2d, BN, ReLU 2 3× 3× 32× 64
56× 56 Conv2d, BN, ReLU 1 3× 3× 64× 64

2.3 Fusing Context and Spatial Features
In the context of the colormodel, the efficient transmission of
both spatial and contextual information is paramount. This
was accomplished by integrating spatial and contextual data
and applying an attention model to selectively extract the
most relevant information. At the intermediate resolution
level of 56 × 56, two branches were created: one directed
towards the color neural network and the other dedicated
to image segmentation. This dual-branch structure ensured
that the position and content of each object within the image
are accurately represented, enhancing both the precision of
color application and the clarity of object boundaries.

The ECA-Net has been shown to improve the accuracy
of classification results. The attention channel mechanism
was employed in the branch path of the context path, and
the number of channels in the two branches is equivalent,
utilizing 1 × 1 convolution. Following the connection of
the spatial path to the context path, a 1 × 1 convolution
and SE-Net were employed to determine the significance of
different channels and enhance salient features. The attention
calculation is shown in Eq. (1). The ECA-Net and SE-Net can
be calculated by Eqs. (2) and (3).

X̃c = αc ·Xc, ∀ c ∈ {1, 2, . . . ,C}, (1)

where Xc refers to the original input feature map of the
cth channel and X̃c denotes the output feature map of the
cth channel after being weighted by the attention coefficient
αc . The attention weight αc is computed differently depend-
ing on the method.
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The input features of ECA-Net and SE-Net are X ∈
RH×W×C , which aggregates spatial information into a
channel descriptor z ∈ RC through global average pooling.
The ECA-Net module introduces a lightweight and effective
mechanism to capture channel-wise dependencies without
dimensionality reduction.

α = σ(Conv1Dk(z)), zc =
1

H ×W

H∑
i=1

W∑
j=1

Xi,j,c,

k=
∣∣∣∣ log2 C

γ
+

b
γ

∣∣∣∣
odd

, (2)

where Conv1Dk(·) denotes a 1D convolution with a kernel
size of k applied to the channel dimension, where γ and
b are hyperparameters typically set at 2 and 1, respectively,
and | · |odd denotes rounding to the nearest odd integer.
The parameter Xi,j,c represents the value at the spatial
position (i, j) in the cth channel of the input feature map
X ∈ RH×W×C . Global average pooling is applied across the
spatial dimensions. This formulation ensured that the kernel
size scales reasonably with increasing channel numbers while
preserving efficient local cross-channel interaction.

The SE-Net block enhanced channel-wise feature repre-
sentations by modeling inter-channel dependencies. The SE
block first applied a squeeze operation. This was followed
by an excitation operation that captures channel-wise
dependencies using two fully connected (FC) layers with a
ReLU activation.

α = σ(W2 · δ(W1 · z)), zc =
1

H ×W

H∑
i=1

W∑
j=1

Xi,j,c, (3)

where W1 ∈ R(C/r)×C and W2 ∈ RC×(C/r) are the weight
matrices of the FC layers, δ(·) denotes the ReLU function,
and σ(·) is the sigmoid [54] function, which maps input
values to the range (0, 1) to represent probabilities or
attention weights. The parameter Xi,j,c represents the value
at the spatial position (i, j) in the cth channel of the input
featuremapX ∈RH×W×C . Global average pooling is applied
across the spatial dimensions. The reduction ratio r is a
hyperparameter (typically set at 16) that controls the capacity
and complexity of the excitation operation. The ECA-Net
and SE-Net attention weights α ∈ RC were obtained after
applying the sigmoid activation σ(·).

As both models are lightweight, they did not result in a
substantial increase in the computational complexity of the
model. Presently, the feature size is set at 56 × 56 × 256.
Finally, the output was upsampled and output with different
1 × 1 convolutional layers for image segmentation and
integration with the colorization network. The segmentation
was performed using the Softmax activation function [55],
which converts raw output values into a normalized proba-
bility distribution across classes.

2.4 Colorization Network
Three design principles are particularly important in the
coloring model’s design: high-resolution image input,

U-Net architecture with instance normalization (IN) [56],
and optimal timing for incorporating image segmentation
information.

If the same 224 × 224 × 3 input size is employed as
in the context and spatial paths, essential details of smaller
objects, such as brake lights, will be at risk of being lost due
to lower resolution. To address this issue, an input image size
of 896× 896 was employed within the colorization network,
ensuring that even small objects retain sufficient detail for
accurate color application.

The U-Net architecture was employed extensively across
a range of domains. In CNNs, downsampling is typically
accompanied by doubling the number of channels to com-
pensate for the loss of information caused by the reduction
in image resolution. However, this approach cannot fully
preserve all feature details, often resulting in incomplete
feature recovery during upsampling. Instance normalization,
followed by concatenation with the upsampling layers, was
adopted to address this issue. This strategy helped restore
lost information and proved beneficial in high-contrast
industrial scenes or when working with semantic masks
containing uniform color regions.

In the colorization model, the input image was initially
downsampled to a resolution of 112 × 112 while texture,
edges, contrast, and related attributes were extracted at this
stage. This informationwas inadequate for accurate coloriza-
tion. To address this limitation, semantic features were incor-
porated, facilitating a more comprehensive reconstruction
of colorization results during the upsampling process. The
aforementioned three details are presented in Table III.

The colorization network was trained using the Huber
loss function in the neural network, with the hyperparameter
set at 0.5. However, incorporating semantic information
from the images, such as the presence of specific objects
like a bus or a building, is necessary for optimal coloring
results. Concurrent training on the coloring and semantic
segmentation networks was conducted to address this limita-
tion. The training process utilized 11 categories of data, with
segmentation labels provided for each category. These labels
enabled the division of an image into multiple local regions,
which was especially advantageous for accurate local image
coloring. The 11 categories included building, bus, car, road,
sidewalk, sky, traffic sign, tree, truck, vegetation, and wall.

The final colorized image was generated by combining
semantic segmentation and training with the Huber loss
function. However, the extent of colorization in an image
was contingent upon psychophysical factors. To enhance the
perceptual quality of the results, we incorporated perceptual
loss into the training process. Unlike the traditional mean
square error (MSE), perceptual loss is more aligned with
subjective visual perception. In the proposed algorithm,
the colorized CIELAB image was first converted to the
sRGB color space using the procedure described earlier.
Then, a perceptual loss was applied for further refinement,
ensuring that the final output aligned closely with human
visual expectations. The Huber loss LHuber, cross-entropy
loss LCE, and perceptual loss Lperceptual can be calculated by
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Table III. Colorization network architecture.

Item Output size Operator Stride Filter size

DS1
896× 896

Conv2d, BN, ReLU 1 3× 3× 3× 32
DS2 Conv2d, BN, ReLU 1 3× 3× 32× 32

DS3
448× 448

Conv2d, BN, ReLU 2 3× 3× 32× 64
DS4 Conv2d, BN, ReLU 1 3× 3× 64× 64
DS5 Conv2d, BN, ReLU 1 3× 3× 64× 64

DS6

224× 224

Conv2d, BN, ReLU 2 3× 3× 64× 128
DS7 Conv2d, BN, ReLU 1 3× 3× 128× 128
DS8 Conv2d, BN, ReLU 1 3× 3× 128× 128

Concatenate Concatenate with Segmentation information

DS9

112× 112

Conv2d, BN, ReLU 2 3× 3× 256× 256
DS10 Conv2d, BN, ReLU 1 3× 3× 256× 256
DS11 Conv2d, BN, ReLU 1 3× 3× 256× 256
DS12 Conv2d, BN, ReLU 1 3× 3× 256× 256

US1

224× 224

ConvT2d, BN, ReLU 2 3× 3× 256× 128
Concatenate Concatenate with (DS8+ IN)

US2 ConvT2d, BN, ReLU 1 3× 3× 256× 128
US3 ConvT2d, BN, ReLU 1 3× 3× 128× 128

US4

448× 448

ConvT2d, BN, ReLU 2 3× 3× 128× 64
Concatenate Concatenate with (DS5+ IN)

US5 ConvT2d, BN, ReLU 1 3× 3× 128× 64
US6 ConvT2d, BN, ReLU 1 3× 3× 64× 64

US7

896× 896

ConvT2d, BN, ReLU 2 3× 3× 64× 32
Concatenate Concatenate with (DS2+ IN)

US8 ConvT2d, BN, ReLU 1 3× 3× 64× 32
US9 ConvT2d, BN, ReLU 1 3× 3× 32× 32
US10 Conv2d, BN, sigmoid 1 1× 1× 32× 2

Eqs. (4)–(6). The total loss calculation is shown in Eq. (7).

LHuber(x,y) =

{ 1
2 (x − y)2 if |x − y|< δ
δ ·
(
|x − y| − 1

2δ
)
, otherwise,

(4)

where x is the colorized image while y represents the ground
truth; δ is an adjustable parameter, which is set at 0.5 in this
study.

LCE =−
C∑

C=1

yc · log(ŷc), (5)

where C is the number of categories, yc denotes the one-hot
encoded indicator for the true class, and ŷc represents the
model’s predicted probability for class c.

Lperceptual(x,y) =
1

CjHjWj
‖∅l(x)−∅l(y)‖22, (6)

where∅l(x) and∅l(y) represent the predicted image and the
real image from a VGG16 pretrained network. Parameters
Cj, Hj, and Wj represent the number of channels, height,
and width of feature maps at the jth layer, respectively. The
16th layer was used in this study to ensure that the coloring

results in a wide range would be more consistent with the
psychophysics.

Ltotal = λ1 · LHuber(x,y)+ λ2 · LCE+ λ3 · Lperceptual(x,y). (7)

The loss weight ratio of λ1, λ2, and λ3 was 10,000:8:15.
The analysis of previous image colorization results

revealed that the chroma of generated images is often lower
than that of the ground truth. To address this, the a∗ and
b∗ channels were each scaled by a factor of 1.3, effectively
increasing the chroma (C∗) of the output images. This factor
was determined empirically, as larger values may result in
unnatural colorization.

The architecture of our network employed the
AdaDelta [57] optimizer, with a learning rate of 0.004 and a
batch size of 4. To prevent overfitting, this study employed
early stopping, where learning was halted once the test loss
did not decrease after 16 consecutive repetitions. The model
outputs the image with the lowest loss as the colorization
result.

2.5 GTA5 Dataset
The GTA5 [43] dataset consists of 24,966 synthetic images
with pixel-level semantic annotations, which were rendered
using the open-world video game Grand Theft Auto 5. These
images depict street scenes in an American virtual city from
the perspective of a vehicle. The dataset under consideration
encompasses 19 semantic categories. Following a rigorous
evaluation of the dataset, 11 categories were selected for
further analysis in this study. The selection was based on two
criteria: the frequency of segmented objects and the necessity
of colorization. The following categories are included:
building, bus, car, road, sidewalk, sky, traffic sign, tree, truck,
vegetation, and wall. The remaining unused categories are
bicycle, person, fence, motorcycle, pole, rider, traffic light,
and train. The image resolution of the dataset in question is
1914× 1052. Prior to importing the model, it underwent a
resizing process to align with the study design’s dimensions.
Subsequently, a comparison was made between the model
and the original image, employing the same scale resolution.

The GTA5 dataset offers three notable advantages:
(1) a diverse and extensive collection of artifacts, (2) highly
complex and varied scenes, and (3) comprehensive label
information for complete images. These characteristics make
it an optimal choice for training models that require both
detailed object recognition and contextual understanding.
The training dataset consisted of 20,466 images while the
testing dataset comprised 4500 images.

To enhance themodel’s robustness, a random horizontal
flip of the input images was applied with 50% probability.
This data augmentation technique helped to reduce overfit-
ting and improve the model’s generalization across diverse
scenarios.

To validate the performance of the proposed neural
network architecture, we conducted a series of experiments
under various configurations. Six configurations were eval-
uated in this study. Method 1 employed the baseline archi-
tecture. Method 2 incorporated a pretrained model within
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Figure 2. Colorization results on the GTA5 validation set using the proposed model (Method 6).

the context paths. Method 3 modified the input resolution of
the colorization network to 896× 896× 3. Method 4 added
a perceptual loss to the training objective. Method 5 applied
instance normalization before the concatenation operation
in the colorization network. Method 6 increased the chroma
component in the LAB color space by a factor of 1.3.

It is widely recognized that deep learning models gen-
erally require large-scale datasets to achieve optimal perfor-
mance. Nevertheless, demonstrating robust performance un-
der small-data conditions is also meaningful, as it highlights
the model’s ability to generalize in resource-constrained sce-
narios. Therefore, an additional experiment was conducted
under a reduced protocol with 2000 training images and
500 validation images, following the settings adopted by
Zabari and Iizuka. Under this protocol, the Zabari and Iizuka

models and the proposedmethod (Method 6) were evaluated
under identical conditions. The corresponding comparative
results are presented and analyzed in Section 4.

The implementation was developed in Python 3.7.16
with PyTorch 1.12.1 (CUDA 11.3), cuDNN 8.3.2, and
OpenCV 3.4.17. Training and inference were conducted on
a Windows 10 system equipped with one NVIDIA GeForce
RTX2080Ti (11GB), an Intel Core i7-9700FCPU, and 32GB
RAM.

3. RESULTS
Figure 2 illustrates the colorization results on the GTA5
validation set, highlighting the model’s ability to colorize
small objects with diverse color distributions accurately.
Leveraging image segmentation, themodel achieved realistic
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Table IV. Mean and 95th percentile color differences between the colorized images generated by Methods 1–6 and the ground-truth images (averaged over 4500 test images).

Methods Basic
architecture

Pretrained
model

High-resolution
input

Perceptual
loss

IN Chroma (C ∗)
scaled by 1.3

Global color difference
(test data)

Traffic light color
difference (test data)

Method 1
√

3.8/10.3 20.9/27.6
Method 2

√ √
3.5/8.4 21.2/27.7

Method 3
√ √ √

3.0/8.7 20.6/25.3
Method 4

√ √ √ √
2.8/8.0 0.66/5.4

Method 5
√ √ √ √ √

2.7/7.6 0.61/5.8
Method 6

√ √ √ √ √ √
2.7/7.3 0.52/5.0

(Metrics: mean1ECAM16-UCS/95th percentile of1ECAM16-UCS)

colorization for categories such as pedestrians and vehicles.
The entire process was fully automated, requiring no human
intervention.

Previous research on the perception of color differences
in large printed images [58] demonstrated that statistical
measures of extreme color deviations correlatemore strongly
with perceived image color differences than mean color
differences do. The results of image colorization using the
proposed methods, in terms of the mean and 95th percentile
of CAM16-UCS color differences (denoted as1ECAM16-UCS)
[59] between the colorized images and the corresponding
ground-truth images, are presented in Table IV. The global
color difference refers to the mean and the 95th percentile
of 1ECAM16-UCS computed across all pixels in the image.
In contrast, the traffic light color difference refers explicitly
to the mean and the 95th percentile of 1ECAM16-UCS
computed only over pixels corresponding to traffic signal
lights. In Methods 1 and 2, a ResNet50 pretrained model
was employed to enhance model diversity and to ensure
optimal performance even with limited training data. The
results are illustrated in Figure 3(a). In Methods 3 and 4,
the ability to colorize small objects, such as red traffic signs
with traffic horns, was enhanced by increasing the resolution
and reducing the perceptual loss as illustrated in Fig. 3(b).
Figure 3(c) demonstrates that the ability to colorize artificial
objects can be enhanced by instance normalization and by
increasing the chroma of the output images by a factor of 1.3
in Methods 4–6.

4. DISCUSSION
To further contextualize these findings, it is necessary
to compare the method with representative prior studies.
Zabari proposed a text-guided latent diffusion framework
for image colorization, which integrates Cold Diffusion with
a CLIP (Contrastive Language–Image Pretraining; Radford
et al., 2021) [60]-based ranking mechanism to provide
flexible and diverse results, albeit at a relatively high com-
putational cost. In contrast, Iizuka designed a CNN-based
architecture that performs colorization by fusing global scene
priors with local features through image recognition. Their
model benefits from implicit semantic guidance via scene
classification, enabling natural colorization across a wide

variety of images. As shown in Figure 4, the proposed model
(Method 6) is compared with Zabari’s diffusion model [29]
and Iizuka’s model [9] for image colorization. The model’s
performance was evaluated using 2000 training samples
and 500 validation samples. Although implementations
employed a greater number of training samples, this strategy
is not consistently practical because the data collection
process is often characterized by its labor-intensive and time-
consuming nature, particularly in real-world applications.
Notably, the ability to achieve competitive results with a
reduced dataset underscores the efficiency of the proposed
method and indicates its robust generalization capabilities
while substantially reducing training resource demands.

The results indicate that elements such as trees and
artifacts are not effectively colorized in the Zabari and Iizuka
models. Although the sky exhibits some blue tones, the
colorized regions remain imprecise. The proposed model
has been demonstrated to exhibit superior performance in
identifying both natural and artificial objects. The results of
the 1ECAM16-UCS color difference comparison for various
semantic categories are presented in Table V.

The results indicate that the proposed model achieves
superior color restoration for categories such as sky and
trees. This improvement can be attributed to the relatively
consistent spatial positions, features, and color distributions
of elements like the sky, trees, and vegetation.

In terms of artificial objects, the model employed in this
study utilizes a multipath neural network, enabling precise
identification of the necessity for distinct colors to denote
varied semantic objects.

In the context of image segmentation, the proposed
model’s categorization of vehicles, including cars, trucks, and
buses, enables the discernment of color variations across
different categories. This capability is supported by the neural
network’s learning process, which integrates diverse anno-
tated data. Analysis revealed that the color differences be-
tween buses and trucks were within acceptable limits. How-
ever, the outcome for cars was less optimal, likely due to the
inability to distinguish between different cars solely through
image segmentation when multiple cars were present in
a single image. However, the Zabari and Iizuka models
demonstrated even poorer performance, with the color of the
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Figure 3. Colorization results of Methods 1–6.

cars often being different from the ground truth and being
unable to distinguish the saturated red of the brake lights.

In the case of roads, walls, and sidewalks, these features
in the image were very close to each other. Therefore,
image segmentation is necessary to determine the location
of the road and the presence of people. The proposed model
outperformed the competitor’s model, as it improved the
visibility of roads, walls, and sidewalks.

In the coloring of small objects, such as traffic lights and
brake lights, the proposed model significantly outperformed
other models due to the use of a high-resolution U-Net
architecture in the colorization path, which preserved the
loss of image encoding by concatenating the encoder and
decoder information.

Coloring buildings presents a unique challenge com-
pared to other artifacts due to the wide range of styles and
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Figure 4. A comparison of Zabari’s model, Iizuka’s model, and the proposed model (Method 6) in image colorization.

colors found in this category. To address this challenge,
we propose a model for segmenting images into various
categories, thereby enhancing learning. This approach aimed
to enhance the diversity of building colors and minimize
the impact on other categories. The results of the proposed

model demonstrated the efficacy of this method, surpassing
the performance of different models.

The 1ECAM16-UCS calculation method in this study
is as follows. First, convert both the colorized image
and the ground-truth image from the sRGB space to the
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Figure 5. Examples of failed colorization using the proposed model (Method 6).

Table V. Comparison of mean color differences among various semantic categories.

Building Bus Car Road Sidewalk Sky Traffic
sign

Tree Truck Vegetation Wall

Iizuka
[9]

9.9 8.9 9.7 8.9 9.8 8.8 11.5 10.0 7.3 8.8 9.4

Zabari
[29]

8.6 7.8 7.7 5.4 7.6 8.2 10.4 8.7 6.9 7.2 7.9

Ours 4.5 0.26 4.8 3.1 3.9 3.2 1.4 4.6 3.4 3.6 4.1

(Unit:1ECAM16-UCS)

CAM16-UCS J’a’b’ space, using a D65 reference white and an
adapting field luminance of 20 cd/m2 under dim surround
conditions. Then, compute the Euclidean distance between
them in the J’a’b’ space. Statistics are computed only for pixels
belonging to the corresponding category in the segmentation
mask (i.e., 1ECAM16-UCS is calculated for all pixels of each
object), and no low-pass filtering is applied, primarily to
preserve image detail. However, such pixel-wise statistics
cannot account for perceptual phenomena such as visual
masking or color assimilation. To further validate whether
the model aligns with human subjective perception and to
address these limitations, psychophysical experiments can
serve as a valuable extension of this study.

The proposed method has two primary limitations.
First, although the coloring accuracy of small objects can
be improved by using a high-resolution U-Net structure,
certain inaccuracies still persist. For instance, as shown in
Figure 5(a), sign lights that are originally yellow may be
incorrectly colored as green in the output. Second, referring
to Figs. 5(b) and 5(c), in more complex scenes, the model
sometimes applies unnatural colors, such as gray or red,
which negatively impacts the overall realism of the image.

Although the proposed model performs well on the
synthetic image dataset GTA5, it is still necessary to
further validate its performance on real-world images. The
BDD100K [61] dataset was released by the Berkeley Artificial
Intelligence Research laboratory in collaboration with the
Berkeley DeepDrive Industrial Consortium. It is one of
the largest and most diverse publicly available datasets
of driving videos. The dataset consists of 720p-resolution

driving videos collected across multiple regions of the
United States, including metropolitan areas such as New
York City and the San Francisco Bay Area. The model
(Method 6) proposed in this study achieves satisfactory
results in terms of color filling performance on real-world
scene datasets as shown in Figure 6. However, compared
to the colorized outputs, the color differences from the
ground-truth images are still relatively high. For memory
colors (e.g., trees, roads, sky), the colorization results are
satisfactory, likely because these categories exhibit relatively
consistent canonical colors across scenes. An additional
observation is that sky regions exhibit lower chroma,
likely due to a dataset-induced bias in GTA5, where skies
tend to appear less vividly blue. In the coloring of small
objects, the red color of brake lights is consistently present,
indicating that the high-resolution input of the proposed
model effectively enhances the coloring results, particularly
ensuring accuracy in coloring small objects on the road.
Although the coloring of nonmemory colors is less accurate,
the overall image still demonstrates noticeable color diversity.
Additionally, based on the color filling performance of the
proposed model, transfer learning can be applied to train the
model on different application datasets, thereby improving
color filling performance and reducing color differences.
Furthermore, incorporating panoptic segmentationmay also
enhance the coloring of vehicles.

5. CONCLUSIONS
In this study, a novel automatic image colorization method
was proposed, which integrates a multipath neural network
with semantic segmentation to enhance the accuracy of
color prediction. The experimental results on the GTA5
dataset demonstrated that the proposed method signifi-
cantly improved color fidelity and object edge preservation
compared to existing CNN and diffusion models. Using
a high-resolution training dataset, the proposed method
achieved small global color differences on 4500 test images
relative to the ground truth, with mean 1ECAM16-UCS = 2.7
and 95th percentile 1ECAM16-UCS = 7.3. Moreover, even
when trained on a small dataset, the method consistently
outperformed the CNN and diffusion models across all
categories. However, in highly complex scenes, this method
did not produce ideal coloring results.
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Figure 6. Colorization results for the BDD100K dataset using the proposed model (Method 6).

Future work will focus on improving image segmenta-
tion through two main directions. One direction is the ap-
plication of panoptic segmentation to achieve more compre-
hensive scene understanding. Another direction is the incor-
poration of semantic guidance for objects with characteristic
colors, such as taxis or airplanes of specific airlines. These
strategies are expected to reduce color misclassification and
further enhance color accuracy and diversity in complex
scenes. In addition, existing color difference formulas are
considered insufficient to fully capture human perception in
complex images. To address this limitation, a preliminary
experimental framework has been designed to recruit par-
ticipants for subjective evaluations. Specifically, participants

will compare the colorized results generated by the deep
learning model with the corresponding ground-truth color
images and provide naturalness ratings. This evaluation aims
to assess the perceptual performance of colorization models
from the perspective of human visual perception. This study
can help us gain a deeper understanding of the key aspects of
perceived color differences in image colorization.

Availability of Materials
Code and model availability: The source code and trained
model can be provided upon reasonable request for research
use. Requests can be directed to D10822501@mail.ntus
t.edu.tw or plsun@mail.ntust.edu.tw. Redistribution and
commercial use are prohibited.
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