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Abstract. Automatic License Plate Recognition (ALPR) systems are
essential for various applications, including law enforcement, traffic
management, and access control. However, their performance can
be significantly affected by image distortion in adverse environmental
conditions and the imaging pipeline. Three different ALPR systems
were used to evaluate their robustness to different distortions
using images from six well-known ALPR datasets. Two groups of
distortions were the focus of our study: simulated weather conditions
(rain, brightness, fog, frost, and snow), and modeled camera read
noise in the simulated imaging pipeline. Results indicate that
certain weather distortions drastically reduced the accuracy of ALPR
systems, with the accuracy of the systems approaching zero in some
cases. Read noise also negatively impacted performance, even at
minimal levels. The sensitivity to the introduced distortions varied
between different models and datasets. The results underscore the
need for robust ALPR system designs that can handle diverse and
challenging capturing conditions.
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camera read noise
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1. INTRODUCTION AND RELATEDWORKS
Automatic License Plate Recognition (ALPR) systems are
computer vision systems designed to read license plate
symbols automatically [1]. ALPR systems have been a
research topic of interest for more than four decades,
with the first prototype introduced in 1979 by the UK
Police Scientific Development Branch [2]. These systems
automate vehicle identification and monitoring for various
applications, including parking management, automatic toll
collection, law enforcement, border control, and traffic
management. ALPR systems reduce the need for manual
toll booths, enhance traffic efficiency, improve security and
convenience in parking areas and for road users in general.

Typically, ALPR systems consist of three main com-
ponents: a license plate detection module, a character
segmentation module, and a character recognition module
[2]. The license plate detection module identifies the
region in an image that contains the license plate. The
character segmentation module segments each character on
the detected license plate. Finally, the character recognition
module interprets the segmented characters.
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The initial ALPR systems relied on classical image
processing methods, which were heavily based on hand-
crafted features and rule-based algorithms. Techniques such
as edge detection, morphological operations, and template
matching were commonly used for plate detection and
character recognition and relied on features such as global
image information, texture, colour, and character features
[3]. To achieve goodperformance, classicalmethods required
precisely tailored parameters and controlled conditions, and
often struggled with variations in lighting, acquisition angle,
and plate occlusion [4, 5]. The evolution in the field of deep
learning (DL) in the last decade has revolutionised ALPR
systems by leveraging the power of convolutional neural
networks (CNNs) and other DL architectures. Most modern
ALPR systems [4, 6, 7] use end-to-end DL models that
integrate all components of the pipeline into a single unified
architecture. They handle complex backgrounds, diverse
license plate formats, and varying illumination conditions
more effectively than classical methods. Models such as You
Only Look Once (YOLO) [8], Single Shot MultiBox Detector
(SSD) [9], Faster R-CNN [10], and Spatial Transformer
Network (STN) [11] have been successfully applied in ALPR
systems for license plate detection [6, 12–15]. To complete
the ALPR pipeline, the license plate detection component
is followed by an optical character recognition (OCR)
component. Both template matching-based OCR systems
[16] and DL-based OCR systems [17, 18] have been used
for this purpose. These models have significantly improved
accuracy, reliability, and adaptability of ALPR systems to
real-world conditions.

ALPR datasets [19–21] which have been used to develop
ALPR systems contain images of good technical quality.
However, adverse weather conditions, variable illumination
during capture, and distortions within the imaging pipeline,
are presently the challenges in the field of ALPR [22].
Understanding how they impact the performance of ALPR
systems is essential for developing robust systems. Geirhos
et al. [23] demonstrated that deep neural networks tend
to show poor robustness to image distortions compared to
humans in classification tasks. The authors also noted that,
although deep neural networks surpass human performance
when trained on distorted images for the same distortion
type, they tend to show poor generalisation in the case
of other distortion types. Michaelis et al. [24] highlighted
how different distortions influence the performance of
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state-of-the-art (SOTA) object detection networks, showing
that reduction in performance ranged from 30% to 60%,
compared to the initial performance, for all simulated
distortion types. The main reasons why fully autonomous
vehicles are not widely used are attributed to poor robustness
and generalisation performance under various weather
and illumination conditions [25] (i.e. car camera sensors
are unreliable at night or in bad weather, and current
computer vision systems do not handle such situations
well enough). Beyond distortions introduced by weather
conditions, the main attribute in the camera pipeline
affecting the performance of CNN models is noise. A
recent study by Yim and Sohn [26] has shown that camera
noise leads to significantly decreased network performance.
Various strategies have been proposed to deal with camera
noise in images [27–30].

The impact of weather distortions and camera noise
on DL architectures has been studied for relatively simple
computer vision tasks, such as classification and object
detection. Few published works have investigated how these
influence ALPR systems. Rio-Alvarez et al. [31] studied the
robustness of license plate detection systems when images
were distorted by weather conditions, but the dataset was
not public and focused only on night captures and rain. It
was reported that including challenging weather conditions
in the training sets did not improve the accuracy of the license
plate detection systems in images affected by these weather
conditions. Conversely, the study indicated that including
images affected by low illumination significantly increased
the accuracy of the systems. In another study by Spanhel et al.
[32], a CNN architecture was proposed for holistic license
plate recognition, and it was demonstrated that avoiding
segmentation of the license plate characters can increase
performancewhendealingwith low-quality andnoisy license
plate images. Xu et al. [33] proposed a CRNN-based method
for performing ALPR on ships. In addition to low spatial
resolution and tilted acquisition angle, ship license plates
are often affected by foggy weather. The proposed method
combined data augmentation and image enhancement to
remove fog effects and resample license plate images.

The aim of this study is to evaluate the performance
of DL-based ALPR systems on distorted images. Various
distortions, including simulated bad weather conditions
and camera read noise, are applied across six different
datasets. Through systematic assessment, the robustness
of different system components is analysed, identifying
the most vulnerable components and architectures. Un-
derstanding how different distortions impact DL-based
ALPR systems can provide insights for further research to
develop more resilient ALPR systems capable of maintaining
high performance under adverse conditions. The paper is
organised as follows. ALPR models used are presented in
Section 2.1, followed by an overview of the datasets used
(Section 2.2) and the distortions applied (Section 2.3). The
metrics for evaluating the performance of ALPR models are
defined in Section 2.4. In Section 3, experimental results

are presented and discussed. Finally, conclusions and future
work directions are presented in Section 4.

2. METHODOLOGY
2.1 ALPRModels
The architectural details of SOTA ALPR systems are
often kept confidential for commercial purposes, and older
implementations are often outdated and not maintained. To
provide a methodological framework for the assessment of
ALPR systems performance, due to the limited availability of
implementations, the following three ALPR systems are used
in this study:

(1) ALPR in Unconstrained Scenarios [12]
(2) HyperLPR [34]
(3) UltimateALPR-SDK [35]

Training of themodels was not part of this work, i.e. pre-
trained models were used to examine their robustness. The
observed performance variations under different simulated
distortion types offer valuable insights for future work aimed
at modifying the models to enhance their robustness against
various distortions.

ALPR in Unconstrained Scenarios, published by Silva
and Jung [12], has a well-documented architecture and
design details. It was designed to address challenging
image-capture scenarios, such as oblique camera views in
which the vehicle’s license plate is significantly tilted. It
comprises four main components (Figure 1). The vehicle
detection component uses the pre-trained YOLOv2 [36]
network, modified to merge all vehicle-related classes into
a single entity and discard other classes. YOLOv2 was
chosen for its balance of speed and precision [12]. The
license plate detection component uses Warped Planar
Object Detection NETwork (WPOD-NET) to locate the
license plate and regress one affine transformation per
detection, producing bounding box coordinates and affine
transformation parameters. This network consists of a total
of 21 convolutional layers (filter size 3 × 3), followed by
ReLU activation functions, and four max pooling layers (size
2 × 2 with stride 2). The final detection head is divided into
two branches. The first branch uses the Softmax activation
function to predict the probability that the license plate is
located in the current block of pixels. The second branch
uses the identity activation function to regress the six affine
parameters. The areas with object probability higher than
the specified thresholds are predicted to be the license plates
and the affine parameters are used for their rectification,
transforming the license plate to resemble a front view.
Finally, the OCR network recognises the characters on
the rectified license plate. This network is based on a
modified YOLO network [6]. Silva and Jung [12] trained the
WPOD-NET network using 196 images from three different
datasets. Various data augmentation techniques were applied
to all training images. The OCR network was based on a
modified YOLO network [6], and was trained with a large
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Figure 1. Block diagram showing the components of the ALPR in Unconstrained Scenarios [12] model. The image shown is a cropped version of one of
the images in the UFPR-ALPR dataset [18].

number of synthetic and augmented images to improve
robustness to regional variations in license plate formats [12].

HyperLPR [34] is an open-source ALPR system de-
signed to read Chinese license plates. Although it is not
a part of a specific research publication, it has been used
in various ALPR studies on adversarial attacks on ALPR
systems [37, 38]. Information about its architecture was
derived from scientific publications and analysis of the
available implementation. The model is composed of three
convolutional layers with increasing filter sizes (3 × 3 ×
32, 3 × 3 × 64, and 3 × 3 × 128), followed by batch
normalisation, ReLU activation, and 2 × 2 max pooling
layers. The mentioned components of the network are used
for detecting license plates, and the output is fed into a
network with four gated recurrent units of 256 units each,
a dropout layer, and a softmax output layer normalising
an 84-unit probability distribution (corresponding to the
number of possible license plate characters). There is no
information on the dataset used for the training, and the
training implementation is not available.

UltimateALPR-SDK, a SOTA commercial solution [35],
is known to be the fastest ALPR implementation with high
precision and accuracy [39]. During experimentation, it
performed recognition significantly faster than the other two
models. According to its documentation, themodel is trained
on license plates from more than 150 countries, primarily in
Europe but also in the USA, Canada, Russia, Indonesia and
others. There is no public information on its architecture and
the code is protected in a way that makes it impossible to
deduce it, making it a ‘‘black box’’. The open-source version
used in this study constrains the last character of the license
plate. For example, if the plate shows AB123CD, the model
outputs AB123C∗.

2.2 Datasets
To ensure diversity of the origins and formats of the
license plates, a comprehensive search for available datasets
was conducted. Six datasets (Table I) from four different
continents were obtained, containing license plates with
different formats, font styles, and colours, acquired under
various conditions (night, day, background scene complexity,
etc.).

The Caltech Cars 1999 dataset [19] consists of parked
cars images acquired from the rear. There is no information
available on image capture. All images were acquired during
daytime, from approximately the same distance, without
camera tilt. The license plates vary in colour, format, and

Table I. Overview of the datasets used in our study.

Dataset name Country Number of images Resolution Compression

Caltech Cars 1999 [19] USA 120* 896× 592 Lossy
AOLP [20] Taiwan 2,049 various Lossy
Croatian (CRO) [21] Croatia 502* 640× 840 Lossy
PKU [40] China 3,977 various Lossy
RodoSol-ALPR [41] Brazil 10,000 1280× 720 Lossless
UFPR-ALPR [18] Brazil 3,600 1920× 1080 Lossless

Total number of images 20,248

* Some of the images have been removed due to obstructed view of license plates.

number of characters, and consist of a combination of Arabic
numerals and Latin characters.

The Application-Oriented License Plate Recognition
(AOLP) dataset [20] contains images divided into three
groups depending on the complexity of the intended
application: 681 images for the access control (AC) group,
757 images for the law enforcement (LE) group, and 611
images for the road patrol (RP) group. The images were
captured with different imaging devices and have different
spatial resolutions and illumination conditions. The imaging
devices were not disclosed. However, it is revealed that the
AC and LE image groups were collected with fixed cameras
at entry points or roadside, while the images of the RP
group were captured with mobile devices. The license plates
comprise black Latin characters and Arabic numerals on a
white background, with each plate having a fixed length of
six characters and numerals.

The Croatian (CRO) license plate dataset [21] contains
images acquired with an Olympus Cmedia C-2040ZOOM
digital camera. Most images of cars were taken from the rear,
with no significant tilt. They were all captured at a very close
distance, with few images taken at night.

The PKU dataset [40] consists of images captured under
various conditions and is divided into five groups (G1–G5)
depending on the acquisition conditions. G1 contains 810
images of cars on highways, captured during the day, while
G2 consists of 700 images of cars and trucks on highways
during daytime, with some glare from the sunlight present.
In G3, there are 743 images of cars and trucks on highways
captured during night. G4 contains 572 images of cars and
trucks on city roads, both in the day and at night. Finally,
G5 contains 1152 images of cars and trucks at intersections
with crosswalks. There is no information on the capture
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devices, but it is discernable that different devices were used
for different groups (G1–G5). The license plates consist of
white characters on a blue background and follow a fixed
format: one Chinese character, one Latin character, followed
by five characters, a combination of Latin characters and
Arabic numerals.

The RodoSol-ALPR dataset [41] consists of 20,000
images captured by static cameras located at toll booths.
Half of the dataset are images of cars, while the other
half are images of motorcycles. The license plates of cars
are formatted in a single line, while those of motorcycles
are in two lines. There are variations in colour, including
black, blue, or red characters on a white background, and
white characters on a red background. Since the chosen
models in this study do not handle two-line plates, images of
motorcycles were excluded, resulting in 10,000 images used
from this dataset. There is no information available on the
capture devices. The acquisition conditions vary in terms
of illumination, vehicle position in the scene, and camera
distance.

The UFPR-ALPR dataset [18] was collected in the
following way: three different cameras were mounted inside
a vehicle (GoPro Hero4 Silver, Huawei P9 Lite and iPhone
7 Plus). The vehicle then followed 150 vehicles, 120 cars
(passenger cars, buses, trucks, vans), and 30motorcycles. For
each tracked vehicle, 30 images were acquired, resulting in a
total of 4500 images. The background was complex and there
were variations in the illumination conditions (e.g. shadows).
In this work, all 30 images are treated as separate images,
as they vary significantly with respect to camera-to-license
plate distance and illumination conditions. The license
plates contain seven characters in fixed format: three Latin
characters followed by four Arabic numerals. The dataset
includes license plates with black characters on a white
background and white characters on a red background. The
car license plates are formatted in a single line, while the
motorcycle license plates are formatted in two lines. The
latter were excluded from this study, resulting in 3600 images
used from this dataset. The images were acquired in daylight
with clear weather conditions.

There are certain limitations and restrictions that must
be addressed in all presented datasets. First, it is not
reasonable to expect that datasets with a small number of
images, as well as those having similar and not-so-complex
acquisition conditions (Caltech Cars 1999, CRO, AOLP),
to be sufficient for training SOTA deep learning ALPR
architectures. The other three datasets (PKU, RodoSol-
ALPR, and UFPR-ALPR) could serve as valuable sources for
training such architectures, especially UFPR-ALPR, which
has significant variations in the acquisition conditions.
Perhaps the most important limitation is the fact that the
initial technical quality is not characterised. In other words,
the exact capture conditions and distortions present in the
images are unknown (i.e., noise level, lens blur, optical
distortions, image processing and compression artifacts,
etc.). In particular, for this study, characterising the noise
originating from the imaging pipeline would allow the

quantification of the total image noise present in the images
(original and simulated). To the best of our knowledge,
no relevant dataset published so far includes characterised
technical quality.

2.3 Distortions
Given the known generalisation capabilities of ALPR systems
[25], it is of interest to investigate how different weather
distortions influence the performance of ALPR systems. This
can be approached in twoways: either by acquiring images in
various weather conditions, or by simulating the distortions
introduced by adverse weather conditions on existing license
plate datasets. The first is less favourable, since it would
involve capture of the same scene from a fixed point under
different conditions. In the second approach, the recognition
performance is first determined on the original images, then
systematic and controlled simulated weather distortions are
added to them. The weakness of this approach lies in the fact
that simulated weather distortions deviate from real-world
scenarios. For example, simulating rain by adding a rain
mask to the image [42] does not account for the potential
reduction in scene brightness due to clouds.

In this work, rain (Figure 2(b)), brightness (Fig. 2(c)),
fog (Fig. 2(d)), frost (Fig. 2(e)), and snow (Fig. 2(f)) were
simulated on images as weather distortions. The brightness
distortion simulates camera overexposure, which reduces the
performance of license plate detection algorithms due to
reduced contrast, clipping, and loss of details in highlights
[43]. The presence of fog, snow or rain represents significant
challenges for modern ALPR systems [31, 44], as they can
potentially occlude important parts of the scene. Frost on
the camera lens is another type of distortion that affects
the performance of SOTA object detection algorithms [24].
The brightness, fog, frost, and snow distortions were applied
using the image corruption library introduced by Michaelis
et al. [24] with five intensity levels defined in the library.
Rain distortion was applied using Adobe After Effects
[45] software, a well-known tool for developing deraining
algorithms [42]. Three different rain configurations were
created depending on the presence and direction of the
wind (no wind W0, wind in one direction W1, and wind in
the opposite direction W2). The parameters used to create
rain-distorted images were defined by trial-and-error: the
number of raindrops (10,000), the size of the raindrops (level
four), and the speed of the rainfall (5000). In cases where
wind is present, the wind intensity was 2000 and the wind
direction variations 20%.

The simulation of the imaging pipeline was chosen to
systematically add read noise to the datasets (Fig. 2(g)), and
read noise was modeled using Image Systems Evaluation
Toolkit (ISET) [46]. Noise is generated during the process
of analog-to-digital signal conversion [47]. The experimental
configuration followed that of Plavac et al. [48], where 15
noisy images were generated for each original image, with
read noise levels ranging from 0.2 to 14.2 mV in 1 mV
increments.
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Figure 2. An example image from the Caltech Cars 1999 [19] dataset (a), along with sample images of maximum intensity level of rain simulation (b),
brightness simulation (c), fog simulation (d), frost simulation (e), snow simulation (f), and the maximum intensity level of read noise distortion (g).

The distortion algorithms used are popular and widely
used in the research community to investigate the robustness
of DL-based models [49–51] and to develop deraining
algorithms [42]. However, certain limitations in their realism
and consistency should be noted. Across different types of
distortions (Fig. 2), it is obvious that each distortion damaged
the original image in a different way and to a different
degree for the same intensity level. The algorithm used for
fog distortion does not account for scene depth, despite
fog intensity being a function of depth [52]. Additionally,
it significantly reduces scene brightness, making it resemble
smoke more than fog. The frost distortion algorithm
introduces non-monotonic changes in image contrast as
distortion levels increase. The contrast gradually decreases
from levels one to three, but increases at levels four
and five. Such inconsistencies can cause ambiguities in
the performance evaluation, i.e. changes in ALPR system
accuracy could be attributed to these inconsistencies rather
than to the distortion level itself. The snow distortion
does not fully convey a real snowfall, even though snow
is falling, it is not seen on the ground that remains
green (vegetation). Additionally, the occlusion of the license
plate appears to be more pronounced at distortion level
four than at level five. The rain distortion is simplified
compared to what could be achieved with physically-based
rain rendering algorithms. While the modeled read noise

provides grounds for a comprehensive evaluation of noise
impact, the compound pre-existing noise level from capture
affects the interpretation of results.

2.4 Performance Evaluation Metrics
Various metrics have been proposed in literature to evaluate
the performance of ALPR systems [6, 12, 22]. In this work,
the performance of ALPR is assessed using the following
measures:

• Total Accuracy (TA) compares ground truth license
plate characters with predicted license plate characters,
and is calculated as:

TA(%)=
Ncorrect

N
× 100, (1)

where Ncorrect is the number of complete matches, and
N is total number of images.
• License Plate Detection Error (LPDE) is calculated as:

LPDE(%)=
Nempty

N
× 100, (2)

whereNempty represents the number of images forwhich
the model output is empty.
• License Plate Recognition Error (LPRE) is then:

LPRE(%)= (100−TA(%))− LPDE(%) (3)
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The assumption that an empty output indicates a license
plate detection error was derived during trials, but may not
always be true. For instance, if the detected bounding box
contains only part of the license plate, the recognition might
be entirely correct for that partial detection (e.g., half of
the characters). Using the current evaluation method, this
scenario would be classified as a license plate recognition
error. The common methodology in literature is to evaluate
the performance of the license plate detection component
using Intersection over Union (IoU) metric [22]. This was
not feasible in this work since ground truth bounding boxes
for license plate detection were available for only one out of
the six datasets used.

The above-mentioned metrics were used to evaluate the
performance of the three models on original and distorted
images. Since the ALPR in Unconstrained Scenarios model
is capable of detecting Latin characters and Arabic numerals,
the PKU dataset was not part of this model evaluation.
The HyperLPR model was developed specially to recognise
Chinese license plates; therefore, it is used only on the PKU
dataset. For the UltimateALPR-SDK model, modifications
were made because its predictions are restricted, and the
last character was ignored in the evaluation for all datasets
used. The model also skips the first character in the PKU
dataset (Chinese alphabet letter), which was accounted for
during evaluation of performance. This left the performance
evaluation of PKU dataset based on the remaining five
characters.

3. RESULTS ANDDISCUSSION
3.1 Performance of the Models with Original Images
Since the ALPR in Unconstrained Scenarios model only
supports license plates containing Latin alphabet characters,
the PKU dataset was not included in its performance
evaluation. The performance of ALPR in Unconstrained
Scenarios and UltimateALPR-SDK models on all datasets,
except the PKU dataset, is shown in Table II. On average,
the ALPR in Unconstrained Scenarios model showed good
performance with an average TA of 78.33%. The highest TA
was achieved with the RP group of AOLP dataset, while the
lowest TA was observed in the AC group of images from
the same dataset. This performance drop is attributed to the
close proximity of the camera to the cars in the AC group,
leading to car detection failures with YOLOv2-based vehicle
detection module, which is reflected by LPDE of 29.52%.

Compared to other twomodels, theUltimateALPR-SDK
model demonstrated very high performance with all datasets
(Tables II and III). Except for RodoSol-ALPR and the LP
group of AOLP dataset, the model achieved TA above 90%
for all datasets used in the study. Similar to previous models,
the license plate recognition component was the most
error-prone component, while the detection component
performed perfectly in the Caltech Cars 1999 dataset and
two groups of the PKU dataset. It is important to note that
this model had an advantage over the other two models
because the last character in the model output was restricted.

Table II. Performance comparison of models on various datasets (excluding PKU
dataset). The best performance for each metric is shown in bold.

Dataset
ALPR in Unconstrained Scenarios UltimateALPR-SDK

TA (%) LPDE (%) LPRE (%) TA (%) LPDE (%) LPRE (%)

Cars 1999 87.50 0.83 11.67 95.00 0 5.00
AOLP AC 57.27 29.52 13.22 97.06 0.15 2.79
AOLP LE 86.53 10.04 3.43 86.00 0.40 13.61
AOLP RP 89.85 1.80 8.35 92.96 0.82 6.22
CRO 83.86 5.38 10.76 93.82 0.80 5.38
RodoSol-ALPR 75.16 8.44 16.40 92.86 0.30 6.84
UFPR-ALPR 68.47 12.97 18.56 82.31 1.50 16.19

Average 78.38 9.85 11.77 91.43 0.57 8.00

Table III. Performance comparison of models on PKU dataset. The best performance
for each metric is shown in bold.

Dataset
HyperLPR UltimateALPR-SDK

TA (%) LPDE (%) LPRE (%) TA (%) LPDE (%) LPRE (%)

PKU G1 98.77 0.49 0.74 94.57 0 5.43
PKU G2 98.71 0.14 1.15 94.86 0 5.14
PKU G3 98.92 0.40 0.67 93.94 0.13 5.92
PKU G4 96.68 0 3.32 95.28 0.17 4.55
PKU G5 96.09 0.52 3.39 91.02 0.13 8.85

Average 97.83 0.31 1.86 93.93 0.09 5.98

Therefore, the evaluation was based on the remaining
characters. In the case of the PKU dataset, the first (Chinese)
letter was also skipped.

HyperLPR was trained to recognize Chinese license
plates. Therefore, the performance analysis focuses solely on
the PKU dataset. Table III shows that the model performed
exceptionally well in all five groups of PKU dataset, with an
average TA of 97.83% which was expected, since the model
was evaluated on the license plates in the same regional
format as the ones used to train the model.

It can be seen that the license plate recognition
component was usually more prone to errors compared to
the license plate detection component in all the models used,
with exceptions in the AC and LE groups of AOLP dataset for
ALPR in Unconstrained Scenarios model. The YOLO-based
vehicle detection component used in this model tends to fail
with detection when dealing with images with great vehicle
proximity.

3.2 Performance of the Models with Distorted Images
3.2.1 Weather Distortions
Results do not show significant differences in the per-
formance metrics between the three models on angular
configurations of the rain-distorted images. The comparison
of TA between the original and rain-distorted images
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Figure 3. Total Accuracy (TA) for ALPR in Unconstrained Scenarios (M1) and UltimateALPR-SDK (M3) on rain-distorted images, averaged over the three
angular configurations.

Figure 4. Total Accuracy (TA) for HyperLPR (M2) and Ultimate ALPR-SDK (M3) on rain distorted images of PKU dataset, averaged over the three angular
configurations.

(averaged for the three angular configurations) for all
datasets, except PKU dataset, for ALPR in Unconstrained
Scenarios and UltimateALPR-SDK models is shown in
Figure 3.

The UltimateALPR-SDK model showed much lower
sensitivity to the introduced rain distortion compared to the
ALPR in Unconstrained Scenarios model. In certain cases
(LE group in the AOLP dataset, CRO dataset), introducing
rain distortion led to a slight performance improvement for
the UltimateALPR-SDK model.

TA obtained for PKU dataset and the HyperLPR and
UltimateALPR-SDK models is shown in Figure 4. These two
models demonstrated good robustness to rain distortion.
The latter model performed worse than the former model in
all cases, but HyperLPR model showed a higher sensitivity
to rain distortion. The UltimateALPR-SDK model did not
suffer from significant performance drops across the five
groups of PKU dataset.

In most cases, the performance decreased for distorted
images, but there were few cases where the performance

increased after introducing rain-distorted images. It is of
interest to investigate which component of the system is
affected in both situations, license plate detection or license
plate recognition. Table IV shows changes in license plate
detection and license plate recognition performance for
rain-distorted images using the ALPR in Unconstrained
Scenarios model. It can be observed that introducing rain
distortion generally increased LPDEacross all datasets except
Caltech Cars 1999 dataset. The decrease in LPRE does not
indicate an improvement in the license plate recognition
module, but rather that pre-existing errors are now more
significantly absorbed by the license plate detection module.

HyperLPR model showed a stable and minimal per-
formance decrease for all five groups of PKU dataset, with
LPDE increasing more frequently than LPRE (Table A.1.
For UltimateALPR-SDK model, the performance changes
did not follow a clear pattern (Table A.2). In certain cases
(RodoSol-ALPR, UFPR-ALPR datasets), the performance
drop was mainly due to an increase in LPRE. When
performance improved on rain-distorted images compared
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Figure 5. Total Accuracy (TA) distribution for three models across different weather distortion types (brightness, fog, frost, and snow). Performance of ALPR
in Unconstrained Scenarios model is noted with M1, for HyperLPR model with M2, and for UltimateALPR-SDK model with M3. The distribution is extracted
from the obtained TA across all datasets and distortion levels.

Table IV. Performance of the ALPR in Unconstrained Scenarios model on images with
simulated rain distortion. The number in the parentheses represents the change from the
performance obtained on the corresponding original images, with red and green colours
indicating worse and better performance, respectively.

to original images (AOLP LE, CRO, PKU G3 datasets),
the license plate detection component performed slightly
worse or did not change compared to original images,
while the license plate recognition component performed
better on rain-distorted images. It is challenging to find
valid explanations for this rather unexpected behavior. Rain
distortion of images of this dataset may have enhanced the
edges of the license plate characters, improving their visibility
against the background. Another possible explanation is
that the introduced rain distortion might have obscured
certain artifacts or background elements that interfered with
recognition, resulting in cleaner inputs for the recognition
module. The assumptions for such behavior should be taken
with great caution. Further investigation and image analysis
are needed to fully understand this effect and determine the
underlying causes of unexpected performance variations.

Other weather distortions applied are part of the
‘‘image corruptions library’’ [24], and are applied at five
intensity levels. The distribution of TA for different models
and types of weather distortion is shown in Figure 5.
The ALPR in Unconstrained Scenarios model performed
best under brightness distortion, followed by fog, frost,

and snow distortions.The increased variability in frost
and snow distortions indicates greater inconsistency in
performance across datasets. HyperLPR showed consistently
robust performance under brightness and fog distortions
with minimal variability, across all groups of PKU dataset.
This model also performed fairly well under frost distortion,
with one outlier and slightly higher variability. The worst
performance was observed for snow distortion, with the
highest variability. The UltimateALPR-SDK model showed
high TA with relatively low variability under brightness
and fog distortions. Performance dropped and variability
increased significantly under frost and snow distortions.
In summary, HyperLPR and UltimateALPR-SDK models
showed excellent performance in handling brightness and
fog distortions, while ALPR in Unconstrained Scenarios
model showed a relatively good performance. The ALPR in
Unconstrained Scenarios model struggled significantly with
frost distortion, showing the highest variability, while the
other two models still performed well. Snow distortion was
challenging for all three models and showed high variability.

For ALPR in Unconstrained Scenarios, introducing
brightness distortion decreased TA for all datasets, with the
performance declining as the distortion intensity increased.
The most severe performance drop was observed for
RodoSol-ALPR dataset (from TA 65.50% at level 1 to 14.65%
at level 5). Similar trendwas observed inUltimateALPR-SDK
model, but the magnitude of the performance drop varied
significantly between datasets. The most severe performance
drop was again observed for RodoSol-ALPR dataset (from
TA 83.32% at brightness distortion level 1 to TA 28.62% at
level 5). HyperLPR model showed the highest robustness
to brightness distortion across the employed models, with
a slight performance drop observed for all groups of PKU
dataset (1–3% reduction in TA from level 1 to level 5), except
for group G4 where the drop in TA was around 9%.

The ALPR in Unconstrained Scenarios model showed
the highest sensitivity to fog distortion among the models
used, with TA consistently decreasing as the distortion level
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Figure 6. Total Accuracy (TA) for different intensity levels of certain simulated weather distortions across datasets. (a) HyperLPR, snow distortion. (b) ALPR
in Unconstrained Scenarios, frost distortion.

increased across all datasets. The performance of the other
two models declined minimally as the fog distortion level
increased.

For frost-distorted images, the performance decreased
as the distortion level increased across all datasets and
models used in the study. The obtained TA for each dataset
with different intensity levels of frost distortion for ALPR
in Unconstrained Scenarios is shown in Figure 6(b). The
lowest performance was observed for the AC group of AOLP
dataset (0.14% TA at level 5). The highest drop was for
the RP group (from 87.73% at level 1 to 1.96% at level 5).
For UltimateALPR-SDK model, the highest performance
drop was for AC group of AOLP dataset (from 96.04% to
35.39%). HyperLPR showed to be slightly more robust to
frost distortion, with a severe performance drop for group
G4 of PKU dataset (from 93.18% to 58.04%).

Snow distortion also greatly affected the performance of
the models in all datasets. Performance for the HyperLPR
model is shown in Fig. 6(a). As mentioned earlier, the
occlusion of license plates is more pronounced at distortion
level 4 than at level 5. This is confirmed by TA metric:
performance decreases as distortion level increases for all
datasets, but more so at level 4 than level 5. The least affected
was group 3 of PKU dataset, and the highest performance
drop was for group 1 of PKU dataset. Similar performance
trends were observed for the other two models. The CRO
dataset was the least affected by the introduced distortions,
while the lowest score was observed for the RodoSol-ALPR
dataset.

The average LPDE and LPRE of UltimateALPR-SDK
model for each distortion type at five intensity levels
are shown in Table V. The license plate detection and
recognition components experienced higher error rates as
the distortion levels increased. For all distortion types
considered (brightness, fog, frost, and snow), the license plate
recognition component was more affected by the distortion.
At high levels of snowdistortion, LPDE approached relatively
close to LPRE. Observations for ALPR in Unconstrained

Table V. Averaged LPDE and LPRE across datasets of the UltimateALPR-SDK model for
different weather distortion types: brightness, fog, frost, and snow.

Level 1 Level 2 Level 3 Level 4 Level 5

LPDE (Brightness) 0.75 1.33 2.21 3.71 5.38
LPRE (Brightness) 7.71 8.49 9.90 10.59 12.47
LPDE (Fog) 1.14 1.79 2.39 2.50 3.46
LPRE (Fog) 7.92 7.88 8.55 8.65 9.17
LPDE (Frost) 2.75 5.46 8.16 13.12 18.54
LPRE (Frost) 10.63 15.48 18.94 23.35 35.18
LPDE (Snow) 4.30 13.01 15.38 31.59 27.87
LPRE (Snow) 19.53 28.54 37.21 42.28 33.93

Scenarios model are quite different (Table A.3). With
brightness distortion, both LPDE and LPRE increased with
increasing levels, the license plate detection component was
more prone to errors. For fog distortion, LPRE increased
until level 3, after which it decreased. The license plate
detection component again experienced increased errors
with higher distortion levels, being the more error-prone
component. For frost and snow distortions, the license plate
detection errors increased with the distortion level and
the detection component was the dominant error source,
while LPRE slightly decreased with higher distortion levels.
This does not imply better performance of the license plate
recognition component, but rather that LPDE absorbed
errors from the recognition component. HyperLPR behaved
similarly toUltimateALPR-SDK for brightness, fog, and frost
distortions (Table A.4). In these cases, LPDE and LPRE
increased with distortion levels, with recognition errors
being dominant. Interestingly,snow distortion reversed this
trend after level 3, making detection the more error-prone
component of the HyperLPR model.
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Figure 7. The HyperLPR model: Total Accuracy (TA) for read noise distortion over PKU dataset. Distortion level zero indicates performance on original
images. The remaining distortion levels correspond to read noise with intensity from 0.2 mV to 14.2 mV with 1 mV increments.

3.2.2 Read Noise Distortion
Introducing read noise led to a decrease in TA of HyperLPR
model in all groups of PKU dataset (Figure 7). As distortion
levels increased, performance decreased in all groups. The
highest performance drop was observed for groups G3 and
G1 of PKU dataset (from 97% TA on the original images to
79% at maximum read noise level). G4 showed the lowest
performance drop with respect to read noise distortion.
LPDE increased with increasing read noise levels for all
groups in PKUdataset (Figure A.1). The highest increase was
observed for G1 and G3, corresponding with the observed
TA reduction. LPRE experienced a slight increase over
the levels of read noise introduced, with the effect most
prominent in G5 of PKU dataset (Figure A.2).

For ALPR in Unconstrained Scenarios model, TA
decreased with increasing read noise levels (Figure A.3). This
effect is visible across all datasets except forCaltechCars 1999
dataset, which exhibited a rather noisy behavior. In the case
of this model, LPDE increased as distortion levels increased
for most of the datasets (Figure A.4). However, the Caltech
Cars 1999 and CRO datasets did not follow this trend, with
LPDE barely experiencing any changes with increasing read
noise levels. LPRE showed changes of much smaller intensity
and increased variability, making it difficult to identify a

consistent pattern across multiple datasets (Figure A.5). The
only clear increase in LPRE with increasing read noise
levels was observed in UFPR-ALPR dataset. From these
results, it can be concluded that read noisemainly influenced
the performance of ALPR in Unconstrained Scenarios by
reducing the performance of the license plate detection
component.

InterpretingTA changes forUltimateALPR-SDK ismore
complex (Figure A.6). Clear performance reductions were
observed for UFPR-ALPR, RodoSol-ALPR, and G1 and G3
groups of PKU dataset. However, CRO dataset and LE group
of the AOLP dataset showed an increase in TA with the read
noise levels. Other datasets showed rather noisy behavior,
oscillating around a certain TA interval. A clear increase
in LPDE was observed for UFPR-ALPR, RodoSol-ALPR,
and G1 and G3 groups of PKU dataset. The license plate
recognition component demonstrated a variable behavior
across datasets. UFPR-ALPR dataset, G5 group of PKU
dataset, and RP group of AOLP dataset showed an increase
in LPRE with increasing read noise levels. Other datasets
showed a fluctuating LPRE around a certain intensity or even
a decrease in LPRE (Caltech Cars 1999, LE group of AOLP
dataset).
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In designing the experiment, our aim was to replicate
real-world conditions by simulating read noise levels.
Although we were unable to find reliable sources for typical
read noise levels in literature, anecdotal evidence suggest
upper limits of 3–5 mV. The upper limits in our experiment
significantly exceeded these limits, but the simulation results
(Fig. 7) indicate that relatively low levels of read noise
(0.2 mV, corresponding to distortion level 1) significantly
affect recognition accuracy.

4. CONCLUSION AND FUTUREWORK
This study evaluated the impact of various simulatedweather
distortions and camera read noise on the performance of
deep learning-based Automatic License Plate Recognition
(ALPR) systems. Three models, each representing different
architectural approaches, were analyzed across six datasets to
evaluate their robustness and identify areas for improvement.
Introduction of weather distortions (i.e. rain, brightness,
fog, frost, and snow) significantly impacted the performance
of the ALPR systems used in this study. Snow and frost
had the most severe effects, often reducing system accuracy
to near zero. The modeled camera read noise also led
to a performance decrease, with even minimal read noise
levels (0.2 mV) causing noticeable drops in recognition
accuracy. Performance changes were not consistent across
different datasets. While some datasets followed general
trends (e.g., performance reduction under frost distortion),
others exhibited unique behaviors (e.g., performance im-
provement under rain distortion for certain datasets). The
sensitivity to distortions varied significantly among the
models. HyperLPR model showed the greatest robustness to
weather distortions,followed by UltimateALPR-SDK model,
and then ALPR in Unconstraned Scenarios. For read noise,
the UltimateALPR-SDK model demonstrated the highest
robustness, whereas ALPR in Unconstrained Scenarios was
again identified as the most sensitive model. Both license
plate detection and recognition components were affected
by distortions, but the extent varied depending on the
type of distortion. For instance, rain distortion and read
noise primarily affected the detection component, while
brightness, fog, frost, and snow distortions mainly affected
the recognition component.

There are several directions for future work. First,
further image analysis of the distorted images is planned,
with the aim of explaining the inherent image attribute
changes (e.g., contrast, brightness, colour, edge density,
blur, noise, etc.) when distortion level increases. This can
elucidate the effect of distortions on the detection and
recognition performance of ALPR systems. Second, future
research should explore additional distortion types that can
occur in the imaging pipeline, and their combined effects
on performance of ALPR systems. Including real-world
distorted license plates in the study would be beneficial to
confirm the observations made on the simulated distortions.
Once the effects of various distortions are understood, the
next step would be to investigate and develop different

strategies to mitigate these negative effects. This includes
replacing, modifying, or fine-tuning the parts of the systems
that were found to be the most sensitive to distortions.
Accordingly, enhancements can be incorporated into the
model pipeline, forming a new hybrid model. The findings
underscore the importance of addressing image distortions
in the design and deployment of ALPR systems. Robustness
to environmental and imaging pipeline-induced distortions
is crucial for maintaining high accuracy and reliability in
real-world applications.
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APPENDIX A.

Table A.1. Performance of HyperLPR model on images with simulated rain distortion,
averaged over three wind configurations. The numbers in the parentheses represent the
changes from the performance obtained on the corresponding original images, with red
and green colours indicating worse and better performance, respectively.

Table A.2. Performance of UltimateALPR-SDK model on images with simulated rain
distortion. The numbers in the parentheses represent the changes from the performance
obtained on the corresponding original images, with red and green colours indicating
worse and better performance, respectively.
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Figure A.1. The HyperLPR model: License Plate Detection Error (LPDE) for read noise distortion on PKU dataset. The distortion levels correspond to read
noise with intensity from 0.2 mV to 14.2 mV with 1 mV increments.

Figure A.2. The HyperLPR model: License Plate Recognition Error (LPRE) for read noise distortion on PKU dataset. The distortion levels correspond to read
noise with intensity from 0.2 mV to 14.2 mV with 1 mV increments.
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Figure A.3. The ALPR in Unconstrained Scenarios model: Total Accuracy (TA) for read noise distortion over all datasets, except PKU dataset. Distortion
level zero indicates performance on original images. The remaining distortion levels correspond to read noise with intensity from 0.2 mV to 14.2 mV with
1 mV increments.

Figure A.4. The ALPR in Unconstrained Scenarios model: LPDE for read noise distortion over all datasets, except PKU dataset. The distortion levels
correspond to read noise with intensity from 0.2 mV to 14.2 mV with 1 mV increments.

J. Imaging Sci. Technol. 13 Nov.-Dec. 2024



Plavac et al.: Performance of automatic license plate recognition systems on distorted images

Figure A.5. The ALPR in Unconstrained Scenarios model: LPRE for read noise distortion over all datasets, except PKU dataset. The distortion levels
correspond to read noise with intensity from 0.2 mV to 14.2 mV with 1 mV increments.

Figure A.6. The UltimateALPR-SDK model: TA for read noise distortion over all datasets. Distortion level zero indicates performance on original images.
The remaining distortion levels correspond to read noise with intensity from 0.2 mV to 14.2 mV with 1 mV increments.

J. Imaging Sci. Technol. 14 Nov.-Dec. 2024



Plavac et al.: Performance of automatic license plate recognition systems on distorted images

Table A.3. Averaged LPRE and LPDE across datasets of ALPR in Unconstrained Scenarios
model for different weather distortion types: brightness, fog, frost, and snow.

Level 1 Level 2 Level 3 Level 4 Level 5

LPDE (Brightness) 14.86 16.7 18.98 22.51 27.26
LPRE (Brightness) 11.77 13.11 14.73 14.84 16.15
LPDE (Fog) 20.71 22.49 24.9 26.27 34
LPRE (Fog) 11.59 12.59 13.57 12.84 11.63
LPDE (Frost) 22.67 40.04 50.05 62.69 82.13
LPRE (Frost) 12.51 12.22 11.45 11.86 6.27
LPDE (Snow) 33.54 49.76 54.87 71.68 63.91
LPRE (Snow) 15.09 14.41 15.59 14.55 12.2

Table A.4. Averaged LPRE and LPDE across datasets of HyperLPR model for different
weather distortion types: brightness, fog, frost, and snow.

Level 1 Level 2 Level 3 Level 4 Level 5

LPDE (Brightness) 0.43 0.69 0.76 1.00 1.65
LPRE (Brightness) 2.23 2.55 2.89 3.25 4.03
LPDE (Fog) 0.27 0.26 0.45 0.55 0.55
LPRE (Fog) 1.82 2.14 2.09 1.97 2.09
LPDE (Frost) 1.16 2.59 3.52 3.51 7.37
LPRE (Frost) 2.67 6.53 7.75 6.31 22.76
LPDE (Snow) 2.95 11.97 17.33 41.89 46.79
LPRE (Snow) 7.34 20.53 29.69 38.48 29.52
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