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Abstract. Methods for estimating spectral reflectance from XYZ
colorimetry were evaluated using a range of different types of
training datasets. The results show that when a measurement
dataset with similar primary colorants (and therefore having similar
reflectance curves) are used for training, the RMSE errors and
metameric differences under different illuminants are the lowest.
This study demonstrates that, a training data can be mapped
to represent spectral data for a group of print data based on
matching material components (spectral similarity) with the test
data, and obtain spectral estimates with satisfactory spectral and
colorimetric outcomes. The findings suggest that using polynomial
bases or colorimetric weighted bases with least squares fit produced
estimated reflectances with low metameric mismatches under
different illuminants. For the two best performing spectral estimation
methods their ability to predict tristimulus values were assessed
with tristimulus calculated using the measured reflectances and
a destination illuminant. Their performances were also compared
to the colour predictions obtained from different CATs and MATs
under varying lighting conditions. The results show that a spectral
estimation method with specific training dataset can serve as a
good alternative to predict XYZ under different illuminants with
reduced metameric mismatch i.e. they can be used as a material
adjustment transform. These results finally help in proposing a
spectral estimation workflow that can be integrated into colour
management such that it is simple to implement, fast in processing,
spectrally accurate with low metameric mismatch. (© 2023 Society
for Imaging Science and Technology.
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1. INTRODUCTION

Spectral data is of increasing importance in color repro-
duction workflows, for instance, in brand identity colours
and spot colour reproduction [1], colour characterisation or
separation [2-5], gamut mapping [6], scene-referred image
reproduction [7-9], and soft proofing [10, 11], where it
may aid in increasing accuracy and reducing metameric
mismatches. When measured spectral data is not available,
it can be estimated from colorimetric data using a spectral
estimation method in conjunction with suitable training
spectral data.

Spectral estimation methods are widely used in colour
imaging. Some of the most common uses of spectral
estimation methods in this domain are for estimating
reflectances of material surface or objects in a scene or
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estimating spectral sensitivity functions of a camera sensor.
In this paper, we focus on spectral estimation of reflectance
from tristimulus values such that the estimated reflectance
is representative of the material object, the colorants and
substrate that combine to form the spectral stimulus, in
particular. There is a plethora of spectral estimation methods
in the literature. The pseudo inverse is the simplest least
squared solution for spectral estimation [12, 13], while
the most commonly used method is principal component
analysis (PCA) [14-17]. Fairman and Brill, proposed an
efficient PCA-based method to estimate reflectance from
tristimulus values, which was further modified by Agahian
et al. by weighting the training reflectances based on
minimizing the colorimetric difference from the test value.
Using Cohen’s Matrix R theory to calculate fundamental
stimuli and metameric black, Zhao and Berns showed
how both colorimetric and spectral transformations can be
used to estimate accurate spectra from a captured image
[18]. The Wiener estimation method has been used to
estimate spectra from RGB images [19], and there have been
methods developed to impose a non-negativity constraint on
estimated spectra [20, 21]. Lopez-Alvarez et al. demonstrated
the effectiveness of the Wiener estimation method in
accurately estimating skylight spectral curves using a limited
set of training reflectances [22]. They highlighted that this
method eliminates the requirement for measuring spectral
sensitivity or calculating linear bases and is robust to noise.
Dupont studied spectral estimation from colorimetric values
using different optimization methods including genetic algo-
rithms and used a metric that minimized colour difference
under two different lights [23]. Other spectral estimation
algorithms use optimization to minimize spectral and
colorimetric errors [24-26], and there are methods which
use interpolation [27-29]. Spectral estimation methods can
also be applied to achieve colour-constant estimated spectra
which is a desirable property [30]. van Trigt stated that
reflectance curves must preserve some amount of colour
constancy, making observed colour shift more or less a
characteristic of the metameric set [31]. Based on that, van
Trigt proposed a spectral estimation method, which creates a
generic reflectance curve for a tristimulus value and achieved
this by generating the least variation or the smoothest
reflectance for a tristimulus value [31, 32]. Preserving colour
constancy is a different task from estimating reflectances that
match the spectral characteristics of a given material.
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Estimated spectra from colorimetric values are essen-
tially metameric reflectances, such that they match in colour
under the colorimetry of the illuminant used to train the
model. Ifa spectral estimation method produces a reflectance
that is an exact match to the measured reflectance of an
object then there will be no metameric mismatch under
changing lighting conditions. It can be argued that these two
reflectances have the same characteristics and represent a
perfect match of the optical properties of the material. Based
on these considerations, in the case of reflectance estimation
from tristimulus values, we can select training datasets such
that they have similar material components to those of
the test datasets. For example, for print datasets matching
printing conditions could be a way to match important
components that comprise a printed material, such as ink
pigments and substrate with or without concerning the
printing process. It will also be important to find out what
kind of similarities are enough for standardisation of training
datasets in spectral estimation workflow can be considered in
the future.

The perception of colour in humans is a function of
the colour stimulus and the cone sensitivities. Illuminant
metamerism (i.e. when two objects with different reflectance
functions are perceived similar in colour under one light but
different under another light because of the difference in
the spectral power distribution between the two lights) can
be an issue in cross media colour reproduction. When we
do not have spectral reflectance of an object, its tristimulus
value under different illuminant can be predicted by a sensor
adjustment transform, which may be a chromatic adaptation
transform (CAT) or a material adjustment transform (MAT).

CATs predict corresponding colours. Corresponding
colours are two tristimulus values that result in the same
perceived colour when the two samples are seen in test and
reference adapting conditions [33], and they are derived from
experimental data where observers match colours under
different illuminants [34-36]. Bradford CAT, CAT02 and
CAT16 are examples of CATS, that have used corresponding
colour data to optimize transformation matrices used to
convert tristimulus values to and from a sharpened cone
space. The adaptation to the destination colorimetry is
performed in cone space before converting to the adapted
tristimulus value. These CATs draw their inspiration from
Von Kries hypothesis on chromatic adaptation that states
that there is a linear relationship between the stimulus and
the visual response of the three cone types [37, 38]. The
Linear Bradford transform, without the non-linear exponent,
is reccommended by ICC v4 specification [39]. CAT02 and
CAT16 are part of CIECAMO2 [40] and CIECAM16 [41]
colour appearance models, respectively. CAT16 and CAT02
are analogous but they differ in their transformation matrices
[36].

In the case of MATSs, a material match of the object (i.e.
how tristimulus values of an object change due to changes
in either illuminant and/or observer [42]) is predicted
rather than a perceived colour match [43]. Logvinenko
defined a metameric mismatch volume, ie., for a given
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colour under one illuminant, corresponding volume that
contains all the possible colours under another illuminant
[44]. This theory was evaluated by Zhang et al. by choosing
all metameric reflectances under one illuminant from
a large collection of measured reflectances and creating
corresponding metameric mismatch volumes by predicting
colours under different illuminants [45]. It was found that the
centroid value of this volume can be used to predict colours
with less metameric mismatch than well known CATs [45].
Logvinenko also defined an object-colour manifold which is
a six-stimulus value (light colour and object colour together)
and can be split into three dimensional material colour which
shifts when the illumination changes [46]. Extending this
concept to include a change in observer colour matching
functions, Derhak developed a material adjustment trans-
form that uses a colour equivalency representation called
Wpt (Waypoint) [43]. Oleari, developed CATs by optimizing
the conversion of tristimulus values under different viewing
conditions to an ABC colour space, such that it preserves
colour constancy [47]. Derhak argues that Oleari’s CATs are
actually MATs because they optimize cone excitations [43].
van Trigt’s reflectance estimation method generates smooth
reflectances with constant values near the endpoints of the
visible range which improves colour constancy especially
under illuminant A [31]. This method was modified by
Burns and used to estimate reflectances in order to predict
colour under a destination illuminant, and perform the final
step towards chromatic adaptation by scaling the relative
luminance Y of the destination tristimulus value to match the
Y value of the source tristimulus value [48]. This modified
spectral estimation method produces strictly positive and
smooth reflectances. Although this procedure does not use
corresponding colour data, it is considered to be a CAT
rather than a MAT since it does not aim to match material
attributes.

As discussed previously, estimated spectra from colori-
metric values are basically metameric reflectances such that
they match in tristimulus values under the illuminant used
to train the model. Thus, it is interesting to evaluate if with
careful selection of training data i.e. a good material match
with the test data, can a spectral estimation method then
be considered for material adjustment transform. However,
it is easier to find training datasets for some applications
than others, e.g. for spectral estimation of natural objects
it would be important to have a training dataset with a
wide range of representative reflectances but for a narrow
application like colour chips or print datasets, the different
material components such as pigments, substrate, fluorescent
whitening agents etc. can be employed to categorise training
reflectance datasets into groups of similar material types.
It will be important to understand what kind of material
component similarities between the training and test data
are sufficient to obtain an acceptable metameric match. This
will pave the way to have one training or reference spectral
dataset to predict spectral reflectances for a group of print
data that can be used in a colour management pipeline.
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Colour management is built upon communicating
relevant data for precise interpretation of colour content
and utilizing colour conversion techniques to achieve a
desired reproduction between imaging devices. The profile
connection space (PCS) facilitates the accurate conversion
between colour data from a source device to a destination
device. In ICC.1 ie. version 4 colour management, the
PCS is colorimetric (either XYZ or CIELAB) which limits
the integration of spectral reproduction workflows directly
into colour management. The ICC.2 i.e. version 5, the new
colour management architecture, allows spectral connection
and processing through programmable calculator elements
inside an ICC profile. This makes it possible to integrate
spectral data into colour management workflows. The need
for spectral estimation arises when the source profile is
based on colorimetric PCS data, or when intermediate
processing steps require spectral data. When converting from
colorimetric to spectral in such a workflow, the spectral
estimation method has to be simple, accurate and fast. The
spectral estimation methods evaluated here are least squares
fit, i.e. linear combination of bases that can be easily encoded
using matrices into a colour management pipeline or other
practical applications.

In this study, we evaluate the performance of different
spectral estimation methods along with the training and
test datasets whose material characteristics are known.
We also evaluate the colorimetric performance of the two
best performing spectral estimation methods under varying
illuminants together with different training and test datasets
and compare the results with other well known CATs and
MATs. With the results obtained, we aim to answer the
following questions:

Can a training dataset, chosen based on material similar-
ities with different test datasets be grouped together?
Therefore, can standardisation of such training data
selection be proposed for spectral estimation in colour
management?

Can such a spectral estimation method be used as an
alternative to a material adjustment transform? What is
their performance in predicting corresponding colours
compared to a CAT?

What is a suitable spectral estimation workflow that can be
easily integrated into colour management?

2. SPECTRAL ESTIMATION METHODS

In a least squares fit, the task is to find a solution x to
an overdetermined set of equations Ax 2~ b by minimizing
the residuals ||Ax — b||, where A € R™ and b € R" are
known [49]. This equation can be rewritten for the purpose
of obtaining spectral estimates from tristimulus values as
shown in Eq. (1), where S € R" is spectral reflectance and n is
the number of wavelengths, T € R? is tristimulus value and
M € R™3 is the linear mapping or the basis that minimizes
the residuals. In this case, for a training dataset with Inumber
of samples, S and T are known; we first determine the matrix
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M that will be used to estimate spectral reflectance from a
test tristimulus value. Depending on the number of training
samples, matrix S will then be of the size nxl and, the matrix
T will be of the size 3xI.

S=MT. (1)

A set of XYZ tristimulus values T is the summation of
the product of the illuminant spectral power distribution E,
colour matching functions O and the surface reflectance S
at each wavelength. Let AT be the weighted colour matching
functions given by AT = kO diag(E) where O € R"™3, E € R"
and k is the normalizing constant. The tristimulus values can
be represented in the matrix form as shown in Eq. (2).

T =ATs. (2)

The simplest spectral estimation method is the pseudo-
inverse method that takes advantage of Eq. (1) such that given
a spectral reflectance training dataset and the corresponding
tristimulus values from Eq. (2), M can be calculated using
Eq. (3). Since, T is not a square matrix, to calculate its inverse,
the Moore-Penrose inverse or the pseudo-inverse method is
used.

M=srt(r™™! 3)

M can then be used to recover spectral reflectance § from any
test tristimulus value T as shown in Eq. (4).

S=MT. (4)

Babaei et al. argues that instead of creating a general
basis M by giving equal weights to all the reflectance samples
in the training dataset; to increase accuracy it is important
to weight the training tristimulus values in proportion to its
similarity or dissimilarity with respect to the test tristimulus
values. This is achieved by calculating the inverse of the
colour difference E; between the training tristimulus values
and the test tristimulus value for which spectral reflectance
is to be estimated [12]. The weights matrix W is a diagonal
matrix as shown in Eq. (5), where [ is the total number
of samples in the training dataset and e = 0.01 is a small
constant to avoid division by 0. The new weighted basis
M is calculated by replacing T with weighted tristimulus
values T' = TW and replacing S with weighted reflectances
S = SW in Eq. (3). We refer to this as the weighted
pseudo-inverse spectral estimation method.

1
m 0 e 0
0 -
W = Ejpate (5)
: 0 0
1
0 ... 0 W

The pseudo-inverse spectral estimation method can also
be modified to a polynomial fit. In order to apply a polyno-
mial, the terms of a tristimulus valuei.e. T = (X, Y, Z) have
to be expanded according to the chosen polynomial order
as shown in Table I. These expanded tristimulus values are
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Table I. Polynomial expansion.

SI. No. Polynomial Order Terms
1. Second 1,X,Y,Z,XY,X2,YZ,X2,y2, 72
2. Third LX,Y, 2,07, X2,v2,x2,v2 72 xv2 xz2,x2y,X27,v27,¥72, xvz,X3,y3,73

used in Eq. (3) to obtain the basis matrix M. M can then
be used to estimate spectral reflectance, where the terms of
the test tristimulus value also have to be similarly expanded
according to the respective polynomial order in Eq. (4).
Increasing the order can lead to overfitting, and hence, it is
important that to maintain the number of terms significantly
lower than the number of samples. Also, in an optimisation
problem, overfitting is handled by adding a term to the
cost function in order to force the coefficient estimates
toward zero and achieve a better generalisation. This is
called regularisation. In this work with spectral data of print
datasets, the general solution to least squares is considered
without any regularisation or iterative optimisation.

Another classical spectral estimation method is Wiener
Inverse, where the correlation matrix g of the spectral
reflectance of training dataset S is used to generate basis
M; thus, M is given by Eq. (6). By employing a simple way
to determine the spectral similarity, this method produces
spectral reflectance estimates that are more or less insensitive
to the illuminant [50].

M = pAAT pa~t. (6)

Principal component analysis (PCA) determines a
projection matrix which maximizes the variance in the
dataset. Fairman and Brill introduced a classical mean
centered PCA on spectral reflectances. The mean reflectance
V, of the training dataset S is determined. The first 3
eigenvectors V are calculated from mean centered spectral
reflectance of training dataset (S — Vo). Then, a column
vector C € R? that contains the principal component
coordinates has the relationship as shown in Eq. (7) [15].

S=VC+ V. (7)

The tristimulus constrained principal component coor-
dinates can be calculated by substituting Eq. (7) in Eq. (2)
and rearranging for C as shown in Eq. (8), where T is the test
tristimulus value.

c=ATv)y"I(T-AaTv). (8)

Once C is synthesised, spectral reflectance estimate S
can be obtained by Eq. (9).

S=Vy+ VC. 9)

Agahian et al. proposed a weighted version of the
PCA spectral estimation that uses the weights matrix W
in Eq. (5) to calculate weighted reflectance §' = SW.
The weighted coordinates C are obtained by calculating
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principal components V and mean reflectance V from §' in
Eq. (8) [17]. This weighted PCA spectral estimation method
increases accuracy of the reflectance estimates compared to
classical PCA.

The Waypoint (Wpt) method uses spectral reflectance
decomposition defined by Chau that represents spectral
reflectance as the sum of scaled non-selective reflectance
and a characteristic reflectance [42, 51]. The non-selective
reflectance is a reflectance vector that reflects the same
amount of light at every wavelength, making it invariant
to wavelength. The characteristic reflectance, which is the
wavelength selective component, is obtained by normalizing
a reflectance vector such that the minimum value becomes
0 and the maximum value becomes 1; this was called
the primary reflectance by Chau. Wpt coordinates are
represented by (W, p, t), where W represents perceptive
lightness, p and t represent perceptive chromaticness, that
is, a combination of perceptive chroma and hue at constant
perceptive lightness [43]. Wpt coordinates in polar form
are represented by (W, ¢, h) where ¢ is Wpt chroma
and h is Wpt hue and are given by ¢ = \/p>+1t2 and
h = arctan2(t, p), respectively [42]. The tristimulus values
in this case are first converted to polar Wpt coordinates
(W, ¢, h) by using Wpt normalizing matrix determined for
source observing conditions. Wpt hue is used to determine its
corresponding characteristic reflectance. This method uses
Munsell reflectances to determine characteristic reflectances
but the latter can also be determined from other measured
reflectances. These characteristic reflectances are divided
into groups having constant hues that form a hue-plane.
One of the characteristic reflectances is selected from this
group to represent that hue-plane. The Wpt coordinates
(W, ¢, h) of the characteristic reflectances and non-selective
reflectance are calculated. Using W and ¢ coordinates of
the characteristic reflectance and W coordinate of the
non-selective reflectance, the scalar of spectral whiteness g
and the scalar of spectral saturation s are determined. A
reflectance vector is then estimated by scaling non-selective
reflectance with g, scaling the characteristic reflectance with
s, and then finally combining them as described in Ref. [52].

Burns altered van Trigt’s method [31] for estimating
spectral reflectance from tristimulus values, which involves
using optimization to identify the unique reflectance curve
with the smallest slope squared integrated over the visible
wavelengths such that this curve matches the tristimulus val-
ues of the source [48]. Burns implemented this optimization
in log reflectance, which ensures that the resulting curve is
strictly positive [48]. This spectral estimation method is also
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evaluated and the results are compared to the performance of
weighted pseudo inverse and third order polynomial spectral
estimation methods in achieving least metameric mismatch.

3. CHROMATIC ADAPTATION

Chromatic adaptation is the mechanism by which the human
visual system tries to preserve an object’s perceived colour
under different viewing conditions [53]. This colour adapta-
tion mechanism has to be applied in a colour reproduction
workflow to reproduce consistent colour appearance when
the illuminants of the input and output colorimetry differ.
In ICC.1 colour management, the reference intermediate
colour space or Profile Connection Space (PCS) is defined
as CIE colorimetry based on illuminant D50 and CIE 1931
2° Standard Observer. Hence if illuminant or observer of
the input or output encodings differ then they have to
be transformed to or from PCS. If the transform is by a
CAT, the result is a corresponding colour match and not
an exact colorimetric match [54]. These transforms can
be represented as a 3 x 3 linear matrix transforms. CAT
matrices are calculated by mapping corresponding colours
which were obtained by carrying out memory based or
haploscopic experiments. These corresponding colours are
colour pairs, i.e., colour of a stimuli under a source illuminant
that match in appearance to the colour of another stimuli
under a destination illuminant. The foundation for this
specific way of modelling chromatic adaptation with scaling
factors applied to cone excitations was laid down by Johannes
von Kries and most modern CATs are built upon it. Some
current popular CATs are Linear Bradford, CAT02 and
CAT16 that are discussed in this section.

Linear Bradford CAT is recommended by ICC v4
specification, i.e., based on Bradford CAT derived by
Lam, consisting a non-linear correction in the blue region
which is dropped in Linear Bradford CAT [35]. In Linear
Bradford CAT, the transformation matrix that converts
tristimulus values to cone excitation can be found in ICC v4
specification [39].

CIE TC8-01 [55] proposed CIECAMO2 as a colour
appearance model which uses CAT02 for chromatic adap-
tation. Transformation matrix (M) of CATO02 is used to
convert tristimulus values to sharpened cone responses
(RGB). Considering full adaptation, CAT02 then can be
calculated similar to von Kries transformation as shown in
Eq. (10), where, (Ry1, Gy1, Bw1) and (Ry2, Gy2, By2) are
the sharpened cone responses of the source and destination
white points, respectively; (X1, Y1, Z1) is source tristimulus
value and (X3, Y3, Z») is destination tristimulus value.

R
w2 0 0
X> Ry1 X1
—1 Gy2
Y, | =M 0 — 0 | M|Y, (10)
V/ Gt p Z
2 0 0 w2 1

Bwl

CAT16 was developed by Li et al. to solve the compu-
tational issues that arose due to CAT02 [41]. CAT16 trans-
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formation matrix was optimized using several corresponding
colour datasets. A chromatically adapted tristimulus value
considering full adaptation and when luminance of the
source and destination illuminants are equal, is obtained in
a similar manner as shown in Eq. (10) where the transfor-
mation matrix of CATO02 is replaced by the transformation
matrix of CAT16 [41].

Based on CAMO02 model where illuminant E, corre-
sponding to an equi-energy stimulus, was used as a reference
or intermediate illuminant and a two-step CAT16 trans-
formation was also developed [36] where, an intermediate
transformation to and from illuminant E is included.

Derhak et al. defines a generalized term, sensor ad-
justment transforms (SAT), that includes both CAT and
MAT. A CAT uses mapping of corresponding colour datasets
to achieve appearance match under changing illuminants
as discussed above, while a MAT uses least dissimilar
color matching proposed by Logvinenko to achieve material
constancy under changing illuminants. Therefore, a MAT
is based on the concept that when illuminant varies, the
appearance of a stimuli changes but due to some secondary
mechanism the human visual system can still to some
degree identify the material [43]. Based on this Derhak,
et al. proposes Wpt transform, where the color of an
object is mapped to coordinates (W, p, t), which is a
colour equivalency representation and forms a waypoint to
navigate between the source and destination colour viewing
conditions. The optimized Wpt based MAT matrices from
source colorimetry to Wpt representation are given in the
Eq. (11) and Eq. (12), where Mp° pes, Mae ps50, Mao 4, and
Mo p11 are transformation from CIE 2° Standard Observer
and illuminants D65, D50, A and F11, respectively, to Wpt
coordinates [56]. The destination tristimulus values can
be obtained from the inverse of these matrices applied
accordingly to the Wpt coordinates.

0.02964 0.97487 —0.00280
My pes = | 4.83916 —4.73122  0.12117 |,
0.54248 1.30671 —1.67368
—0.06265 0.03839  0.02669
Moo pso = | 4.68561 —4.82563 0.37293 |(11)
0.28350 1.50053 —1.15101
—0.33810 1.30006  0.20048
M o= 4.40232 532134 1.36425 |,
—0.41103  2.17849 —4.85343
—0.12366  1.05659  0.10608
Moo p11=| 438611 —4.63611 0.32299 |(12)
0.37476 1.29098  —2.59413

Oleari’s MAT are mathematical transformation matrices
that are used to convert colors from one lighting condition to
another, so that they appear the same to the human eye [47].
These matrices were obtained by optimizing the conversion
of tristimulus values under different viewing conditions to

Nov.-Dec. 2023



Habib, Green, and Nussbaum: Spectral estimation: Its behaviour as a SAT and implementation in colour management

Table II. Description of speciral reflectance datasets.

Dataset Substrate (L*, a*, b*) No. of samples Spectral range Use in Test 1 Use in Test 2
Munsell glossy colour chip (M1) — 1600 380 nm—780 nm interval 5 nm Training & test Training
Offset litho on premium coated (F1) (95, 1.5, —6) 1617 380 nm—730 nm interval 10 nm Training & test Training
Web offset on lightweight coated (W1) (88.8, —0.18,3.7) 1600 400 nm—700 nm interval 10 nm Training & test Training
Cold-set offset on newsprint (N1) (81.9, —0.79, 5.08) 1485 380 nm~730 nm interval 10 nm Training & fest Training & fest
Cold-set offset on newsprint (N2) (82.9,0.31, 4.45) 1485 380 nm~730 nm interval 10 nm Training & test Training & test
Digital print on textile (1) (87,4.55, —19.33) 1485 380 nm—780 nm interval 10 nm Training & test Training & test
Digital print on textile (T2) (94.52,2.26, —14.7) 1485 380 nm—780 nm interval 10 nm Training & test Training & test

an ABC colour space, such that it preserves colour constancy
and, hence, produces the same perceived colour for different
cone excitations under different illuminants and observers.
Oleari’s transformation matrices from a source colorimetry
to a destination colorimetry can be found in the publication
[47].

Burns defines a CAT that is performed using spectral es-
timation [48]. This method is developed as an improvement
to other traditional CATs, to make sure that the tristimulus
values predicted under a destination illuminant does not
fall outside of the spectral locus and does not depend on
corresponding colour datasets for training or fine-tuning it
[48]. Burns modified the approach to spectral estimation
proposed by van Trigt [31] that uses optimization to find
the unique reflectance curve with minimum slope squared
integrated over the wavelengths of the visible range with the
constraint that the reflectance curve produces the source
tristimulus value. Burns carried out this optimization in
log space of the reflectance curve so that the conversion
from the log space creates a strictly positive reflectance
curve. Two spectral power distributions are also estimated
that lead to source and destination whitepoints respectively.
Using these two illuminants, estimated reflectance curve and
colour matching functions, the source tristimulus value and
destination tristimulus value are calculated. The destination
tristimulus value is further adjusted such that its chromaticity
is preserved and its relative luminance Y matches the Y value
of the source tristimulus value. This adjusted tristimulus
value is the predicted corresponding colour. Although, this
method doesn’t use any corresponding colour datasets, it
also doesn't try to achieve material constancy. It is regarded
as a CAT because Burns motive was to use it to predict
corresponding colours well.

The metameric mismatch results obtained from the
CATs and MATs discussed in this section are compared to the
results obtained from the two spectral estimation methods.

4. TESTS FOR EVALUATING SPECTRAL ESTIMATION
METHODS

Three sets of tests are carried out with different aims of

using spectral estimation methods. Eight spectral estimation

methods discussed in Section 2, namely, Wiener method
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(Wiener), Classical PCA (cPCA), Weighted PCA (wPCA),
Pseudo Inverse (PInverse), Weighted Pseudo Inverse (wPIn-
verse), Second Order Polynomial (Polynomial 2), Third
Order Polynomial (Polynomial 3) and Waypoint-based
(Waypoint-R) methods were applied to model a reflectance
or emission spectrum recovery from tristimulus values
obtained under D50 illuminant and CIE 1931 2° Standard
Observer colorimetry. The datasets used and the tests carried
out are elucidated.

4.1 Datasets

To evaluate spectral estimation of surface reflectance from
tristimulus values, seven datasets were selected. The Munsell
dataset (M1) [57] is based on measurements of 1600 colour
chips with a wide range of pigments. FOGRAS51 (F1) [58] is
a characterisation dataset for offset litho print on premium
coated paper. The web offset print on lightweight coated
dataset (W1) has 1600 samples. These three datasets are
used for training purpose. There are two cold-set offset on
newsprint datasets (N1 & N2) printed by different offset
machines of two newsplants at different times which are
used for both training and testing purposes [59]. Similarly,
there are two digital print on textile datasets (T1 & T2)
using two different textile printers on Haysign textile and
Neschen Varitex textile, respectively, which are used for both
training and testing purposes as summarised in Table II.
Figure 1 shows the plots of newsprint datasets (a) N1 and
(b) N2, web offset print on lightweight coated dataset (c)
W1, textile datasets (d) T1 and (e) T2, and FOGRA51 dataset
(f) F1, respectively. A reflectance can be considered smooth
when the values of adjacent wavelengths vary gradually
without sharp jumps. Both newsprint datasets N1 and
N2 and lightweight coated dataset W1 has smooth and
broad reflectance peaks as shown in Fig. 1(d), (e) and (f).
Such, reflectances are less sensitive to colour shifts due
to illuminant change as it allows for more flexibility in
integrating the peak wavelengths from adjacent wavelengths.
Both textile substrates and premium coated paper include
fluorescence creating the sharp peak in the blue regions
of reflectance plots shown in Fig. 1(d), (e) and (f). These
datasets cover different printing conditions (such as printing
process, inks and substrate used) and have at least 1485
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Figure 1. Plots of reflectances of newsprint datasets a) N1 and (b) N2, web offset print on lightweight coated dataset (c) W1, textile datasets (d) T1

and (e) T2, and FOGRAS 1 dataset (f) F1, respectively.
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Figure 2. Plots of CIE a*b* coordinates of Munsell dataset (a) M1, newsprint datasets (b) N1 and (c) N2, web offsef print on lightweight coated dataset
(d) W1, textile datasets (e) T1 and (f) T2, and FOGRAS 1 dataset (g) F1, respectively.

colour samples each that are distinguishable under varied
standard lighting conditions and has good coverage of the
printable gamut. Figure 2 shows the plots of CIE a*b*
coordinates of Munsell dataset (a) M1, newsprint datasets (b)
N1 and (c) N2, web offset print on lightweight coated dataset
(d) W1, textile datasets (e) T1 and (f) T2, and FOGRA51
dataset (g) F1, respectively.

As well as evaluating spectral estimation for print
datasets, a preliminary evaluation of the use of spectral
estimation of radiance spectra of displays from tristimulus
values was carried out. Two datasets (E1 & E2) of different
LED displays calibrated to D50 RGB primaries were used.
These are emission spectra, and therefore, additive. The
datasets contain spectral emission measured from an RGB
ramp, 0-255 in steps of 1, of blue, green, red and white
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respectively. The emission spectra were measured by a
spectrophotometer in the spectral range between 380 nm-
730 nm with 10 nm interval which were interpolated to
1 nm interval. Additive mixing of the primaries was used
to create additional spectra that have a different mix of
blue, green and red primaries together and are added to
the respective datasets, and their corresponding tristimulus
values are calculated using these radiance spectra and CIE
1931 2° Standard Observer.

4.2 Tristimulus Value Calculation

The tristimulus value calculations must use spectral range
of 360 nm-830 nm in steps of 1 nm [60]. However, in
many practical applications such reflectance measurements
are obtained in different, often truncated ranges and intervals
larger than 5 nm (often 10 nm). As shown in Table II, the
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datasets used here were measured over (380 nm-780 nm
in intervals of 5 nm and 10 nm), (380 nm-730 nm in
intervals of 10 nm) and (400 nm-700 nm in intervals
of 10 nm). It has been shown that the spectral range of
400 nm-700 nm can produce tristimulus values with large
errors when compared to the procedure for calculating
tristimulus values recommended by CIE [61, 62]. For
this reason, reflectance measurements were extrapolated to
the range 780 nm-730 nm using the linear interpolation
recommended by CIE [63]. It was found that spectral power
distributions of illuminants with narrow peaks, particularly
certain fluorescent illuminants, cannot be interpolated to
10 nm from 1 nm without creating large errors in the
resulting tristimulus values [60, 64]. Therefore, optimum
weighting tables [65] of 10 nm interval were generated using
the CIE illuminant and observer functions to ensure that
the tristimulus values were correctly calculated [60]. These
optimum weights have bandpass corrections applied to the
weighting factors which are basically the products of the
illuminant multiplied to the observer functions. These tables
can be directly applied to the reflectances to get tristimulus
values.

4.3 Evaluation Metrics

The measured and their corresponding estimated
reflectances are metameric under illuminant D50 as
the tristimulus values used for spectral estimation are
calculated using illuminant D50 and CIE 1931 2° Standard
Observer. Therefore, to evaluate the spectral estimation
methods based on their colorimetric performance, the
colour differences AE, calculated between measured
and estimated colorimetric values computed using the
test and estimated reflectances and different illuminants
other than illuminant D50 are reported. These colour
differences represent the metameric difference and are a
good approximation of how two metameric reflectances that
match in colour under one illuminant can be different in
colour produced under another illuminant [66].

A measure of colour inconstancy, i.e., colour difference
AEy between tristimulus values of a spectra (measured
or estimated) obtained under a source and a destination
illuminant, respectively, are reported. Colour inconstancy
[67] is a measure of the change in colorimetry of an object
under a destination illuminant compared to its colorimetry
under a source illuminant. In product manufacturing, a
colour constant material is preferred [67]. Therefore, we
assess how colour inconstancy estimated reflectances are
compared to the reference reflectance colour inconstancy.
We consider, equal or lower colour inconstancy values to
indicate a better performance of the spectral estimation.

To assess the colorimetric performance of spectral
estimation of display datasets, observer metamerism dif-
ference that is denoted by AOM is reported. In this
case, light energy emitted by the display is measured i.e.
emission spectra are used, therefore, observer metamerism
difference was obtained instead of metameric difference
based on illuminants obtained for surface reflectances. AOM
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is calculated by taking the CIE 1931 2° Standard Observer
as the reference observer and the CIE 1964 10° Standard
Observer as the test observer since both these functions differ
specially in the blue region and also in the degree of visual
fields used [68].

The spectral performance of the spectral estimation
methods is reported as the root mean square error (RMSE),
which is scale dependent, i.e., it is a good metric to compare
the accuracy of datasets with similar scale of reflectance
values but not otherwise. RMSE is expressed in Eq. (13),
where Sis measured reflectance, S is the estimated reflectance
and n is the number of wavelengths.

37 (S — )2
RMSE = 21‘1(7]’) (13)

Another spectral metric, goodness-of-fit coefficient
(GFC) is based on Schwartz’s inequality [69]. The GFC ranges
from 0-1 and 1 corresponds to the estimated spectrum
being equal to the original spectrum. It was also found by
Hernandez et al. that GFC > 0.995 is required to achieve a
colorimetrically accurate estimate spectrum. What they call
“good” spectral fit requires GFC > 0.999 and an “excellent”
fit requires a GFC > 0.9999.

4.4 Test 1

In Test 1, each spectral reflectance dataset in Table II
was divided into training and test datasets using k-cross
validation, where k =5 i.e. 80% of the dataset was used for
training and the remaining 20% was used for testing in each
iteration. For each spectral estimation method, the mean
and maximum values of each metric were calculated for the
estimated reflectances obtained from each dataset. This test
evaluates the spectral estimation methods for the case where
the reflectances used for training belong to the same dataset
as the test data, for example having the same printing process,
inks and substrate etc. RMSE, GFC and AE,, between the
measured and estimated spectra are determined.

4.5 Test 2

In Test 2, the aim is to assess the spectral estimation methods
when the training and test datasets are different. To train
the spectral estimation models in this scenario, a reflectance
dataset with material components different from the test
dataset to varying degrees was used. This is to understand
how close the material match of a training dataset has to be,
in order to minimize metameric mismatch under different
lighting conditions. Nine different combinations of training
and test datasets, as described in Table III, were evaluated
using all the different spectral estimation methods, and the
results of AE;; and RMSE are reported.

4.6 Test 3

In Test 3, spectral estimation of emission spectra are carried
out using two display datasets; E1, measurements from
standalone WLED display with quantum dot technology;
and E2, measurements from a standalone WLED display with
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Table 11l Descripfion of nine cases evaluated in Test 2 where reflectance is estimated
for a fest dataset using the spectral estimation methods trained with another dataset.

Identifier Test data Training data Printing conditions Substrates (Test/Training)

N2-M1 N2 M1 Dissimilar Newsprint/Colour chip

N2-WT N2 Wi Dissimilar Newsprint/Light coated paper
N2-NT N2 Tl Similar Newsprint/Newsprint

NI-N2 NI N2 Similar Newsprint/Newsprint

T2-M1 T2 M1 Dissimilar Textile/Colour chip

-1 12 Fl Dissimilar Textile/Premium coated paper
-Wi 12 Wi Dissimilar Textile/Light coated paper
-1 1 N1 Similar Textile/Textile

n-17 1 12 Similar Textile/Textile

red phosphor and green and blue LEDs. Spectral estimation
methods were evaluated for both cases; first, when the same
dataset is used for training and testing through k-cross
validation, and second, when one display dataset was used
for training the model and the other dataset is used as the
test. The RMSE and AOM are reported for both scenarios.

5. EVALUATION PROCEDURE FOR SPECTRAL
ESTIMATION AS A MAT

Two spectral estimation methods, weighted pseudo inverse
(wPInverse) and third order polynomial (Polynomial 3)
using least square fit were evaluated using various training
and test datasets and their performance in predicting
colour appearance under different illuminants were assessed.
These two methods were chosen for their simplicity and
computational efficiency, as well as their performance
in terms of least root RMSE and metameric differences
compared to other classical methods, like Wiener method,
methods using PCA and Wpt based spectral estimation
demonstrated in Section 6.

Seven datasets, as shown in Table II were selected
for training and test purposes. These datasets contain
reflectances of Munsell colour chips, and different print
datasets with varying material components such as sub-
strates, inks and processes. These datasets are be categorised
according to their material components. The main purpose
is to understand, how well such spectral estimation models
perform in generating estimated reflectances that are a close
match to those of the object of interest, and whether these
estimates predict colours under different illuminants more
accurately than colour predictions using alternative sensor
adjustment transforms. A Munsell dataset (M1), a newsprint
dataset (N2) and a textile print dataset (T2) were employed
in the estimation using k = 5 cross validation method, where
a dataset is divided into 5 sets, and one set ie. 20% is
used for testing and the rest 80% is used for training and
this is repeated for each set. Six other cases where the
training dataset does not belong to the test dataset were also
used. N2 is used as a test dataset, while the N1, W1 and
M1 datasets were used for training the spectral estimation
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models. Similarly, T2 was used as a test dataset and T1, F1
and M1 datasets were used for training.

The results from the two estimation methods were
compared with predictions from different CATs and MATs.
These colour predictions were evaluated under five CIE
illuminants; two standard daylight illuminants D50 and
D65, illuminant A representing tungsten filament lighting,
F11 representing fluorescent lamp and LED-V1 representing
violet pumped phosphor-type LED lamp. LED-V1 is part of
the illuminants representing typical LED lamps published
by the CIE in 2018 [60]. Fifteen combinations of these
illuminants are used where each illuminant is the source
and for each source, three other illuminants are used as
the destination. These chosen combinations of (Source -
Destination) illuminants are (D50-D65), (D50-A), (D50-
Fl11), (D65-D50), (D65-A), (D65-F11), (A-D50), (A-D65),
(A-F11), (F11-D50), (F11-D65), (F11-A), (LED-V1-D50),
(LED-V1-D65) and (LED-V1-A). For each pair of source
and destination illuminants, the tristimulus values of the
test datasets were calculated by using their measured
reflectances, source illuminant and the CIE 1931 2° Standard
Observer. They were then chromatically adapted to the
destination illuminant using different CATs; the Linear
Bradford transform (L-Bradford), CAT02 and CAT16 with
one step and two step via equi-energy transforms (with full
adaptation), Oleari MAT, Waypoint MAT, and Burns CAT
by spectral estimation (Burns-CAT). Colour predictions
using estimated reflectances from the intermediate spectral
estimation step (Burns-R) in Burns CAT were also compared.
For comparisons, colour difference AEyy was calculated
between the destination tristimulus values obtained from
the measured reflectances and the adapted or estimated
tristimulus values under the destination illuminant. This
gives us a measure of metameric mismatch between the
reference and adapted or estimated colours with changing
lighting conditions.

It is important to note that the spectral estimation
methods, estimated reflectances from tristimulus values
obtained under the respective source illuminant colorimetry,
so the estimated reflectances were metameric matches
under the source illuminant, ie., the AEyy, in this case
is 0. This allows for a more accurate assessment of the
performance of the spectral estimation methods, as the
estimated reflectances are obtained from the same source
colorimetry as the adapted colours.

Moreover, tristimulus values were calculated from spec-
tral data with 10 nm interval using CIE recommendations
[70], where optimum weights tables [65] were created from
CIE 1 nm data of illuminants and colour matching functions,
as explained previously.

6. RESULTS AND ANALYSIS OF SPECTRAL
ESTIMATION METHODS

6.1 Test 1

In Test 1, each spectral reflectance dataset in Table II was

divided into training and test datasets and the identifiers

used to denote test and training data are defined as
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Table IV. Mean RMSE between test and estimated specira from Test 1.

Dataset Wiener PCA wPCA Plnverse wPInverse Polynomial 2 Polynomial 3 Waypoint-R
M1-MI] 0.0410 0.0395 0.0278 0.0381 0.0236 0.0286 0.0249 0.0405
FI-A1 0.0337 0.0212 0.0095 0.0246 0.0091 0.0094 0.0072 0.0364
WI-W1 0.0241 0.0158 0.0073 0.0183 0.0063 0.0076 0.0062 0.0440
NI-N1 0.0220 0.0120 0.0058 0.0135 0.0056 0.0055 0.0047 0.0397
N2-N2 0.0216 0.0124 0.0059 0.0139 0.0060 0.0056 0.0046 0.0572
T-T 0.0330 0.0254 0.0118 0.0275 0.0126 0.0140 0.0105 0.0476
12-12 0.0394 0.0298 0.0139 0.0319 0.0132 0.0158 0.0119 0.0420
Table V. Maximum RMSE between test and estimated spectra from Test 1.
Dataset Wiener PCA wPCA Plnverse wPInverse Polynomial 2 Polynomial 3 Waypoint-R
M1-M1 0.3098 0.2944 1.1696 0.3080 0.3060 0.2919 0.2922 0.3057
FI-A1 0.1012 0.0752 0.0469 0.0957 0.0310 0.0377 0.0348 0.1646
WI-W1 0.0883 0.0720 0.0436 0.0838 0.0313 0.0238 0.0263 0.2485
NI-N1 0.0662 0.0448 0.0267 0.0529 0.0180 0.0218 0.0207 0.1085
N2-N2 0.0689 0.0515 0.0267 0.0587 0.0200 0.0232 0.0224 0.1440
TI-M 0.1172 0.0944 0.0427 0.1064 0.0345 0.0521 0.0297 0.1962
12-12 0.1767 0.1345 0.0528 0.1608 0.0571 0.0735 0.0390 0.2233

(Test-Training) e.g. (M1-M1). Tables IV and V show the
mean and maximum RMSE, respectively, calculated between
the measured reflectances and the estimated reflectances
obtained from Test 1. Datasets with lower variability and
smoother spectra, such as the newsprint datasets are better
estimated. Among all the datasets, M1 has the highest mean
and maximum RMSE, and this is thought to be due to
greater pigment variation represented in Munsell samples
compared to print datasets which use only four process
colours. For each dataset, the value shown underlined and
in bold is the best case, while the value shown in bold but not
underlined is the second best case among the results obtained
from different spectral estimation methods. Polynomial 3
performs the best, as it has either the least or the next least
mean RMSE and maximum RMSE values. wPInverse is the
next best method based on the frequency of least mean
and maximum RMSE. Also, the mean RMSE results from
Polynomial 2 and wPCA are comparable to the best cases.
However, the maximum RMSE from wPCA is significantly
worse for the M1 dataset. AE; under illuminant D50
calculated between the measured and estimated reflectances
is practically 0, as the reflectances were estimated from
tristimulus values with illuminant D50 colorimetry. In this
particular application using print datasets, the AE,, under
illuminant D50 colorimetry between measured and esti-
mated reflectances was in the range 1E-12 or lower. Table VI
shows the mean GFC calculated between the measured
reflectances and the estimated reflectances obtained from
Test 1. According to GFC results, Polynomial 3 performs
the best, followed by wPCA and wPInverse methods. All
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print datasets that produce colours mixing process colours
or primaries have mean GFC for these three methods in
acceptable limits while M1 data has mean GFC lower than
0.995. Newsprint data with smaller colour gamut has mean
GFC greater than 0.999 for these three methods which is
considered good.

Tables VII and VIII show mean (maximum) AEg
as the measure of metameric difference under destination
lights, illuminant D65 and illuminant A, respectively, for
estimated reflectances obtained using source illuminant D50
discussed in Test 1. Metameric difference increases when the
spectral power distribution of the destination illuminant is
very different from that of the source illuminant used for
estimation. Under illuminant D65, mean AE,y, is below 1 for
each spectral estimation method, however, maximum AE,,
under illuminant D65 vary significantly among the different
methods. Polynomial 3 performs the best as it results in the
least metameric mismatch in every case. In this case, the
maximum AE,, for Polynomial 3 under illuminant D65 is
within 1 and under illuminant A is within 3 AE,, except
for the M1-M1 case. wPInverse is the second best based on
least metameric values, although, Polynomial 2 and wPCA
metameric differences are comparable. The Waypoint-R
method has the second best mean and maximum AE,;, under
both illuminant D65 and A for dataset M1.

6.2 Test 2

In Test 2, reflectance datasets that were not part of the
test dataset were used to train different spectral estimation
models. Here, the identifiers used to denote test and training
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Table VI. Mean GFC hetween test and estimated specira from Test 1.

Dataset Wiener PCA wPCA Plnverse wPlnverse Polynomial 2 Polynomial 3 Waypoint-R
MI1-M1 0.9778 0.9828 0.9724 0.9815 0.9896 0.9863 0.9885 0.9861
Wi-wi 0.9842 0.9831 0.9984 0.9893 0.9976 0.9955 0.9983 0.9913
F1-FI 0.9870 0.9887 0.9986 0.9918 0.9984 0.9975 0.9986 0.9892
N2-N1 0.9962 0.9985 0.9997 0.9985 0.9997 0.9997 0.9998 0.9904
N1-N2 0.9960 0.9984 0.9997 0.9983 0.9996 0.9997 0.9998 0.9881
T-T1 0.9826 0.9909 0.9985 0.9868 0.9940 0.9970 0.9983 0.9850
12-12 0.9805 0.9900 0.9968 0.9882 0.9972 0.9969 0.9982 0.9887
Table VII. Mean (max) AE,;, metameric difference under illuminant D65 from Test 1.
Dataset Wiener PCA wPCA Plnverse wPInverse Polynomial 2 Polynomial 3 Waypoint-R
MI-M1 0.59 (4.46) 0.65(4.02) 0.3(3.04) 0.6 (4.33) 0.32(2.83) 0.44(3.04) 0.32 (2.38) 0.33 (2.52)
F1-F1 0.99(3.99) 0.84(5.53) 0.28 (1.5) 0.71(3.87) 0.29 (1.27) 0.34(2.02) 0.23 (0.96) 0.48 (1.76)
Wwi-wi 0.82(3.44) 0.69 (4.38) 0.27 (1.51) 0.62(3.26) 0.25 (1.28) 0.31(1.78) 0.24 (1.07) 0.96(3.92)
N1-N1 0.41(1.42) 0.28 (1.04) 0.13(0.6) 0.27 (1.17) 0.12 (0.43) 0.12(0.48) 0.1 (0.46) 0.66 (1.18)
N2-N2 0.38 (1.49) 0.3(1.16) 0.13(0.6) 0.29(1.3) 0.13 (0.5) 0.13(0.51) 0.1 (0.51) 0.83 (1.86)
T-T1 0.66 (3.07) 0.66 (2.59) 0.25(1.27) 0.6(2.91) 0.25(1.35) 0.35(1.4) 0.23 (1.04) 0.61(2.08)
T2-12 0.79(3.42) 0.85(2.78) 0.34(1.35) 0.71(3.15) 0.32(1.1) 0.42(1.69) 0.31 (0.95) 0.63 (1.95)
Table VIIL. Mean (max) AE,;,, metameric difference under illuminant A from Test 1.

Dataset Wiener PCA wPCA Plnverse wPlnverse Polynomial 2 Polynomial 3 Waypoint-R
MI1-M1 1.50(12.31) 1.67 (12.09) 0.83(13.8) 1.52(12.08) 0.81(8.26) 1.13(9.47) 0.81 (7.07) 0.83 (6.78)
F1-F1 0.99 (15.04) 2.40(14.39) 0.82(5.61) 2.10(14.43) 0.83 (4.41) 0.95(5.68) 0.66 (2.68) 1.40(6.71)
Wi-w1 0.82(11.95) 1.97 (12.08) 0.76 (5.46) 1.79(11.33) 0.68 (3.38) 0.85(4.98) 0.67 (3) 2.74(11.05)
N1-N1 0.41 (4.86) 0.83(3.5) 0.38 (1.86) 0.81(4.01) 0.36 (1.34) 0.36 (1.43) 0.31(1.41) 1.63(3.52)
N2-N2 0.38 (5.33) 0.88 (4.01) 0.39(1.84) 0.84 (4.6) 0.37 (1.52) 0.37 (1.56) 0.30 (1.55) 2.20(5.29)
T-Ti 0.66(9.95) 1.71(8.02) 0.62(3.64) 1.56 (9.29) 0.57 (4.07) 0.84 (3.46) 0.54 (2.2) 1.24 (6.49)
12-12 0.79(11.03) 2.21(8.75) 0.82(4.15) 1.84(10.02) 0.74 (3.4) 1.00(3.97) 0.71 (2.03) 1.35(5.5)

data are from two different datasets and are defined as
(Test-Training) e.g. (N2-M1). Tables IX and X summarise
the mean and maximum RMSE between reference and
estimated reflectances from Test 2. For newsprint datasets
N1 and N2, when a different newsprint dataset is used for
training then mean RMSE is the lowest and Polynomial 3
performs the best. Similarly, for textile datasets T1 and T2,
when a different textile dataset is used for training then
the mean RMSE is the lowest for wPInverse. Reflectances
of textile datasets have sharper peaks in the blue region
due to the presence of fluorescent whitening agents, and
the accuracy of the least square fit reduces in comparison
to newsprint datasets. When the W1 dataset is used to
estimate reflectances for a newsprint dataset, Polynomial
2, Polynomial 3 and wPInverse perform similarly, although
the mean maximum RMSE increase compared to using a
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newsprint dataset for training. Interestingly, when F1 dataset
is used to estimate reflectances for textile dataset, the mean
maximum RMSE are comparable to the case when a textile
dataset is used for training. Both textile and F1 datasets
have fluorescent whitening agents, although the fluorescent
emission is greater for textile.

Tables XI, XII, XIII and XIV summarise the mean
and maximum AE,, as metameric difference under CIE
illuminants D65, A, F11 (typical fluorescent lamp) and
LED-V1 (violet pumped phosphor-type LED lamp) [60],
respectively, obtained from Test 2. If we consider, metameric
differences under the D65 illuminant, Polynomial 3 creates
the smallest metameric mismatch overall. wPInverse is
the next best method while Polynomial 2 and wPCA
results closely follow. A similar trend is seen in metameric
differences under illuminants A and F11.
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Table IX. Mean RMSE between test and esfimated spectra from Test 2.

Dataset Wiener PCA wPCA Plnverse wPInverse Polynomial 2 Polynomial 3 Waypoint-R
N2-M1 0.0585 0.0489 0.0557 0.0516 0.0542 0.0586 0.0595 0.0573
N2-W1 0.0331 0.0198 0.0186 0.0199 0.0175 0.0174 0.0176 0.0513
N2-N1 0.0303 0.0178 0.0140 0.0190 0.0135 0.0137 0.0132 0.0572
N1-N2 0.0231 0.0180 0.0139 0.0187 0.0140 0.0136 0.0132 0.0482
T2-M1 0.0587 0.0571 0.0617 0.0564 0.0539 0.0587 0.0611 0.0646
T2-A 0.0417 0.0411 0.0349 0.0375 0.0311 0.0320 0.0313 0.0478
T2-W1 0.0416 0.0427 0.0385 0.0405 0.0357 0.0346 0.0362 0.0561
12-T 0.0462 0.0364 0.0324 0.0385 0.0291 0.0320 0.0327 0.0646
1-12 0.0315 0.0401 0.0359 0.0354 0.0311 0.0324 0.0332 0.0758
Table X. Maximum RMSE between test and esfimated spectra from Test 2.
Dataset Wiener PCA wPCA Plnverse wPlnverse Polynomial 2 Polynomial 3 Waypoint-R
N2-M1 0.1360 0.1181 0.1362 0.1292 0.1314 0.1427 0.1482 0.1419
N2-W1 0.0847 0.0566 0.0576 0.0657 0.0552 0.0553 0.0535 0.2098
N2-N1 0.0880 0.0667 0.0379 0.0747 0.0370 0.0412 0.0393 0.1440
N1-N2 0.0491 0.0530 0.0371 0.0632 0.0385 0.0373 0.0370 0.1182
T2-M1 0.2198 0.1796 0.2853 0.2098 0.1659 0.1913 0.2805 0.2637
T2-F1 0.1458 0.1275 0.1208 0.1471 0.1241 0.1155 0.1208 0.2518
T2-W1 0.1549 0.1647 0.1591 0.1881 0.1688 0.1456 0.1886 0.2708
12-T 0.2003 0.1770 0.1277 0.1888 0.1281 0.1225 0.1045 0.2637
T1-12 0.0923 0.1115 0.0942 0.1184 0.0920 0.1148 0.1084 0.2713
Table XI. Mean (max) AF,,, metameric difference under illuminant D65 from Test 2.

Dataset Wiener PCA wPCA Plnverse wPInverse Polynomial 2 Polynomial 3 Waypoint-R
N2-M1 1.04(2.62) 0.84(2.31) 0.91 (1.78) 0.93(2.49) 0.93(1.9) 1.02(1.95) 1.03(1.73) 0.90 (2)
N2-W1 0.57 (1.77) 0.33(1.29) 0.27 (1.16) 0.30(1.29) 0.20 (0.7) 0.23(0.86) 0.22 (0.34) 0.83(2.99)
N2-N1 0.5(1.65) 0.31(1.23) 0.17(0.7) 0.31(1.42) 0.16 (0.55) 0.17 (0.43) 0.14 (0.4) 0.83(1.86)
N1-N2 0.32(1.27) 0.3(0.96) 0.15(0.65) 0.28 (1.06) 0.15 (0.47) 0.16 (0.58) 0.14 (0.57) 0.76 (1.77)
T2-M1 1.12(3.78) 1(3.68) 0.92(3.04) 1.03(3.7) 0.88 (2.63) 0.98(2.94) 0.93(2.52) 0.86 (3.12)
12-A 1.15(4.23) 1.09(3.2) 0.73(2.32) 0.89(3.91) 0.64 (2.25) 0.67 (2.12) 0.61(1.99) 0.77 (2.69)
T2-W1 0.86 (3.79) 0.95(3.14) 0.73(2.52) 0.80 (3.46) 0.63 (2.03) 0.61 (2.06) 0.65(2.23) 0.99(3.93)
12-1 0.87 (3.56) 0.79 (2.96) 0.47 (1.68) 0.75(3.2) 0.44 (1.51) 0.48 (1.85) 0.44 (1.37) 0.86(3.12)
-T2 0.63 (3.23) 0.81 (2.66) 0.5(1.22) 0.65(2.95) 0.47 (1.51) 0.44 (1.57) 0.43 (1.51) 0.76 (2.77)

The M1 dataset has reflectances that are not spectrally
similar to newsprint or textile reflectances. When M1 dataset
is used as training data Waypoint-R  performs the best. If
we exclude the cases where M1 is used for training data then
it can be seen that polynomial methods and weights based
methods all produce mean AE, less than 1 under the four
different illuminants for newsprint datasets. Similarly, for
textile datasets, if M1 and W1 training datasets are excluded
then mean AE,, is below 2.4 under all four illuminants
when polynomial methods and weights based methods are
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used, although in this case the maximum AE, is high
under illuminant F11. This is because the polynomial and
the weight based spectral estimation methods model the
non-linearity present in print datasets well.

The estimation results with textile dataset has slightly
increased metameric differences because the test reflectances
have sharper peaks in the blue region and they are not as
smooth as newsprint data; as a result there is an increase
in sensitivity to colour shift under different illuminants and
especially affects accurate hue prediction and chroma. This
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Table XII. Mean (max) AF,;, metameric difference under illuminant A from Test 2.

Dataset Wiener PCA wPCA Plnverse wPInverse Polynomial 2 Polynomial 3 Waypoint-R
N2-M1 2.83(6.43) 2.26 (5.97) 2.39(5.01) 250 (6.11) 2.48(5.15) 272(5.07) 2.74(4.94) 2.35(5.13)
N2-W1 1.66 (5.62) 0.93(3.84) 0.73(3.27) 0.86 (4.62) 0.54 (1.85) 0.57 (2.25) 0.57 (2.14) 2.31(8.9)

N2-N1 1.61(5.77) 0.92(4.21) 0.51(2.21) 0.92(4.93) 0.47 (1.92) 0.49 (1.25) 0.42 (1.22) 2.20(5.29)
N1-N2 1(4.47) 0.87(3.22) 0.44(2.04) 0.81(3.71) 0.42 (1.4) 0.45(1.75) 0.40 (1.73) 1.9 (4.95)
T2-M1 2.61 (11.35) 24(11.16) 2.05(9.04) 2.43(11.07) 1.93 (7.19) 2.25(8.87) 2.14(6.84) 1.78 (7.75)
T2-F1 2.62(12.57) 279(8.8) 1.78 (5.63) 2.06(11.37) 1.34 (5.31) 1.49 (4.77) 1.34 (4.24) 1.48 (6.97)
T2-W1 21(11.31) 2.47 (8.86) 1.89(7.24) 1.98(10.21) 1.54 (5.72) 1.41 (4.85) 1.64(6.87) 2.47(10.5)
12- 2.54(10.35) 211(8.28) 1.21(4.51) 2.04(9.74) 1.11 (3.54) 1.23(3.73) 1.12 (3.3) 1.78(7.75)
T-12 1.65(10.27) 2.19(8.05) 1.37 (3.45) 1.75(9.28) 1.26 (3.38) 1.18 (3.89) 1.14 (3.22) 1.57 (6.94)

Table XIIl. Mean (max) AF,;, metameric difference under illuminant F11 from Test 2.
Dataset Wiener PCA wPCA Plnverse wPInverse Polynomial 2 Polynomial 3 Waypoint-R
N2-M1 1.78(7.93) 1.52(7.49) 1.49 (5.4) 1.66 (7.83) 1.60 (5.72) 1.57 (5.44) 1.82(5.75) 1.51(7.32)
N2-W1 1.23(6.28) 1.23 (4.43) 1.07 (3.76) 1.11(5.39) 0.87 (3.9) 0.96 (3.82) 0.94 (3.71) 1.94(10.71)
N2-N1 1.43(7.68) 1.03(5.57) 0.61(3.29) 1.01 (6.61) 0.58 (3.04) 0.59 (2.79) 0.52 (1.64) 0.98 (5.42)
N1-N2 2.01 (6.41) 0.91(4.18) 0.57 (1.73) 1.01 (5.16) 0.57 (1.63) 0.62 (1.86) 0.54 (1.41) 1.22(4.15)
T2-M1 3.12(16.83) 2.89(16.12) 2.80 (13.43) 3.03(16.73) 2.73 (13.53) 3.14(13.82) 2.99(12.77) 3.00(13.92)
12-F1 1.90(15.95) 1.79(12) 1.82(7.83) 1.70(14.98) 1.19 (9.07) 1.63(8.37) 1.62 (7.83) 1.84(13.92)
T2-W1 3.35(15.58) 2.90(13.01) 2.39(10.19) 271(14.54) 2.17 (10.07) 2.48(10.18) 2.26 (9.82) 317(14.92)
12-T 375(15.13) 2.88(12.99) 2.22 (8.12) 3.11(14.65) 2.23(8.13) 2.31(7.82) 2.06 (8.45) 2.80(12.01)
T1-12 2.93(12.69) 3.14(10.15) 2.37 (5.56) 2.36 (11.88) 2.17 (4.9) 2.24 (5.61) 2.08 (6.4) 211(7.14)
Table XIV. Mean (max) A £, metameric difference under illuminant LED-V1 from Test 2.

Dataset Wiener PCA wPCA Plnverse wPInverse Polynomial 2 Polynomial 3 Waypoint-R
N2—M] 2.65 (6.46) 2.44(6.18) 2.39(4.95) 2.39(6.17) 2.38 (4.62) 2.61(4.82) 2.61(4.54) 2.14 (4.95)
N2-W1 1.55(6.17) 1.01 (4.16) 0.80(3.11) 0.94(5.19) 0.61 (2.07) 0.64(2.14) 0.64 (2.03) 2.40 (8.44)
N2-N1 1.59 (6.39) 0.93 (4.63) 0.49 (2.37) 0.95 (5.45) 0.45 (2.09) 0.46 (1.36) 0.39(1.2) 1.77 (4.22)
N1-N2 1.24 (5.06) 0.88 (3.57) 0.43(1.93) 0.88 (4.17) 0.43 (1.29) 0.43(1.77) 0.38 (1.6) 1.51(3.43)
T2-M1 3.29 (11.56) 3.27 (11.29) 2.97 (8.84) 3.21(11.25) 2.75(7.1) 3.00(8.92) 2.83(6.71) 2.65 (6.87)
T2-F1 274013.21) 3.08(9.04) 2.14(6.76) 233(12.1) 1.65(5.59) 1.81(4.4) 1.67 (4.59) 1.95(6.88)
T2-W1 245(12) 2.90(9.29) 2.33(8.88) 242(10.93) 1.95 (7.48) 1.83 (4.59) 1.99(8.32) 276 (9.58)
T2-T 411(12.2) 2.63(9.31) 1.67 (7.21) 3.04(11.29) 1.84(6.63) 1.64 (4.42) 1.52 (4.73) 2.40(8.33)
T-12 2.20(11.76) 2.56 (8.82) 1.81(4.24) 2.12(10.66) 1.66 (4.09) 1.68 (4.9) 1.66 (4.44) 2.37 (6.35)

can be seen in Figure 3 where (a), (b) and (c) are measured
CIELAB L*, C* and hg, values plotted against estimated
CIELAB L*, C* and hy, values, respectively, from estimated
reflectances of T2 using M1 as the training dataset. CIELAB
L*, C* and h,p, values have been calculated under illuminants,
D65 (blue dots), A (red dots) and F11 (yellow dots). From
the plot it can be seen that the largest deviations occur
for Hue and Chroma under illuminant F11 (yellow dots).
Lightness values are mostly preserved. This similar trend is
seen in other cases, however, deviations decrease depending
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on increasing performance of spectral estimation due to a
good selection of the training dataset i.e. a better material
match.

Figure 4 shows reflectances corresponding to the 95th
percentile of AE,;, metameric difference under illuminant
D65 for newsprint dataset, where reference reflectances
(red) and estimated reflectances (black) are plotted for
cases (a) N2-N1 using wPInverse, (b) N2-N1 using Poly-
nomial 3, (¢) N2-M1 using wPInverse and (d) N2-Ml
using Polynomial 3, respectively. Similarly, Figure 5 shows
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Figure 3. (a), (b) and [c] are measured CIELAB L*, C* and hy, values ploted against estimated CIELAB L*, C* and h, values respectively with CIELAB
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(c) T2M1 using wPlInverse and (d) T2M1 using Polynomial 3, respectively.

reflectances corresponding to the 95th percentile of AE,,
as metameric difference under illuminant D65 for textile
dataset, where reference reflectances (red) and estimated
reflectances (black) are plotted for cases (a) T2-T1 using
wPInverse, (b) T2-T1 using Polynomial 3, (c) T2-M1 using
wPInverse and (d) T2-M1 using Polynomial 3, respectively.
From these figures it can be clearly seen that newsprint
dataset (N2) with smoother and broader peaks and smaller
gamut as seen in Fig. 2 is better estimated compared to textile
dataset (T2) with fluorescent whitening agents. Plots (a) and
(b) where training data is similar to the test data vs plots
(c) and (d) where training data is different from test data
in Figs. 4 and 5 suggest that when training data has similar
material characteristics to test data then spectral estimation
errors decrease.
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6.3 Test 3

Test 3 was carried out to evaluate different spectral estimation
methods on radiance spectra of display datasets. When
spectral estimation is carried out with training and test
data belonging to the same dataset then spectral estimation
results are very good with overall mean RMSE at 0.0142
and the 95th percentile of observer metamerism difference
being almost negligible with AE,, = 0.1 for both E1 and
E2 datasets. If radiance spectra of another display dataset
is used, that we consider having similar technology then all
the spectral estimation methods perform equally poorly with
mean RMSE at 1.28 and overall mean observer metamerism
difference being AE;, = 1.88 and the 95th percentile of
observer metamerism difference being AE,, = 4.6. Because
display radiance has peaks that are narrow and sharp, a little
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Table XV. Mean A Fy as colour inconstancy measure between fristimulus values under source light and tristimulus values under destination light calculated using measured reflectance
of the dataset for the reference case and estimated reflectance for the cases where spectral estimation is carried out for the dataset. Source illuminants are in the first row and destination
illuminants are in the second row. The values shown in bold are the colour inconstancy found in dataset T2 and the values underlines show cases where colour inconstancy is similar fo

dataset T2.

D50 D65

A F1 LED-V1

D65 A 1 D50 A 11

D50 D65 1 D50 D65 A D50 D65 A

Reference 135 288 172 133 405 261
Waypoint-R 136 283 153 1.4 4 2.51
Burns-CAT 135 279 174 137 411 3N

MI-M1  Burns-R 1.45 2.88 1.57 144 422 236
wPInverse 135 2719 143 133 397 238
Polynomial 3 135 284 157 133 401 241
F1-F1 Reference 168 350 254 168 507 374
Reference 170 332 256 170 494 378
12-12  Burns-CAT 149 29 18 15 437 335
Burns-R 173 319 1.52 1.7 483 272
Waypoint-R 157 29 161 15 44 275
T2-F1 wPlnverse 165 339 260 165 494 370
Polynomial 3~ 1.67 343 263 167 500 380
Waypoint-R 154 28 129 153 43 25
T2-M1  wPlnverse 151 279 142 151 41 257

Polynomiol 3 1.5 282 172 15 423 268

288 409 232 124 168 318 267 39 035
284 406 204 132 154 305 263 385 036
266 389 104 078 171 131 198 286 02
277 402 241 147 174 372 2417 377 026
278 399 212 107 141 308 259 383 033
284 406 224 126 157 3N 25 381 036

332 494 198 296 3.40 3.69 511 148
279 413 101 09 214 157 2327 345 017

313 483 26 145 168 404 254 401 027
288 44 2 113 15 318 25 385 040
4 508 211 278 339 298 357 48 106

288 437 206 113 15 318 25 385 040
279 413 200 122 137 310 249 377 037
282 423 224 137 163 3N 254 374 038

inaccuracy or shift leads to major mismatch in colorimetry
for changing observers. Although, spectral estimation results
are good for the case where training and test data are
from the same dataset, the prediction of radiance spectra
by additive mixing of the primaries also works well. This
is because in display technology, additive color mixing is
used, which involves combining the primary colours; red,
green, and blue (RGB), at different intensities to generate
a broad spectrum of colours. This means that the spectral
power distribution emitted by the display can be expressed
as a linear combination of these primaries, i.e., the intensities
of the light sources can be adjusted using channelwise
nonlinearities or gamma correction in conjunction with a
linear transformation [71]. While printers use subtractive
colour mixing, which means that when the primary colors
are combined, they absorb certain wavelengths of light,
creating different colors. This mixing considers factors like
ink absorption, density, and printing technology, leading to
a complex non-linear relationship between the output color
and the printer primaries. As a result, we do not further
consider evaluating spectral estimation workflows in colour
management for display technologies.

6.4 Discussion on Colour Inconstancy

Colour inconstancy is an important measure to understand
how colour of an object changes under varying lighting
conditions. Reducing colour inconstancy is a step towards
creating colour constant objects. As we are matching the
object reflectance, the aim here is to match the colour

J. Imaging Sci. Technol.

inconstancy of the reflectances in the original dataset.
Table XV shows the mean AEy) between tristimulus
values predicted using reflectances and a source illuminant,
and their respective tristimulus values predicted under a
destination illuminant. This measure represents the overall
colour inconstancy present in the dataset. The mean AEy
values for dataset M1 from all the estimation methods are
comparable to the reference mean colour inconstancy values.
For Burns-CAT it is observed that because of the final
step of luminance scaling, there is a tendency of reducing
colour inconstancy. The Burns-R spectral estimation method
produces the same reflectance for a given tristimulus value
and its illuminant, while the other methods produce different
metameric reflectance estimates depending on the training
dataset. The F1 and T2 datasets have similar overall mean
colour inconstancy while M1 is slightly more colour constant
facilitated by smoother and broader reflectances reducing
colour shifts between certain pair of illuminants. If F1 is
used as the training dataset for reflectance estimation of
T2, then wPInverse and Polynomial 3 results match the
reference colour inconstancy of T2 very well. If M1 is used as
training dataset for T2, then colour inconstancy is reduced
and they behave similar to the results obtained from Burns
two methods and Waypoint-R. A similar trend is seen when
newsprint dataset N2 is estimated using W1 and M1 dataset,
where W1 and N2 are similarly colour inconstant and M1
is less colour inconstant although the difference is not as
significant as in the case of textile dataset. If the aim is to
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Table XVI. Mean and 95th percentile of A Fyg between reference ristimulus values and chromatically adapted/estimated tristimulus values for M1 dataset. Source illuminants are in

the first row and destination illuminants are in the second row.

Mean A £y
D50 D65 A F1 LED-V1
D65 A 1 D50 A M D50 D65 F11 D50 D65 A D50 D65 A
(ATO02 059 201 187 061 263 192 189 237 263 193 199 266 198 245 056
(AT16 078 273 193 080 35 223 255 324 287 200 233 299 264 331 054
L-Bradford 052 174 193 053 225 198 173 218 235 199 207 232 169 211 055
Oleari-MAT 061 177 249 059 213 224 184 228 316 244 220 301 — — —
MI-M1  Woypoint-MAT 033 080 134 033 109 142 08 122 155 136 140 150 — — —
Burns-CAT 05 173 203 05 228 223 173 225 243 205 224 236 190 239 055
Burns-R 027 068 122 0206 092 121 082 114 166 142 144 15 072 096 034
wPlnverse 019 049 08 019 066 094 053 074 092 08 095 08 049 066 02
Polynomiol 3 021 054 098 02 073 105 058 079 106 097 105 1001 054 072 0.3
95th Percentile A Fyg

(ATO2 137 448 508 141 606 534 404 526 554 532 55 575 455 561 1M
(ATI6 169 577 524 171 766 578 535 693 598 550 613 654 589 736 123
L-Bradford 120 356 525 122 485 544 348 454 518 537 562 512 369 469 1.3
Oleari-MAT 118 320 471 1.2 404 450 352 479 759 447 449  6.02 — — —
M1-M1 Waypoint-MAT ~ 1.10 263 382 1.05 353 395 287 406 479 377 391 472 — — —
Burns-CAT 137 434 503 137 568 537 44 570 545 502 548 524 498 638 125
Burns-R 065 175 343 060 226 309 220 301 503 363 372 380 189 261 086
wPlnverse 048 132 248 047 171 269 138 190 291 249 268 257 13 172 046
Polynomiol 3~ 062  1.69 247  0.64 228 282 174 239 281 240 275 257 152 209 047

match material then the training dataset should be similar
in material components to the test dataset and if the aim is
to attain colour constancy then a dataset with reflectance
with smooth and broad peaks, that has the least colour
inconstancy and high variability can be used.

7. RESULTS AND ANALYSIS OF SPECTRAL
ESTIMATION AS A MAT

The estimated reflectances from tristimulus values under
the source illuminant obtained using the two spectral
estimation methods were then used to find tristimulus values
under the destination illuminant as described in Section 3
above. Burns spectral estimation method (Burns-R) and
different CATs and MATSs are also used to predict destination
tristimulus values from source tristimulus values. As stated in
Section 3, pre-computed transformation matrices were used
for Waypoint and Oleari MATs, but since transformation
matrices to and from LED-V1 illuminant are not available,
we leave these computations blank. The reference tristimulus
values are XYZ values obtained using measured spectral
reflectances and the respective destination illuminant. The
1931 2° Standard Observer was used as the colour matching
function throughout. When full adaptation is used, the one-
step and two-step CAT02 and CAT16 transforms produce
identical tristimulus values at the precision shown, and hence
the results for the two-step CAT02 and CAT16 are not shown.

J. Imaging Sci. Technol.

16

The test and training data used to obtain the estimated
reflectances, in this case, are denoted by their identifiers
as (test-training) e.g.: (M1-M1) where M1 is both test and
training data or (N2-M1) where N2 is test data and M1 is
training data. Their results as a MAT are discussed next.

Table XVI summarises the mean and 95th percentile
of AEyy results for dataset M1, where part of the same
dataset was used for training denoted by (M1-M1) i.e. (test
data-training data). Between the two spectral estimation
methods, wPInverse and Polynomial 3, their mean and
95th percentile of AEyy are comparable. They produce
the least mean and 95th percentile of AEyy compared to
other CATs and MATs. Burns-R and Waypoint-MAT mean
results are comparable and they produce less metameric
mismatch results compared to other CATs and Oleari-MAT,
although they are higher than Polynomial 3 and wPInverse.
Burns-CAT metameric mismatch results are comparable to
CATO2.

Zhang et al. [45], evaluated colour predictions under
changing lights obtained using centroid of the metameric
mismatch volume across Munsell dataset (M1) and found
mean AEg to be 1.27 and 95th percentile of AEgg to be 3.42
when destination illuminant is D65 and source illuminant is
A as shown in Table XVII. While mean AEy) was 1.82 and
95th percentile of A Egp was 4.99 when destination illuminant
is D65 and source illuminant is F11 as shown in Table XVII.
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Table XVII. Mean and 95th percentile of AFpy between reference destination
tristimulus values and adjusted tristimulus values obtained by Zhang et al. using Centroid
method [45] for M1 dataset and results obtained using wPInverse and Polynomial 3
spectral estimation methods for (M1-M1), going from source illminant A and F11 1o
destination illuminant D65, respectively.

Mean A Fy 95th percentile of A Fyg
Method A-D65 F11-D65  A-D65 F11-D65
Centroid method (Zhang etal.)  1.27 1.82 342 499
wPInverse (M1-M1) 0.74 0.95 1.90 2.68
Polynomial 3 (M1-M1) 0.79 1.05 239 275

For the same source and destination illuminant pairs,
wPInverse and Polynomial 3 spectral estimation methods
produce mean AEgy less than 1.03 and 95th percentile of
AEyo less than 2.8. The two spectral estimation methods
thus minimise metameric mismatch when the training data is
similar to the test data, as is the case in M1-M1 in Table XVI.

Tables XVIII and XIX summarise mean and maximum
AE, respectively, obtained from different CATs and MATs,
and estimated reflectances for newsprint dataset N2, under
different combinations of source illuminants (first row)
and destination illuminants (second row). The two spectral
estimation methods wPInverse and Ploynomial 3 were used
to perform spectral estimation using training datasets that
were same (N2) or different (M1, W1, N1) from the test
dataset N2 as described in Section 5. Both spectral estimation
methods produce the smallest mean and maximum AEgg
for the cases where the training dataset is either from the
same dataset (N2-N2) or another newsprint dataset (N2-N1).
The grand mean AE(yy across all combinations of source
and destination illuminant pairs is less than 0.5 while the
average of the maximum AEpg values is less than 2. When
the training dataset is different in material components from
newsprint, such as (N2-W1), the mean and maximum AEqg
of the two spectral estimation methods are still significantly
better than other CATs and MATS. Their grand mean AEy
is less than 0.8 and the average of the maximum AEgy
values is less than 3. When the training dataset is colour
chips with higher variability in reflectances i.e. (N2- M1),
then the metameric mismatch of estimated reflectances for
the newsprint dataset increases. The mean and maximum
AEy in this case are comparable to the results obtained
from other CATs, MATs and Burns-R. The overall good
estimation results with less metameric mismatch might be
because all the training and test datasets in this case have
smooth reflectances with broader peaks.

Tables XX and XXI summarise mean and maximum
AEq obtained from different CATs and MATs and estimated
reflectances for textile dataset T2, under different combi-
nations of source illuminants (first row) and destination
illuminants (second row). The two spectral estimation
methods wPInverse and Polynomial 3 were used to perform
spectral estimation using training datasets that were same
(T2) or different (M1, F1, T1) from the test dataset T2 as
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described in Section 5. Both spectral estimation methods
produce the smallest mean and maximum AEgy when the
training dataset is from the same dataset (T2-T2) with a
grand mean AEyg of less than 0.8 and an average maximum
AEq of less than 3.4 across all combinations of illuminants.
When a different textile dataset is used as training data i.e.
(T2-T1), the mean and maximum AEy are still better than
other CATs, MATs and Burns-R. The grand mean AEyy is less
than 1.2 and average of the maximum A Eq values is less than
4.3 across all combinations of illuminants. When the training
dataset has some difference in material components such as
(T2-F1) which has an optically brightened substrate, such
as premium coated paper rather than textile, the mean and
maximum A Eq values are still significantly better than other
CATs, MATs and Burns-R, with results that are comparable
to those obtained from (T2-T1). In this case, the grand
mean AEyy is less than 1.3 and the average maximum
value of AEq being less than 4.3 across all combination of
illuminants. The training datasets T1 and F1 have similar
spectral peaks in the blue region as in the T2 reflectances
which makes them a better choice for training compared
to M1 that has reflectances with smoother and broader
peaks. Therefore, when the training dataset used is MI
i.e. for (T2-M1), the mean and maximum AE(y, are worse
than the results from datasets with fluorescence that has
close reflectance characteristics. (T2-M1) results are similar
to the other results from CATs and MATs and especially
comparable to the results obtained from Burns-R. This may
be due to a generalisation achieved with smoothness and
higher variability present in M1 reflectances.

Table XXII summarises the mean, median, 95th per-
centile and maximum of AEyy obtained across all datasets
and combination of source and destination illuminants
for the two spectral estimation methods wPInverse and
Polynomial 3. The grand mean AEy is below 1 and average
value of the maximum AE is below 4. This indicates that
overall metameric mismatch will be even lower if the results
from only those cases where training data is similar to the test
data are considered.

A MAT is expected to perform well when there is a
good degree of material similarity of training reflectances
with test reflectances. Based on this, five categories of
MATs are possible, they are, (1) spectral estimation based
MAT to predict similar reflectance characteristics, (2)
spectral estimation based MAT to predict less similar
reflectance characteristics, (3) Matrix based MAT optimised
to predict similar reflectance characteristics, (4) Matrix
based MAT optimised to predict less similar reflectance
characteristics and (5) Matrix based CAT optimised to
predict corresponding colours. wPInverse and Plynomial
3 under category 1 or 2 based on the material similarity
of the training data used. Burns-R falls under category
2. Oleari-MAT and Waypoint-MAT fall under category 3
or 4 based on how they are optimised. Burns-CAT falls
under category 4. CAT02, CAT16 and L-Bradford fall under
category 5.
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Table XVIII. Mean A Fyy between reference fristimulus values and chromatically adapted/estimated tristimulus values for dataset N2 (newsprint). Source illuminants are in the first

row and destination illuminants are in the second row.

D50 D65 A A1l LED-V1

D5 A A1 D50 A F1 D50 De5 FIT D50 D65 A D50 D65 A Avg

(AT02 096 259 177 095 347 203 278 376 270 181 207 258 247 328 115 229

(ATI6 102 283 187 101 376 225 297 401 270 192 232 262 269 35 117 245
LBrodford 093 238 181 091 321 210 262 360 253 185 216 238 220 300 114 219
Oleori-MAT 053 175 254 053 198 279 176 199 145 257 278 1% — — — 185

N2N2  WaypointMAT 092 237 132 090 319 173 262 363 247 130 168 213 — — — 202
Burns-CAT 096 261 185 094 346 222 283 385 258 187 225 245 252 334 111 232
Burns-R 080 210 120 079 279 165 229 317 195 166 207 190 176 237 110 1.4
wPvese .11 0.34 037 0.11 045 046 037 048 026 039 047 025 036 046 0.08 0.33
Polynomial 3 0.1  0.29 033 0.1 038 042 032 042 02 035 043 02 031 04 004 029

ypgy  WPiverse 078 211 118 077 281 133 231 316 246 118 133 214 182 247 1001 179
Polynomiol 3~ 087 234 132 085 314 148 255 348 29 128 143 252 200 271 113 200

Npyy  WPnverse 018 048 074 017 065 079 052 070 078 077 080 077 052 064 025 058
Polynomiol 3 020 054 081 020 072 088 058 078 079 083 08 079 05 070 025 063

Noy  WPinverse 014 041 049 014 034 056 044 058 049 052 057 050 040 052 012 043
Polynomial 3~ 0.13 039 044 013 052 049 043 05 051 046 05 051 037 049 01 040

Table XIX. Maximum A Fyy between reference tristimulus values and chromatically adapted/estimated ristimulus values for dataset N2 (newsprint). Source illuminants are in the

first row and destination illuminants are in the second row.

D50 D65 A F11 LED-V1

D65 A FI1 D50 A F11 D50 D65 FIT D50 D65 A D50 D65 A Avg

(ATO02 191 457 467 183 592 516 529 720 632 497 584 568 484 655 236 487

(AT16 181 509 484 173 677 560 526 697 612 520 650 576 621 763 234 519
L-Bradford 180 454 478 175 587 538 530 699 543 510 618 478 432 615 236 472
Oleari-MAT 124 379 514 118 485 593 389 49 352 530 593 312 — — — 407

N2-N2  Waypoint-MAT 178 478 384 172 630 469 532 733 780 365 461 665 — — — 487
Burns-CAT 179 464 496 171 618 560 519 689 649 534 665 613 531 680 236 507

Burns-R 174 471 341 175 610 468 509 674 409 470 546 366 411 542 229 426

wPInverse 0.62 1.69 226 0.63 226 2.69 197 253 1.14 239 265 1.12 174 229 048 176

Polynomial 3 072 2.02 1.97 0.75 266 265 243 3.03 0.99 220 272 089 227 288 0.20 1.89

NI wPInverse 175 477 323 169 623 431 532 715 694 313 403 559 452 604 214 446
Polynomial 3 193 533 374 190 707 462 589 782 769 366 431 575 495 670 228 491

ND—W1 wPInverse 093 260 270 1.09 367 427 214 306 243 240 281 246 208 271 099 242
Polynomial3 ~ 1.04 268 308 103 349 396 327 423 240 343 4211 240 304 400 091 288

Ny WPinverse 058 176 201 057 231 252 194 244 152 218 262 134 18 227 04 177
Polynomicl3 ~ 057 161 217 058 210 269 191 241 15 236 271 153 185 235 038 178

8. PREDICTION OF CORRESPONDING COLOUR
DATA

Table XXIII shows mean colour differences (in AEgy for

comparison with previous work) obtained for different

corresponding colour datasets (CSAJ, Helson, Lam & Rigg

and LUTCHI) using different CATs and MATs. The mean

AEyy is also obtained for the spectral estimation methods
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wPInverse and Polynomial 3 where the reflectances were
first estimated from the source corresponding colour using
three different training datasets M1, N2 and T2, respectively.
The datasets selected for this analysis and their source and
destination illuminants are CSAJ (D65, A), Helson (C, A),
Lam & Rigg (D65, A) and LUTCHI (D65, D50). A small
inaccuracy arises from the use of standard illuminants in
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Table XX. Mean A Fyg between reference tristimulus values and chromatically adapted/estimated tristimulus values for dataset T2 (textile). Source illuminants are in the first row

and destination illuminants are in the second row.

D50 D65 A FI1 LED-V1
D65 A F1 D50 A FT D50 D65 FI1 D50 D65 A D50 D65 A Avg
(AT02 084 232 291 08 311 331 232 311 283 301 346 276 258 316 167 255
(ATI6 098 284 299 098 378 353 282 376 286 312 377 282 298 367 168 284
LBradford 080 203 29 079 275 337 215 294 251 307 355 242 217 268 166 239
Oleari-MAT 061 182 338 060 218 361 18 221 269 340 361 285 — —  — 240
1212 WoypointMAT 074 166 215 072 231 267 182 261 18 212 262 177 — — — 19
Burns-CAT 086 230 312 085 309 370 242 332 250 321 392 236 264 321 163 261
Burns-R 072 146 214 068 204 257 167 247 15 241 2% 158 167 193 166 183
wPhverse ~ 0.24 0.58 0.89 0.24 0.80 1.10 064 090 050 095 1.15 053 0.64 085 028 0.69
Polynomial3  0.25 059 1.02 024 081 120 0.68 095 066 1.16 1.38 070 0.63 088 0.16 0.75
ryy  WPnverse 058 130 173 056 181 212 142 203 144 177 215 144 159 192 137 155
Polynomial 3 062 147 187 061 203 224 160 225 169 192 230 166 166 202 140 1.49
-1 wPInverse 041 094 132 041 131 158 103 14 107 139 165 105 113 138 076 112
Polynomial 3~ 045 112 156 045 152 187 121 164 106 163 193 105 137 163 076 128
-1 wPInverse 03 074 143 029 099 162 08 118 116 151 17 12 128 154 077 110
Polynomial3 030 077 139 029 102 158 091 125 109 15 179 LI13 111 142 053 1.08

Table XXI. Maximum A Fyq between reference tristimulus values and chromatically adapted/estimated tristimulus values for dataset T2 (textile). Source illuminants are in the first

row and destination illuminants are in the second row.

D50 D65 A FI1 LED-V1
D5 A F1 D50 A FT D50 D65 FI D50 D65 A D50 D65 A Av
(AT02 266 550 981 259 757 1001 637 921 847 1043 1137 756 589 779 539 738
(AT16 259 692 1011 250 918 1078 649 9.05 806 1102 1247 726 774 970 538 795
L-Brodford 261 505 993 254 726 1034 605 915 806 1056 1173 729 493 731 539 721
Oleori-MAT 210 590 889 203 799 1061 58 803 568 876 1041 625 — — — 688
T2-T1 Waypoint-MAT 258 573 865 254 786 1029 669 977 1047 815 1004 941 — — — 768
Burns-CAT 257 578 1058 248 765 1156 620 9.01 762 1151 1342 641 678 854 539 7170
Burns-R 245 519 672 240 720 885 590 860 563 843 1033 550 492 642 533 626
wPlnverse 129 255 392 135 385 524 31 4.68 1.8 387 524 216 317 484 1.02 3.21
Polynomiol 3 1.08 2.41 417 1.05 346 528 299 425 251 439 529 236 28 411 075 3.3
rp gy WPnverse 254 557 726 249 761 836 647 916 724 718 877 628 474 111 484 637
Polynomiol 3~ 276 622 623 271 853 872 706 977 716 621 833 565 521 778 471 647
1.p  WPlnverse 169 29 511 168 426 612 343 536 272 54 672 318 364 387 408 401
Polynomial 3 156 365 492 146 474 589 42 541 257 489 578 262 471 599 408 4l6
p  VPinverse 146 307 525 141 423 663 399 574 360 553 705 339 431 634 205 430
Polynomial 3 151 313 331 138 419 660 411 579 302 597 752 3350 412 589 186 426

the spectral estimation, while the measured illuminants in
the corresponding colour datasets are slightly different from
the standard illuminants. The spectral estimation methods
using all the different training datasets perform similar
or better than Oleari-MAT and Wpt-MAT when it comes
to matching corresponding colour data. All CATs perform
better in this case including Burns-CAT. Similar, tests were
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also carried out by Derhak et al. using Wpt-based spectral
reconstruction CAT which also utilises Burns spectral
estimation and lightness scaling of the final tristimulus value
to the source tristimulus value [42] and the results obtained
were comparable to the results obtained in this work. This
kind of CAT, using characterisation reflectance for print
results will fall in category 1 MAT.
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Table XXII. Mean, median, 95th percentile and maximum of A Fg between reference
tristimulus values and estimated fristimulus values obtained across all datasets and all
12 pairs of illuminants.

Method Mean Median 95 Percentile Maximum
wPInverse 0.85 0.71 2.04 3.62
Polynomial 3 0.89 0.72 2.24 3.83

Table XXIII. Overall A Fyy hetween destination tristimulus values of corresponding
colours and adapted/estimated tristimulus values under varying destination lights.
Spectral estimation methods estimated reflectances of corresponding colours using M1,
N2 and T2 as training data respectively.

Method (SA)  Helson  lom&Rigg  Lutchi  Average
(at02 3.67 3.60 2.98 34 3.42
(at16 3.94 413 347 3.30 3N
L-Bradford 37 3.47 2.84 343 3.36
Burns-CAT 3.81 419 315 3.68 37
Oleari-MAT 4.63 472 3.89 4.7 4.38
Wpt-MAT 4.28 4.02 3.83 4.53 417
wPlnverse(M1) 414 3.76 3.48 4.51 3.97
Polynomial 3 (M1)  4.22 377 351 4.46 399
wPlnverse (N2) 471 3.65 3.42 429 4.02
Polynomial 3 (N2) ~ 4.39 376 347 434 399
wPInverse (T2) 4.69 3.65 3.46 4.36 4.04
Polynomial 3 (T2) 4.35 3.57 3.31 437 3.90

9. A SPECTRAL ESTIMATION WORKFLOW FOR
COLOUR MANAGEMENT

In the previous sections, we have established that spectral
estimation methods wPInverse and Polynomial 3 perform
very well in predicting colour under changing illuminants
when training datasets are carefully chosen by matching
the material characteristics. However, weight matrix W
in the case of wPInverse has to be calculated for each
pixel value which is both computationally time consuming
and complicated to implement inside an ICC profile.
Therefore, due to the ease of implementation and low
computation time, Polynomial 3 spectral estimation method
using matrices and stack-based calculator element program-
ming of ICC.2, we propose a spectral estimation workflow
to integrate it into colour management. We define an
absolute rendering transform from colorimetric PCS XYZ
values to the corresponding reflectances in a BToD3Tag.
BToD3Tag defines a colour transform from a spectrally-
based PCS, determined by the spectralPCS and PCS fields
in the header, to device colours [72]. DataColourSpace
tag in the header is used to define the number of
wavelengths. A multiProcessElementType is defined in the
BToD3Tag which incorporates a CalculatorElement tag. The
multiProcessElementType defines and processes a sequence
of processing elements and they are processed in the order
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of their position. Each processing element passes its results
to the next element, with the final processing element
providing the final result for the multiProcessElementType.
Basis matrix M from Eq. (4) is stored as a matrix using
matrixElement tagin an external file which is imported when
the ICC XML file is compiled to create the ICC profile. A
macro is defined to expand XYZ input to the third order
polynomial terms in Table I. The spectral estimation model
is encoded in the main function; the input channels are
expanded using the polynomial expansion macro and then
a matrix multiplication mtx is called to multiply matrix
M by the polynomial terms of XYZ. The code inside
the main function under CalculatorElement tag is shown
in Figure 6. DToB3Tag defines a colour transform from
device to a spectrally-based PCS to achieve an absolute
rendering. Therefore, a transform from reflectance values
to XYZ using illuminant and observer functions can be
defined in DToB3Tag, if colorimetric output is required.
The average roundtrip error in AEgy between the starting
colorimetry and the output XYZ values after applying the
spectral estimation and conversion back to colorimetry
across datasets M1, N2 and T2 obtained from applying the
profile back to the estimated reflectance values is 0.026 at
32-bit precision using the ICC.2 workflow, and 4.15E-10.
when computed at double precision in MATLAB.

10. CONCLUSION
This study presents the estimated reflectances using different
spectral estimation methods and training datasets with
known material components or printing conditions. It
can be seen from the results that if the training dataset
used has similar material components to those of the test
dataset, the estimated reflectances have reduced metameric
mismatch under different illuminants. It is also observed
that when training reflectances have some dissimilarity (such
as using training reflectances of web-offset on lightweight
coated paper for reflectance estimation of newsprint data),
the results still lead to acceptable metameric differences
because their reflectances are smooth and have similar peak
wavelengths with some difference in amplitudes. Similar
acceptable metameric differences are also obtained when
training reflectances of offset-litho on premium coated paper
are used to estimate reflectances of textile dataset where
both exhibit fluorescence and, therefore, have reflectance
curves with similar sharp peaks around the blue region. This
suggests that based on similarities in material components,
many spectral datasets or printing conditions can be grouped
together and a single reflectance dataset can represent
a common training dataset for reflectance estimation of
that group. The weighted pseudo inverse (wPInverse) and
third order polynomial (Polynomial 3) spectral estimation
methods performed the best in all the tests, while Polynomial
2 and wPCA are not significantly different. These methods
are also not computationally costly or complex to implement.
This study also compares the sensor adjustment per-
formance of spectral estimation with chromatic adaptation
transforms (CATs) and material adjustment transforms
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Figure 6. Polynomial 3 speciral estimation using Calculator element programming.

(MATs). The two spectral estimation methods, wPInverse
and Polynomial 3 with good training data selection per-
formed significantly better in minimizing the metameric
mismatch compared to other CATs and MATs. When
the training dataset is not a good material match or
has high variability such as using Munsell colour chip
reflectances to estimate reflectances for newsprint or textile
datasets then the metameric mismatch increases although
the performance is similar to other CATs. This paper has
shown the importance of the training dataset, and that by
considering spectral similarities between datasets, simple
spectral estimation methods like weighted pseudo inverse or
third order polynomial can be used as a sensor adjustment
transform that minimizes metameric mismatches.

We show that even with training datasets with different
material components match to the test data i.e. when they
do not belong to the same dataset but have some spectral
similarities, spectral estimation produces reflectances with
least metameric mismatch and such methods can be a good
alternative to using traditional CATs and MATs for predicting
tristimulus values under different illuminants, when material
constancy is the aim. When spectral data is not required, a
more general MAT i.e. a 3 x 3 transform can be used. Also
based on the application, such specific training data can also
be chosen to optimise an existing MAT and improve material
constancy.

Simple spectral estimation methods were evaluated such
that they can be easily integrated into a colour management
workflow. Among the best performing spectral estimation
methods, Polynomial 3 can be easily and efficiently encoded
in an ICC profile as matrices using calculator elements
programming of ICC.2. In the future, regularisation of these
methods can be considered. Regularisation require proper
selection of the regularisation term to achieve both good
generalisation and accuracy and can be considered to assess
if it can help achieve spectral estimation preserve material
constancy or colour constancy. The final matrices after
regularisation can then be encoded into ICC profiles.

This study provides an insight into the need for stan-
dardising spectral estimation usage in colour management,
where every step is essential. These steps include selecting
a reference training dataset that can represent spectral
data for a group of print data, determining the spectral
estimation method, identifying the application’s goal (e.g.
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material constancy or colour constancy), and understanding
the workflow to encode it in an ICC profile.
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