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Abstract. This study presents a novel character-level writer verifica-
tion framework for ancient manuscripts, employing a building-block
approach that integrates decision strategies across multiple token
levels, including characters, words, and sentences. The proposed
system utilized edge-directional and hinge features along with
machine learning techniques to verify the hands that wrote the Great
Isaiah Scroll. A custom dataset containing over 12,000 samples of
handwritten characters from the associated scribes was used for
training and testing. The framework incorporated character-specific
parameter tuning, resulting in 22 separate models and demonstrated
that each character has distinct features that enhance system
performance. Evaluation was conducted through soft voting,
comparing probability scores across different token levels, and
contrasting the results with majority voting. This approach provides a
detailed method for multi-scribe verification, bridging computational
and paleographic methods for historical manuscript studies.
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1. INTRODUCTION
The period of ancient history extends approximately from
the fifth millennium BCE to the fifth century CE. During
this period, people transcribed mostly on thick paper made
from plants and animal skins; those that survived named
are referred to as ancient manuscripts. Considering the
writing medium used and the thousands of years they have
survived, physical quality degradation is inevitable and is a
major obstacle for accurate document analysis. Digital image
production of ancient manuscripts has been made possible
through the vast and sophisticated technology of document
imaging, aiming to preserve them at a specific point in
time. Furthermore, advancements in digital imaging have
enabled the restoration of degraded manuscripts, addressing
challenges such as bleed-through removal [1, 2], alignment
correction [3], and multispectral text extraction [4], making
historical documents more accessible and amenable for
computational analysis.

Paleography, a study of ancient writing systems is one of
the auxiliary sciences of history. In general, paleography in-
vestigates the type of script and ductus (distinctive features of
the strokes of particular hands) inscribed on the manuscript
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to determine whether additional manuscripts studied were
written by the same person. Such investigations are needed to
identify additional manuscripts written by the same person,
as these manuscripts may provide additional content for
deeper understanding of the contextual knowledge gleaned
from the precedent manuscript [5]. Thus, paleography plays
a central role in analyzing ancient manuscripts and verifying
their authorship, and offers a foundational approach to the
understanding of historical documents.

Simultaneously, the field of computer science has
adapted techniques from image processing and pattern
recognition to address similar problems through the tasks of
writer identification and verification [6]. As summarized by
Bensefia et al. [7], writer identification task deals with the
retrieval of handwritten samples from a database depending
on the graphical analysis of the handwritten samples under
study, while writer verification task aims to determine
whether two samples of documents were written by the
same writer. Based on the description, writer identification
and verification tasks are equivalent to the objectives that
paleography aimed to achieve. This notion then forms the
basis of research in computer-aided writer identification and
verification based on digital images of various handwritten
scripts in modern and historical documents.

This study integrates the knowledge from paleography
with advancements in computer-aided writer recognition
to verify the authorship of the Great Isaiah Scrolls, an
ancient manuscript believed to have been written by two
different scribes. The primary objective of this study is
the proposal of a writer verification system that can verify
the dual-scribe hypothesis using a novel building-block
approach. This approach is designed to improve verification
accuracy by iteratively analyzing character-specific data,
which is crucial for the detailed and precise identification
of the scribes. Additionally, this study critically evaluates the
data and methods used in the writer verification system,
examining the integration of paleographic expertise with
modern computational techniques.

The rest of the article is organized as follows: Section 2
reviews research on paleography-based writer recognition
and computer-aided writer recognition. Section 3 focuses on
the description of the proposed framework and the methods
used in this study. Section 4 describes the experiment setting
and Section 5 provides the results and its interpretation.
Section 6 summarizes and concludes the study.
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2. RELATEDWORK
To perform writer verification on historical manuscripts
is to bridge a profound gap between computer science
and historical studies (disciplines focused on the historical
significance of documents and relics). This bridging process
requires alignment of expertise from both fields, where each
discipline must temper its assumptions and expectations
to find common ground. Not all advanced techniques
in computer science can be applied directly to historical
manuscripts, nor can traditional historical methods fully
address the computational challenges. Therefore, this section
explores the background and contributions of both disci-
plines, highlighting gaps in existing research and the drivers
of the proposed framework.

2.1 1QIsa-a Scrolls and Paleographic Approaches to
Identifying Scribes
1QIsa-a, the Great Isaiah Scroll, discovered in 1947 in
Cave 1 at Qumran, is one of the most important biblical
manuscripts found in the Dead Sea Scrolls collection. It is
notable for its length (734 cm) and preservation, containing
the full ancient square script Hebrew text of the Book
of Isaiah from ca. 125 BCE, making it one of the oldest
surviving biblical texts (additional information and images
can be accessed at http://dss.collections.imj.org.il/isaiah) [8].
The study of ancient manuscripts, such as the 1QIsa-a,
combines historical research with various methodologies to
uncover both the textual content and the scribal practices
behind these texts. While the primary focus often lies
in extracting historical facts from the content itself, the
application of contextualization, sourcing, and corroboration
is essential in the scholarly approach to understanding
these manuscripts. As Van Drie et al. describe, corrobo-
ration involves comparing documents to address historical
questions or confirm claims, with the identification of
comparable documents—such as those written by the same
scribe— providing deeper insights into their creation and
context [9]. For ancientmanuscripts, this requires identifying
comparable documents, often determined by whether they
were written by the same scribe. Documents attributed to the
same scribe can provide additional comparative material for
deeper contextual insights [5].

Paleography, the study of ancient handwriting, is a
vital tool in this process. This methodology, as defined by
Wakelin, involves analyzing features such as handwriting
size, letterforms, and corrections to reveal individual scribal
practices and styles [10]. Tov’s work emphasized that
examining these characteristics in Hebrew manuscripts can
help identify distinct scribes, allowing scholars to trace the
evolution and transmission of texts [11]. The consensus
surrounding the authorship of the 1QIsa-a Scroll is not
uniform. Traditionally, paleographic methods suggested that
the entire manuscript was copied by a single scribe, with
subtle variations in handwriting attributed to personal
idiosyncrasies or occasional inconsistencies. However, some
scholars also proposed that the manuscript was actually
the work of two distinct scribes—one responsible for

Columns I–XXVII and another for Columns XXVIII–LIV.
Recent advancements, particularly through AI techniques
that detect micro-level handwriting variations, have revealed
the involvement of at least two scribes in its creation [12].
This breakthrough demonstrates the power of combining
traditional paleographic methods with modern technology
to enhance our understanding of ancient texts, as well as the
scribes who worked on them.

2.2 Computational Writer Verification
The study of writer verification has grown significantly in
recent decades, driven by advances in machine learning and
its applications to handwriting analysis. At least three key
components differentiate computational approaches: the to-
ken level of textual input (e.g., character, word, sentence), the
feature extraction methods, and the classification techniques
(see Table I).

Across diverse studies, research on Latin and non-Latin
scripts often employs similar feature extraction techniques
and classifiers, demonstrating the adaptability of machine
learning frameworks across scripts. However, the choice
of input level significantly influences the system’s focus
and accuracy. For example, character-level analysis can
capture fine-grained handwriting traits, while word- or
sentence-level inputs provide broader context. Despite these
advances, integrating decision scores across token levels in a
systematic manner remains amajor challenge, as highlighted
in Table I.

For historical manuscripts like the 1QIsa-a Scrolls,
it is essential to select features and classifiers that align
with paleographic practices. In this study, we employ edge-
directional and hinge features, as these methods are intuitive
to scholars studying historical manuscripts. These features
have been successfully applied in handwriting analysis
from their introduction to recent studies in capturing
stroke directionality and curvature patterns (Refs. [31]
and [32]). Additionally, we use an SVM classifier, which
has demonstrated robust performance in tasks involving
historical and modern handwriting (Refs. [30] and [33]).

2.3 Gaps in Existing Research
Despite significant advancements, computational writer ver-
ification faces critical limitations when applied to historical
manuscripts:

• Multi-Scribe Authorship: Most systems assume a
single writer for a document, overlooking the possibility
of collaborative manuscripts where multiple scribes
contribute.
• Unit-Level Integration: While character-level analysis
provides precision, there is a lack of robust frameworks
for aggregating information hierarchically across char-
acters, words, and sentences.
• ProbabilisticDecision Frameworks: Few studies adopt
probabilistic approaches to integrate evidence across
granularities, which is essential for handling complex
documents and transitions between scribes.
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Table I. Research on writer recognition for Latin and non-Latin scripts.

Dataset name Script Input level Feature extraction method Classifier
P S L W C

IAM, CVL, Dutch, Refs. Refs. Refs. Refs. — LBP, LTP, LPQ, SVM,
Firemaker English, [13–17] [18] [19] and [20] and FAST, SIFT, Nearest

German [21] [22] HKD, CNN Neighbor,
feature maps, CNN, RNN
SRS-LBP

ICFHR2012, Arabic, Refs. Refs. — Refs. Refs. CNN feature SVM
IFN/ENIT, Chinese, [13, 19], [23] [19] and [18, 24, 25] maps, SURF Nearest
QUWI Kannada, [26–29] [23] [30] SIFT, CA Neighbor,
HIT-MW, IHP, Devanagari, LDCF, GITF, Distance
HWDB1.1, Japanese CLGP, HOG, Calculation,
JEITA-HP, GLRL, Zoning CNN
KHATT,
AHTID/MW,
Custom dataset

These gaps are particularly relevant for the 1QIsa-a
Scrolls, where evidence suggests multi-scribe authorship.
The inability to address such challenges limits the scope
and accuracy of existing verification methods. Furthermore,
due to the varying consensus on the authorship of the
1QIsa-a Scrolls, no standardized protocol exists for verifying
proposed authorship claims through a writer verification
system. Current systems lack the capability to assess and
validate the theories surrounding the manuscript’s scribal
origins.

2.4 Motivation for a Building-Block Approach
This study introduces a building-block approach to address
the gaps identified. At the character level, this framework-
based approach assigns probability scores to individual
characters based on their likelihood of having been written
by the same scribe. These scores are then aggregated
hierarchically at word and sentence levels, allowing for a
comprehensive verification process. This modular approach
is well-suited for manuscripts like the 1QIsa-a Scrolls, where
the complexity of multi-scribe authorship requires a flexible
and scalable framework. By integrating paleographic exper-
tise with computational methods, the proposed system offers
an intuitive yet powerful solution for historical manuscript
studies. Furthermore, this framework provides scholars with
a deeper understanding of the methods employed, bridging
the gap between disciplines and enhancing collaboration.

3. PROPOSEDMETHOD
This section describes the proposed character-level writer
verification data flow and additional methods used as
validation baseline in the experiments.

3.1 Overall Architecture
The writer recognition framework mentioned in Section 2.2
mainly adopts an absolute decision strategy in identifying,
verifying, or authenticating a specific token. For example, in
a page-level writer recognition system, the recognition rate
is usually computed using global features, and the decision
process stops at this level. This method typically assesses
whether the entire page can be attributed to a particular
writer, relying on features that represent the overall style of
the text. However, in the context of historical manuscripts,
a more granular analysis is often required. In such cases,
it is important to consider the recognition rate at smaller
units, such as characters, words, or sentences. This is because,
in historical manuscript studies, the goal is not only to
determine whether an entire page was written by the same
hand but also to investigate whether different hands may
have written paragraphs within the same text, sentences
within a paragraph, or even individual words within a
sentence.

Unlike modern datasets, where the identity of the writer
is typically labeled (often in controlled lab environments),
historical manuscripts lack such clear labeling and may
involve multiple hands contributing to the same document.
In these cases, a detailed analysis at finer levels is necessary
to assess the possibility of multiple authors contributing
to a single page, paragraph, or even a specific word. This
approach provides a more nuanced understanding of the
document’s authorship, which is especially important when
studying manuscripts where the attribution of authorship
is uncertain or disputed. Thus, in this study, we integrated
the building-block approach in the decision strategy stage
with a machine learning- based writer verification system, as
illustrated in Figure 1.
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Figure 1. Character-Level Writer Verification Framework: from machine learning processes (data collection, feature extraction, model training, and testing)
to the construction of a hierarchical decision strategy for writer verification.

The building-block approach uses a layered decision-
making strategy built on the outcomes of a machine learning
model. At the lowest level, raw probability scores result
from testing and evaluation within the machine learning
framework. These scores serve as foundational inputs, which
are further used to compute the intermediate-level and
highest-level scores, allowing for a hierarchical assessment
of writer verification. This decision strategy consists of
three hierarchical layers. At the highest level (Layer 2), S2
represents the sentence- level probability score, indicating
the likelihood that the entire sentence is written by a specific
scribe. The intermediate level (Layer 1), where S1,i represents
the word-level probability score for the ith word in the
sentence, indicating the likelihood that theword is associated
with a specific writer. At the lowest level (Layer 0), p0,i,j
represents the raw probability scores of each individual
character in word i, with j indexing the character within
the word. This layered structure permits a detailed analysis,
ranging from characters to words and sentences, facilitating
writer verification at multiple levels.

3.2 Validation Baseline
To implement the proposed framework, we built an adap-
tation system to investigate the hands that wrote an ancient
manuscript written in square script Hebrew, known as the
Great Isaiah Scrolls. Our baseline used edge-directional
and hinge feature extraction methods proposed by Bulacu

et al. [30]. Edge-directional and hinge methods extract
angular information differently—Edge-directional features
compute the angle between handwriting strokes and a
horizontal reference line, while hinge features measure
angles formed between pairs of adjacent strokes. In both
methods, these angles are categorized into structured bins
based on their frequency of occurrence, with each bin
assigned an empirical probability. These binned values
represent the feature vectors, which are then used as input
for training a machine learning model. Training-wise, we
used an RBF kernel Support Vector Machine (SVM) to
train and predict data [33]. SVM is known as a robust
classifier that is suitable for datasets with high-dimensional
and non-linearly separable features, which aligns with the
characteristics of the data used in this study. To assess the
contribution of the building-block approach, we leveraged
SVM’s probabilistic outputs by opting for class probability
scores as the output of the testing stage. These scores were
then processed for soft voting and majority voting systems.

3.2.1 Decision Strategy
The machine learning-based verification system generates
class probability scores for each token at the lowest level.
At the character level (Layer 0), the model produces
p0,i,j representing the probability that this character j in
word i belongs to the reference scribe. This probability
is constrained within: p0,i,j ∈ [0, 1]. Since this is a binary
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classification task (two scribes), the probability of the second
scribe is implicitly given by: 1− p0,i,j.

To compute higher-level scores, soft voting andmajority
voting were applied separately at the word level (Layer 1)
and the sentence level (Layer 2). At the word level (Layer 1),
the aggregated score is defined as: S1,k = {Ssoft1,k , S

majority
1,k },

where k is the word index, Ssoft1,k is the soft voting score
for word k, and Smajority

1,k is the majority voting score for
word k. At the sentence level (Layer 2), the final aggregated
score is expressed as: S2 = {Ssoft2 , Smajority

2 }, where Ssoft2 is
the sentence-level soft voting score and Smajority

2 is the
sentence-level majority voting score. These scores are further
explained in the following section.

(a) Soft Voting. The soft voting score for a word, denoted
as Ssoft1,i , is computed as the average of the probability scores
of its characters. Assuming a word i consists of n characters,
each with a probability score p0,i,j for j= 1, 2, . . . , n, the soft
voting score is expressed as:

Ssoft1,i =
1
n

n∑
j=1

p0,i,j, (1)

where p0,i,j is the probability score of the jth character in
word i, and n is the total number of characters in the word.

For example, consider word 1 (i= 1) consisting of four
characters with probability scores: p0,1,1 = 0.5, p0,1,2 = 0.55,
p0,1,3 = 0.5, and p0,1,4 = 0.6. The soft voting score for this
word is:

Ssoft1,1 =
1
4 (0.50+ 0.55+ 0.50+ 0.60)= 0.5375. (2)

At the sentence level (Layer 2), the soft voting score is
computed by averaging the soft voting scores of the words in
the sentence:

Ssoft2 =
1
m

m∑
i=1

Ssoft1,i , (3)

wherem is the number of words in the sentence.
(b) Majority Voting. In majority voting, the decision

score for a word, denoted as Smajority
1,i , is computed by

counting the number of characters with a probability score
greater than 0.5. The indicator function I (p0,i,j > 0.5) is
used, returning 1 if p0,i,j > 0.5 or 0 otherwise.

The majority voting score is expressed as:

Smajority
1,i =

1
n

n∑
j=1

I(p0,i,j > 0.5), (4)

where n is the number of characters in the word.
For example, consider word 1 (i= 1) consisting of four

characters with probability scores: p0,1,1 = 0.5, p0,1,2 = 0.55,
p0,1,3 = 0.50, and p0,1,4 = 0.60. Applying the indicator
function, the majority voting score for this word is:

Smajority
1,1 =

1
4 (I(0.50> 0.5)+ I(0.55> 0.5)
+ I(0.50> 0.5)+ I(0.60> 0.5))

=
1
4 (0+ 1+ 0+ 1)
= 0.50. (5)

At the sentence level (Layer 2), the majority voting score
is computed in a similar way by averaging the decision scores
obtained from each word in the sentence:

Smajority
2 =

1
m

m∑
i=1

Smajority
1,i , (6)

wherem is the number of words in the sentence.

4. EXPERIMENT SETTING
This section explains the rationale behind the selection
of data, methods, and approaches of this study and its
description.

4.1 Data Collection
The Great Isaiah scroll consists of 54 pages, commonly called
columns, of which it was assumed (by humanities [20]) that
Scribe A wrote Col. I–XXVII and Scribe B Col. XXVIII–LIV.
Research done by Popovic et al. [29] proved that assumption
by implementing unsupervised learning for all columns.
Based on these findings, the adaptation system aims to
build a dataset and verify the data based on the claimed
columns belonging to each scribe. We present an illustrated
version of the letter samples, traced from the original images
(see Figure 2). To consider all tokens that are available in
large quantities, we chose tokens to be investigated from the
lowest level, i.e., characters, words, and one sentence. We
constructed the character-specific model based on the non-
final form of the 22 letters of ancient square script Hebrew.
We excluded the five final form letters since their frequency
of occurrencewas so limited that themachine learning-based
system was unlikely to benefit from the small dataset.

For data collection, we expanded our custom dataset
using the same approach described in our earlier study [34].
A total of 283 samples representing each letter (except for the
letter tet, with only 145 samples, and the letter samekh with
232 samples, due to limited availability) were taken from each
scribe’s corresponding columns. The training-validation set
referring to Scribe A comprised single characters extracted
from Col. I–XXVI, while the set referring to Scribe B
included single characters extracted from Col. XXVIII–LIII.
The test set consisted of one sentence from Col. XXVII
(referring to Scribe A’s handwriting) and one from Col. LIV
(referring to Scribe B’s handwriting).

This separation of data into Scribe A and Scribe B’s
columns follows the presumed authorship aswell asAI-based
writer identification methods discussed in Section 2. The
goal of this work was to verify these assumptions using the
proposed system, leveraging the computational approach to
confirm the authorship of the individual columns attributed
to each scribe.

4.2 Validation Baseline
To validate the proposed framework, we utilized
edge-directional and hinge feature extraction methods
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Figure 2. Illustration of the 22 isolated letters with their corresponding names.

and an SVM-based classification technique. A major
advantage of implementing handcrafted features, specifically
edge-directional and hinge features, is that unique
information based on the slant angle and curvatures of
handwriting projection can be extracted. The collaborative
nature of SVM and handcrafted features also brings an
advantage for robust implementation, especially with our
relatively small dataset, which could perform poorly during
model training with a deep learning network.

4.2.1 Edge-directional and Hinge Feature Extraction
In this study, four pixel-length variations were applied: 2 px,
3 px, 4 px, and 5 px, resulting in different numbers of feature
elements, i.e., 9, 13, 17, and 21 elements, respectively. In
addition, unlike the Sobel edge detection method used in the
original article, we implement the skeleton transformation
method. This transformation aims to reduce the pixel width
of binary objects to a 1-pixel-wide representation. Our
earlier study [35] demonstrated that using edge-directional
features for writer verification of the Great Isaiah Scrolls
yields better and more consistent accuracy scores when
combined with skeleton transformation. Based on this study,
each individual character image must be skeletonized before
feature extraction. Once the skeleton transformation was
applied to each character, these instances were then fed into
the feature extraction stage.

For hinge feature extraction, we employed a similar
skeletonization process as a prerequisite. Hinge features
capture the angular relationships between pairs of edge
directions, providing a detailed representation of how
strokes curve and connect within a character. For every pixel
on the skeletonized character, pairs of edge directions within
a predefined radius were identified. The computed angles
were grouped into predefined bins, creating a histogram that
represented the distribution of angular relationships for the

given character. In this study, four pixel-length variations
were applied: 2 px, 3 px, 4 px, and 5 px, which resulted in a
different number of feature elements, i.e., 104, 252, 464, and
740 feature elements, respectively.

4.2.2 SVMModel Training
For classification optimization, we used 81 combinations of
parameter C and γ with C = 2−3, 2, 23, 25, 27, 29, 211,
213, 215, and γ = 2−15, 2−13, 2−11, 2−9, 2−7, 2−5, 2−3, 2, 23.
We used the exponentially growing sequences of the
parameters as recommended in a practical guide [36] to SVM
classification. In the model training stage, we distributed
data for training and validation with an 80:20 ratio. The
feature extraction from each character with four different
pixel-length options was accomplished. Assuming that we
choose features that belong to the letter alef and were
extracted using the 2 px pixel-length setting, we then need
to split the training and validation data to ensure an equal
representation of samples from each scribe. This is illustrated
by the following explanation (note: this does not apply to
the letters tet and samekh). Since the letter alef has a set
of 283 samples belonging to Scribe A and another set from
Scribe B, the 112 validation samples (20% of total samples)
should consist of 56 samples from Scribe A and 56 samples
fromScribe B. For training, each scribe should be represented
by 227 training samples. To ensure an equally distributed
result, we employed a stratified cross-validation method.
Furthermore, we implemented 5-fold cross- validation to
create five different sets of training and validation data to
avert the proneness of underfitting or overfitting. Next, we
recorded the average of the training and validation accuracy
scores obtained from 5-fold cross-validation. Finally, we
obtained 22 combinations of parameters and a pixel-length
type specific to each letter with the best training accuracy
scoreswith low training-validation scores difference, to avoid
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Table II. Best average scores of training and validation of the 22 trained
character-specific models.

Edge-directional Hinge
Letter µTraining (%) µValidation (%) µTraining (%) µValidation (%)

alef 70.4 58.2 81.8 63.0
ayin 68.0 58.0 81.1 60.3
bet 67.0 56.9 79.3 63.7
dalet 72.4 61.1 81.7 64.7
gimel 70.7 58.9 83.0 61.0
he 69.8 58.0 81.1 58.7
het 65.2 60.7 76.7 62.4
kaf 64.1 53.0 80.4 58.2
lamed 65.3 52.8 74.8 57.2
mem 70.7 59.4 79.7 63.2
nun 66.0 57.5 80.6 59.3
pe 63.6 56.4 79.7 60.2
qof 72.1 60.5 83.3 63.5
resh 69.9 61.1 80.1 65.3
samekh 63.9 57.2 71.5 59.6
shin 64.8 57.3 81.7 60.2
tav 66.2 62.4 75.0 66.9
tet 70.1 63.5 82.2 62.3
tsadi 62.7 56.2 78.3 58.5
vav 67.3 58.4 71.4 60.2
yod 66.4 59.1 79.4 58.8
zayin 61.9 58.9 72.7 61.6

overfitting. These combinations were used to test the new
data derived from the testing set of Col. XXVII and Col.LIV.

5. RESULT ANDDISCUSSION
5.1 Character-Specific Model
Table II presents the best results of parameter tuning
obtained from the training and validation section of the
proposed writer verification system. To determine which
letters are more representative or less representative of their
respective features (edge- directional and hinge), we can
analyze the training, validation, and gap scores provided
for each letter. Representative letters typically have higher
scores (indicating better alignment with the feature set),
while less representative letters present with lower scores,
suggesting that the features struggle to capture the stylistic
traits of those letters. Letters like dalet, tet, and qof are
the most representative, as evidenced by their consistently
high scores in both training and validation datasets. Their
distinct stylistic traits make it easier to classify them with
edge-directional and hinge features. Letters like zayin, vav,
and samekh are less representative due to lower training
and validation scores. This indicates that these letters either
lack strong distinguishing features or that the current feature
extraction methods struggle to model their traits effectively.

Table III. Mean scores for training, validation, and gaps.

Feature Training mean (%) Validation mean (%) Gap mean (%)

Hinge features 78.9 61.3 17.6
Edge-directional features 67.2 58.4 8.8
Mean difference 11.7 2.9 8.8

To assess the effectiveness of the hinge and edge-
directional features, we analyzed the mean differences in
training scores, validation scores, and the gaps between these
scores. Figure 3 intuitively depicts the trends in training
and validation scores for each feature extraction method,
complementing the results summarized in Table III.

The mean training score for hinge method was 78.9%,
while edge-directional achieved a mean score of 67.2%,
resulting in a mean difference of 11.7%. This indicates
that hinge consistently outperformed edge-directional in
capturing patterns within the training data. The higher
training scores for hinge suggest that it is more effective
at modeling the stylistic differences in the handwriting
captured during training, which is crucial for distinguishing
between writers. For validation scores, hinge achieved a
mean of 61.3%, whereas edge- directional attained a mean
score of 58.4%, resulting in a smaller mean difference of
2.9%. While hinge maintains an advantage on unseen data,
the reduced gap between the validation scores suggests that
edge-directional performs closer to hinge when generalizing
to new data. This indicates that edge-directional might
generalize more consistently but is overall less accurate. The
gap between training and validation scores for hinge was
17.6%, while edge- directional exhibited a smaller gap of
8.8%,with ameandifference of 8.8%. The larger gap for hinge
highlights a potential overfitting issue, as its performance on
training datawas significantly higher than on validation data.
In contrast, edge-directional had a smaller gap, suggesting
better generalization to new data despite its lower overall
accuracy. While hinge demonstrated higher accuracy on
both training and validation data, its larger gap between
training and validation scores suggests it may be more
prone to overfitting. Edge-directional, with its smaller gap,
appears to generalize better but sacrifices some level of
accuracy. Based on these results, hinge is recommended
if achieving the highest possible accuracy is the primary
goal, and overfitting can be mitigated through regularization
techniques or additional data augmentation. However, if
generalization is more critical, edge-directional may be a
more robust choice.

5.2 Decision Strategy Results: Scribe A versus Scribe B
Following the interpretation of character-specific training
and validation scores, it is imperative to analyze the results
of the decision strategy on the building-block approach for
determining the probabilities at word and sentence levels.
This approach provides a practical perspective on how the
trained features translate into the testing phase and helps
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Figure 3. Best average scores of training and validation of the 22 trained character-specific models.

Table IV. The probability scores at word- and sentence-levels, a unit of analysis
perceived to be written by Scribe A (Col. XXVII).

Word # Edge-directional Hinge

S soft1,i (%) Smajority1,i (%) S soft1,i (%) Smajority1,i (%)

1 51.5 75.0 54.6 50.0
2 33.2 25.0 56.0 50.0
3 51.4 57.1 55.0 42.9
4 49.7 40.0 49.9 60.0
5 66.4 80.0 65.8 60.0
6 52.4 50.0 46.9 50.0
7 60.7 50.0 29.5 0
8 45.8 33.3 51.6 33.3
9 59.3 60.0 49.6 20.0
10 55.9 75.0 64.4 75.0
11 35.8 25.0 55.2 50.0
12 73.6 100 55.8 25.0
13 71.8 100 65.3 50.0

Sentence # S soft2 (%) Smajority2 (%) S soft2 (%) Smajority2 (%)

1 54.4 53.8 53.8 23.1

identify characteristics associated with each scribe’s writing.
The results are detailed in Table IV (showing probabilities for
Scribe A, Col. XXVII) and Table V (showing probabilities for
Scribe B, Col. LIV).

As shown in Table IV, for Scribe A, edge-directional
outperformed hinge at sentence- level probabilities under
both soft voting and majority voting strategies. Under
soft voting, edge-directional achieved a sentence-level

Table V. The probability scores on word- and sentence-level, a unit of analysis perceived
to be written by Scribe B (Col. LIV).

Edge-directional Hinge

Word # S soft1,i (%) Smajority1,i (%) S soft1,i (%) Smajority1,i (%)

1 49.3 66.7 62.6 66.7
2 51.4 42.9 34.1 14.3
3 51.1 40.0 37.9 30.0
4 53.7 50.0 53.8 50.0
5 39.0 0 33.1 33.3
6 60.7 62.5 56.8 62.5
7 40.1 0 40.7 66.7
8 40.1 25.0 64.2 100
9 55.6 57.1 54,3 42.9

Sentence # S soft2 (%) Smajority2 (%) S soft2 (%) Smajority2 (%)
1 49.0 33.3 48.6 44.4

probability of 54.4%, which is slightly higher than hinge’s
53.8%. Word-level probabilities for edge-directional under
this strategy ranged from 33.2% to 73.6%, indicating a
slightly wider spread but with consistently fewer extremely
low values compared to hinge. Under majority voting,
edge-directional also demonstrated stronger performance
with a sentence-level probability of 53.8%, significantly
higher than hinge’s 23.1%. This marked difference indicates
that edge-directional, despite variability in word-level
probabilities, aggregates better in majority voting.

It can be inferred from Table V that Scribe B pre-
sented a different trend. Under soft voting, edge-directional
again slightly outperformed hinge, with a sentence-level
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probability of 49.0% compared to 48.6%. However, the mar-
gin of difference was narrower for Scribe B than for Scribe
A.Word-level probabilities for edge- directional ranged from
39.0% to 60.7%, showing less spread compared to Scribe A’s
data and amore consistent performance. Formajority voting,
hinge surprisingly outperformed edge- directional, with a
sentence-level probability of 44.4% compared to 33.3%. This
indicates that hinge may be more robust when handling
shorter sentence structures, as Scribe B’s dataset consists of
only 9 words per sentence compared to Scribe A’s 13 words.

Analyzing the results further, several key observations
emerge when comparing the impact of sentence length and
voting strategies on edge-directional and hinge features:

Sentence Length Impact: Scribe B’s shorter sentences
(9 words) amplify the impact of low word-level probabilities
on the aggregated sentence-level result. This effect is partic-
ularly evident in majority voting, where the edge-directional
feature’s performance drops significantly for Scribe B (33.3%)
compared to Scribe A (53.8%).

Edge-directional’s Stability: Edge-directional consis-
tently outperformed hinge under soft voting for both
scribes, indicating that edge-directional is more stable when
aggregating probabilities using this strategy. However, its
performance under majority voting varies more, particularly
for shorter sentences (Scribe B).

Hinge’s Robustness in Majority Voting: While hinge
performance was lower than edge-directional, it showed
better sentence-level probabilities for Scribe B under ma-
jority voting. This suggests that hinge may handle extreme
variability at the word level better than edge- directional in
certain conditions.

The results emphasize the importance of selecting an ap-
propriate voting strategy and feature representation. Soft vot-
ing appears more stable across scribes and features, making
it a preferred approach when building sentence-level proba-
bilities. Edge-directional emerges as the stronger candidate
overall due to its higher sentence-level probabilities and
more consistent word-level predictions under soft voting.
However, the lower performance of both features for Scribe B
highlights challenges in handling shorter sentences. Shorter
units of analysis amplify inconsistencies inword-level predic-
tions, especially undermajority voting, where extreme values
(e.g., 0%) can disproportionately affect the aggregated result.

5.3 Evaluation of Probability Scores
The relatively low probability scores observed in the analysis
can be attributed to several underlying factors related to
the data, feature extraction, and the nature of the scribes’
handwriting. Two key possibilities contributing to these
results are discussed below.

• Limitations in Feature Representation and Over-
lapping Handwriting Styles A significant factor in-
fluencing the low probability scores is the limited
ability of the features— specifically, edge-directional
and hinge—to capture the distinct differences between
Scribe A and Scribe B. Both scribes may share
overlapping stylistic traits, which make it difficult for

the system to differentiate their handwriting accurately.
Edge-directional and hinge features, which are used
to represent characteristics such as stroke angles and
curvatures, may not be sensitive enough to the subtle
differences in each scribe’s unique writing style. When
the handwriting styles between two scribes exhibit
significant overlap, such as similar slant angles and
letter shapes, these features may fail to highlight the
necessary distinctions, resulting in lower confidence in
the classification and relatively low probability scores.
• Human-Generated Assumptions and Predefined

Labels The system’s training process is based on
human-generated assumptions and predefined labels
from AI-driven research mentioned in Section 2.1, par-
ticularly involving unsupervised writer identification of
ancient texts such as the 1QIsa-a scrolls. In this study,
data augmentation techniques were used to artificially
expand the dataset and increase the robustness of
the model. However, the assumptions regarding the
scribes’ styles and the division of the columns (such
as the plane separation between Columns 1-54) might
not fully capture the actual complexity of the scribes’
handwriting. These assumptions—while valuable for
training purposes—may not fully account for the
nuanced and dynamic nature of handwriting. The
predefined labels that were assigned to the scribes based
on these assumptions may not be entirely accurate,
leading to mismatches in the system’s classification and,
ultimately, to low or inconsistent probability scores.

6. CONCLUSION
While notable advancements have been made in
computational writer verification, significant challenges
persist, particularly in the analysis of multi-scribe
manuscripts such as the 1QIsa-a Scroll. The building-block
approach presented in this study, which aggregates
character-level probability scores to derive word- and
sentence-level outcomes, offers a versatile and scalable
solution to these challenges. By integrating computational
techniques with paleographic analysis, this method provides
a promising tool for historical manuscript studies and
encourages interdisciplinary collaboration.

Future research should focus on refining feature ex-
traction techniques, particularly enhancing edge-directional
and hinge features to better capture the distinguishing char-
acteristics of handwriting. Further evaluation using diverse
writer identification datasets may contribute to refining
and optimizing these features, ensuring robust performance
across different script styles and manuscript conditions.
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