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Abstract. Since the introduction of the Retinex theory by Land
and McCann in 1971, a multitude of different families, versions,
interpretations, implementations, and applications have been
proposed. The applications for image enhancement mainly differ
in (i) how they explore the locality of the images to determine
the local context, and (ii) how they recompute the pixel values
based on this context. STRESS (spatio-temporal Retinex-inspired
envelopes with stochastic sampling) is one of many quite successful
members of the family of Retinex-based image enhancement
algorithms. It explores the locality using a stochastic sampling
technique, resulting in two envelope images – one maximum and
one minimum envelope, completely enclosing the image signal
and serving as a representation of the local image context. In this
paper, we propose to exchange the stochastic sampling technique of
STRESS, which causes significant chromatic noise, with an adapted
version of constrained linear anisotropic diffusion for computing
the envelopes, resulting in almost noise-free images. Using both
subjective experiments and objective image metrics, we show
that it improves the perceived and measured image quality and
reduces noise artefacts. c© 2023 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2023.67.6.060407]

1. INTRODUCTION
The primary purpose of image enhancement is to improve
the perceived quality of an image for a human observer.
Many techniques have been proposed over the years, with
varying effectiveness and efficiency. A common strategy for
many algorithms is that they in one way or another, try to
mimic some properties of the human visual system. Many
such algorithms are based on the Retinex theory of colour
vision [1–3]. Retinex-based image enhancement is often a
two-step procedure. First, the local context of the image is
computed. Second, the pixel values are recomputed based
on the local context. Many families, versions, interpretations,
and implementations of Retinex-based image enhancement
techniques have been proposed over the years, and it has
been used for various colour imaging applications such as
colour correction, computational colour constancy, HDR
image rendering [4], colour gamut mapping, and colour-
to-greyscale conversion [5]. More recent developments take
Retinex-based methods in the direction of deep learning
[6–8].
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STRESS – Spatio-temporal Retinex-inspired envelopes
with stochastic sampling – is one quite successful member
of the family of Retinex-inspired algorithms [9]. In STRESS,
the locality is represented by two envelope colour images
with gamma-corrected RGB values, Emax and Emin, which
have the properties 0 ≤ Emin ≤ u0 ≤ Emax ≤ u0, where
u0 is the original image. Similar to other Retinex-based
algorithms such as RSR [10], these envelopes are computed
by a stochastic sampling technique, and are thus subject to
chromatic noise. The noise in each channel is caused by
random sampling, and its chromatic content is due to the
independent sampling of the three colour channels. In the
second step, the (gamma-corrected) values of the original
image are linearly rescaled using the envelopes.

In this paper, we propose another method for exploring
the locality in the STRESS algorithm to significantly reduce
the noise caused by the stochastic sampling. Similar to
more recent methods like STRETV (based on total variation,
which is isotropic) [11] and ReMark (based on Markov
chains, also isotropic) [12], we focus our attention on
diffusion-based approach. By introducing an adapted and
constrained version of linear anisotropic diffusion – a
technique originally aimed at reducing image noise that has
recently been applied to colour imaging applications beyond
denoising [13, 14] – for computing the envelopes, we can
minimise the image noise resulting from the noise in the
envelopes.

In Section 2, we present the basic ideas of the STRESS
algorithm and anisotropic diffusion. Then, in Section 3,
we detail the proposal of using anisotropic diffusion for
computing the envelopes and show example results. The
experimental setup for evaluating its performance both in
terms of overall image preference and noise is described
in Section 4, and the results are given in Section 5, before
concluding in Section 6.

2. BACKGROUND
2.1 STRESS
Some Retinex-based implementations explore the images
by using paths or computing ratios with neighbours in
a multilevel framework [3, 15–19] or using models of
Brownian motions to analyse the image along paths [20, 21].
Other implementations compute values over the given image
with convolution masks or weighting distances [22–26]. In a
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study [10], the path-based scanning was substituted by a new
approach using random sampling of a cloud of points.

A similar approach was followed for the STRESS
algorithm [9]. Here, the visual context was characterised
using two envelopes Emax and Emin. For each pixel, p0, the
values of the maximum and minimum envelopes at the
corresponding positions, are computed throughN iterations.
In every iteration, M pixel values pi in each channel are
sampled at random with a probability proportional to 1/d , d
being the Euclidean distance in the image from the sampled
pixel to the pixel in question. The value of the centre pixel
is not eligible for random sampling but is always included
in the sampled set. From these samples, the maximum and
minimum samples in the spray are found: smax = max(pj),
smin =min(pj). Since p0 is always among the sample points,
it is granted that smin ≤ p0 ≤ smax. These maximum and
minimum points could be taken as direct estimates for
the envelopes. However, better results were achieved when
the relative position vi of the pixel p0 within the range
ri = smax− smin was used.

The final envelopes were computed as

Emin = p0+ v̄ r̄ (1)
Emax = Emin+ r̄, (2)

where v̄ is the average of the v values, and r̄ is the average
of the r values over the N iterations. The new image is
recomputed by stretching the image to these envelopes,

p=
p0−Emin

Emax−Emin
(3)

It should be noted that this is a heavy computational
technique requiring O(NMP) operations, where N is the
number of iterations, M is the number of samples per
iteration, and P is the number of pixels in the image.

The sampling technique also introduces a significant
chromatic noise. The type of noise is quite particular to
STRESS. To the best of our knowledge, this type of noise has
not been characterised in the literature. A histogram of the
noise in each colour channel, produced by computing the
difference between STRESS images with 100 (noisy) versus
1000 (virtually noiseless) iterations, is shown in Figure 1. It
is symmetric, but far from Gaussian. There is no correlation
between the noise of the different image channels.

2.2 Anisotropic Diffusion
Since this method produces significant chromatic noise,
another approach is taken in the STRETV algorithm [11].
Here, the constrained total variation method is used to
calculate the envelopes. Total variation minimisation results
in a process very similar to non-linear isotropic diffusion.
This implementation showed promising results when used
in contrast enhancement and in automatic colour correction,
with significantly reduced noise levels. However, due to the
non-linearity of total variation, the method requires a tiny
time-step and thus many iterations to converge. Although

Figure 1. Histogram of the noise caused by random sampling in the
STRESS algorithm.

it behaves nicely near edges in the original image, it creates
some artefacts near corners and lines of high curvature.

Various diffusion techniques have been widely used
in computer vision and image processing to reduce image
noise without removing significant information from the
image. One important technique is the Perona–Malik
diffusion [27], which is an isotropic, local, non-linear
diffusion technique, not too different from total variation
minimisation. Unfortunately, Perona–Malik diffusion was
misnomed ‘‘anisotropic diffusion’’. Real anisotropic diffusion
for image processing was first described by Tschumperle and
Deriche [28] as a non-linear process.

The starting point for Tschumperle and Deriche non-
linear anisotropic diffusion is the 2× 2 structure tensor S of
the original image [29], whose components for every single
pixel can be expressed as

Sij =
∑
µ

∂uµ0
∂x i

∂uµ0
∂x j

. (4)

Here u0 denotes the original image, the indexes µ and
ν denote the colour channels, and x i and x j denote the
two spatial directions. The eigenvalues of the structure
tensor S are denoted λ+ and λ−, and the corresponding
normalised eigenvectors e+ and e− are stored as columns
in the orthonormal eigenvector matrix V , such that the
structure tensor can be written S= VTdiag(λ+, λ−)V [14].
From this, the diffusion tensor is then defined as

D=VTdiag(d(λ+), d(λ−))V , (5)

where d(λ) is a nonlinear diffusion coefficient function
(Eq. (6)) [14] whose task is to suppress the diffusion across
the edges while preserving it along the edges,

d(λ)=
1

1+ κλ2 (6)

and κ is a suitably chosen numeric constant. Higher values of
κ will give more edge preservation in the image.
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Figure 2. Envelopes: κ = 1000 for STREAD, M= 3 sampling points for STRESS.

Figure 3. Scan lines for the envelopes shown in Figure 2.

Having defined the diffusion tensor, D, anisotropic
diffusion results from solving the Euler–Lagrange equations
for minimising its eigenvalues by gradient descent using the
artificial time parameter t (corresponding to the iterations
when discretised),

∂u
∂t
=∇ · (D∇u). (7)

It has been ascertained in various studies (see, e.g., [13])
that the structure tensor, and thus the diffusion tensor, can be
computed once and for all from the original image. Then, the
diffusion equation, Eq. (7) becomes linear. In the same study,
it was also found that the anisotropic diffusion was better
than the isotropic one (Perona–Malik-type) for preserving
edges and, in particular, corners.

It should be noted that, even after linearisation, the
solution of the anisotropic diffusion equation employing
iterative gradient descent is, like STRESS, a computationally
heavy procedure. The diffusion lengths, and thus the number
of iterations needed, are based on the image size, and the
diffusion tensor that reduces the diffusion locally increases
the need for iterations further.

3. PROPOSED ALGORITHM
We introduce a new model for spatio-temporal image
enhancement called STREAD (Spatio-Temporal Retinex-
Inspired Envelope with Anisotropic Diffusion). This model
is based on the STRESS algorithm, which has a main feature
of computing the envelopesEmax andEmin for each channel of
the image. However, instead of applying stochastic sampling
to obtain Emax and Emin as in STRESS, we use anisotropic
diffusion [28]. The second part of the algorithm, i.e., the
recomputation of the pixel values based on the computed
envelopes, remains unaltered.
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Figure 4. STREAD envelopes for N ∈ {100,1000} iterations, κ = 1000.

3.1 Anisotropic Diffusion for Computing the Envelopes
The envelopes of STRESS are images Emax and Emin with the
property that, for each image channel in the original image
u0, 0 ≤ Emin ≤ u0 ≤ Emax ≤ 1. The basic idea here, is to
use the diffusion tensor of anisotropic diffusion, Eq. (5) to
compute alternative versions of the STRESS envelopes. This

can be achieved in two different ways. Either, the original
image is used as the initial value for both envelopes, or a black
image is used as the initial value for the minimum envelope
and a white image for the maximum one. In both cases,
adding a data attachment term to the diffusion equation will
ensure that the envelopes will stay reasonably close to the
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Figure 5. STREAD: 100/1000 iterations, κ = 1000.

Figure 6. Envelopes for κ = 1000 and κ = 100000.
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Figure 7. Images with different values of κ.

image. The resulting equations for the envelopes are

∂Emax

∂t
=∇(D∇Emax)− λ(Emax− u0) s.t. Emax ≥ u0

(8)
∂Emin

∂t
=∇(D∇Emin)− λ(Emin− u0) s.t. Emin ≤ u0.

(9)

Normal boundary conditions are applied to the en-
velopes to make sure that there are no problems when
calculating with the pixels at the border of the image. The
equations are solved by the explicit Euler method for the
time integration, and centred differences for the spatial
derivatives. For each iteration, Emax and Emin are constrained
so that they are greater than or smaller than the original
image, respectively. The envelopes and the original image are

finally used to recompute the image exactly as in the original
STRESS algorithm.

3.2 Resulting Envelopes
In Fig. 2, the envelopes for STRESS and STREAD are shown.
The envelopes contain some of the original image content,
always brighter (for Emax) or darker (for Emin), and preserve
the edges of the image. A plot of the corresponding scan
lines is shown in Figure 3. One can see that the envelopes of
STREAD are smoother than those of STRESS, and also that
they, in general, are not so close to the original image. This
means that STREADwill lead to less dramatic changes of the
images. Moreover, both algorithms can follow sharp edges in
the image (left part of the graphs). The less sharp transitions
for the STREAD envelpes on the right part of the graph can
be explained by other image information transversal to the
scan line that diffuses into the shown line of the image.
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Figure 8. Images with different values of λ and N . κ = 1000, λ ∈ {0.01,0.001}, and N ∈ {250,500}.

3.3 Impact of Parameters
As with the STRESS algorithm, the behaviour of STREAD
varieswith the values of its parameters. The influence of these
parameters on the output of the algorithm is explained in
detail.

Although both STRESS and STREAD converge to the
final solution, iterations in STRESS and STREAD have quite
different effects. STRESS iterates the stochastic sampling
and computes the average to reduce the sampling chromatic
noise, while iterations in STREAD leads to the stationary
solution of the constrained PDEs.

The algorithm was tested with N ∈ { 100, 200, 300,
400, 500, 600, 700, 800, 900, 1000 } iterations. With this
test, it was easier to see the influence of higher iterations
on the output. In Figure 4 the envelopes are shown for the
extreme values of N in this set, and Figure 5 shows the
resulting images. The edges are much sharper in the image
with the most iterations. One can also notice some artefacts
starting to appear near the edges.

As for the iterations, experiments were performed with
κ to determine what value it had to be to give the best
output. While testing the highest value for iterations, a value
of κ = 1000was used.When the number of iterations became
higher than 700, artefacts like halos started to appear on
edges in the image. Results for different values of κ are shown
in Figures 6 and 7 for the envelopes and resulting images,
respectively. In Fig. 7(a), we can see how the halos appear
around the edges in the image (see, e.g., the greenish area in

the sky close to the red/pink caps, number four from the left).
To counter this, a higher value of κ is needed, since higher
values of κ will give more edge preservation in the image.
Even with κ = 100000 and N = 1000, some artefacts still
appear around some edges, but lower number of iterations
does not result in these artefacts. Based on this, κ was set
to 10000 andN ∈ {300, 350, 400, 450, 500, 550, 600} for the
remaing studies.

The last variable is λ, which is used to control the
strength of the data attachment. The data attachment term
λ(u− u0) in Eqs. (8) and (9) is a regularisation term that
incorporates the prior information about the original image
into the enhancement process, and acts as a constraint that
minimises the discrepancy between the envelope and the
original image [30, 31]. If λ = 0, the envelopes will be flat,
resulting in the algorithm becoming spatially independent
or global. If λ→∞, the envelopes will be the same as the
original image. Results for different values of λ can be seen
in Figure 8.

Figure 9 shows a comparison between STREAD and
STRESS for different numbers of iterations. It can be seen that
STREAD is better at enhancing the vertical lines on the wall.
STRESS also amplified the noise present in themore uniform
areas.

3.4 Colour Balance
One challenge with the preliminary experiments was that
while STREAD kept more or less the same colour balance
as the original, STRESS made the images a bit brighter and
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Figure 9. Comparison between STREAD and STRESS for different iterations. The images have been cropped to better show differences.

a bit blue, see Figure 11. In order for the images to become
more comparable, the last stage of STRESS was modified to
counteract this. Two linear scalings for preserving white and
gray and a gamma correction for preserving graywere added.
The difference between these two can be seen in Figure 10.
Linear scaling to preserve gray was chosen, as it was the
one that looked most similar to the original and STREAD.
The scaling is performed for each channel separately by
multiplying the result with the mean of the original image,
and then dividing it by the mean of the resulting image.
After these preliminary experiments, the final image set was
chosen.

4. SUBJECTIVE EXPERIMENT
4.1 Comparing STREAD with STRESS
In a preliminary experiment, we compared visually the
images resulting from STREAD to those of STRETV [11],
and found that the STREAD images were so much better
than the STRETV ones, that STRETV was left out of the
experiments. The images generated by STREAD and STRESS
were compared using a subjective survey and objective image
metrics. Initial tests indicated that STREAD performed well
with κ = 10000, λ= 0.001 and N ranging from 300 to 600.
A sample of 10 standard RGB test images was selected for
a paired comparison evaluation. The selected images are
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Figure 10. Colour-corrected images for STRESS.

Figure 11. Image after STREAD and STRESS.
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Figure 12. Image set used in survey.

standard test images with a good range of different properties
in terms of level of detail, contrast, and colours. The original
images are shown in Figure 12. Seven pairs (STRESS and
STREAD) were computed for each original image, with
iterations N ∈ {300, 350, 400, 450, 500, 550, 600}. All the
resulting images are available as supplementary material.

QuickEval [32] was used for setting up and running the
experiment in the lab. A gray background was used behind
the images and a 200 ms delay was added before going to

the next image to avoid the memory effect from the previous
stimulus. The experiment was run in a controlled room to
make sure that there were no other disturbances during
the experiment. The computer screen, an Asus PA32UCG
with a resolution of 3840×2160, was calibrated using an i1
Display Pro. The colours for the screen were in sRGB and
the luminance 300 cd/m2. The distance from the participants
was 70 cm, with the room fully lit. The dynamic ranges of the
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Figure 13. A comparison of the chromatic noise. STREAD above, STRESS below, cropped and zoomed version on the right.

display and the selected images were not so high that glare
was a relevant factor.

The experimentwas set up on campus and students from
the university were picked for the experiment. The students
had different academic backgrounds and genders. A total of
22 observers participated in the experiment. The experiment
was conducted in two parts. The first part analysed image
preference and the second part analysed image noise. For
both parts, the observers were given instructions on what to
do. For the image noise part, the observers were first shown
an image with chromatic noise, Figure 13, to indicate the
kind of noise sought. Tomake sure only results of comparable

computational complexity were compared, the participants
were shown only the pair of images that had the same
number of iterations. So, e.g., STRESS_300 was compared
to STREAD_300. The image pairs that were shown had
their placement randomized, to avoid bias toward one of the
images.

4.2 Comparing STREAD with the Original Images
To assess how well STREAD performs in comparison with
the original images, we set up a pair-comparison experiment
where the 10 original images (Fig. 12) were compared to
STREAD with 300, 450 and 600 iterations. This resulted in
30 pairs for observers to evaluate, shown in random order.
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Figure 14. Results from image preference experiment. The bar plot shows the number of times STRESS and STREAD were preferred by the observers for
the different images.

Figure 15. Results from image noise experiment. The bar plot shows the number of times STRESS and STREAD were selected to have higher noise by the
observers for the different images.

Observers were asked to select the image they preferred.
The experiment was carried out using QuickEval [32], as
an uncontrolled online experiment. A total of 31 observers
participated in the experiment.

5. RESULTS ANDDISCUSSION
5.1 Subjective Experiments
The raw data from QuickEval for the image preference part
of the subjective experiment is shown in Table I. The table
contains the number of times the given image was preferred
by the participants. The table is set up such that the image
on the y-axis is the one selected. For example, for the Alley
image at N = 300 iterations, the STRESS image was selected
by 6 observers and the stress image STREAD image by 16.
The same data is shown graphically in Figure 14.

To analyse the statistical significance of the results
from the experiment, a two-sided binomial test with the
null hypothesis H0 : p = 1/2 was conducted. The resulting
p-values for the individual comparisons are given in Table II.
Using a threshold of p < 0.05, as shown in the coloured
cells of Table II, we can see that many of the results are
statistically significant, all in favour of STREAD. Even with
thresholds of p< 0.01 and p< 0.001, many results are still
significant. Even though not all the individual comparisons
are statistically significant, it should be noted that there is not
one single occurrence of a statistically significant preference
of STRESS over STREAD.

Combining all iterations for STREAD and STRESS for
each image, the binomial test gives the p-values shown in
Table III. Here we see that the p-values are so small that we
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Figure 16. VSNR (top), NIQE (middle) and RSC (bottom) for the 10 images. For VSNR, higher values are better; for NIQE, lower values are better; and
for RSC, higher values indicate higher contrast than the original. We can see that for VSNR and NIQE, the proposed STREAD in all images has better
values compared to STRESS. For 9 out of the 10 images, STREAD produces images with higher contrast. Colour in the legend indicates the number of
iterations.

Figure 17. The difference between the original and enhanced images for each pixel for the church image, with 600 iterations for each method.
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Figure 18. The difference between the original and enhanced images for each pixel for the caps image, with 400 iterations for each method.

Table I. Raw data for image preference for the individual images (down) and iterations
N (across).

300 350 400 450 500 550 600

Alley
STRESS 6 3 3 1 3 2 3
STREAD 16 19 19 21 19 20 19

Caps
STRESS 10 12 11 9 6 7 8
STREAD 12 10 11 13 16 15 14

Church
STRESS 2 2 3 3 3 2 2
STREAD 20 20 19 19 19 20 20

Flower
STRESS 8 6 5 7 4 3 3
STREAD 14 16 17 15 18 19 19

Overhead
STRESS 4 5 4 1 2 3 2
STREAD 18 17 18 21 20 19 20

Red boat
STRESS 6 4 3 4 2 2 3
STREAD 16 18 19 18 20 20 19

Small alley
STRESS 3 5 5 4 4 2 3
STREAD 19 17 17 18 18 20 19

Sunrise
STRESS 2 1 2 7 3 2 3
STREAD 20 21 20 15 19 20 19

Sunset
STRESS 2 2 7 5 7 3 2
STREAD 20 20 15 17 15 19 20

White flower
STRESS 2 2 1 2 4 3 3
STREAD 20 20 21 20 18 19 19

can easily draw conclusions about which algorithm is best for
image preference. Finally, a last binomial test was done on
all STREAD versus all STRESS images, resulting in a p-value
p= 5.5× 10−153.

The raw data from QuickEval for the subjective ex-
periment on resulting image noise is shown in Table IV.
It is set up similar to Table I, and shows the number of
times one image was perceived to be more noisy than the
other. The corresponding graphical representation is shown

in Figure 15. A brief look at the table shows us that the images
createdwith STRESS are selected by far themost, and in some
cases, they are the only one selected.

The trend is even more pronounced than for the
image preference, which is also confirmed by the individual
p-values for the binomial tests shown in Table VI. Contrary
to the image preference, there is no p-value for this test
that has a value larger than 0.05. Using a threshold of
p < 0.05, the coloured cells, we can infer that the result
is statistically significant. However, when performing so
many statistical tests from the same data, a Bonferroni
correction should be applied, leading to a lower p-value
threshold. Even with stricter thresholds of p < 0.01 and
p < 0.001, the results are still robust. A binomial test was
also conducted on all iterations for STREAD and STRESS
for each image, and the results are displayed in Table V.
Here, we observe that the p-values are so small that we can
confidently conclude which algorithm is superior for image
preference. Finally, a binomial test was carried out on all
STREAD versus all STRESS images, which yielded a p-value
of p= 8.99× 10−288.

Comparison of STREAD with the original images is
shown in Table VII, where the number of times STREAD or
the original is preferred is shown. This reveals that overall
for the 10 images, STREAD is, according to a binomial
test, significantly better than the original (p= 1.73× 10−7).
Conducting the binomial test on 300, 450 and 600 iterations
gives a similar conclusion, being statistically significant at
p < 0.05 for all p-values are p = 0.0005, p = 0.0007, and
p= 0.0354 for 300, 450 and 600 iterations, respectively. We
can notice that with higher iterations, the preference towards
the original is increasing slightly. Analysis of the images
reveals that in 7 images STREAD has a higher number than
the original and lower in 3 images (Alley, Sunrise, andWhite
flower). This can indicate that content plays a role.

5.2 Objective Image Metrics
We evaluated the performance of the suggested STREAD
and compared it to STRESS using objective metrics. The
Visual-Signal-to-Noise-Ratio (VSNR) [33] is a full-reference
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Table II. p -values for image preference with individual images (across) and iterations N (down). White: p ≥ 0.05, yellow: 0.05 > p ≥ 0.01, green: 0.01 > p ≥ 0.001, blue:
p < 0.001.

Table III. p -values for each image across iterations.

Alley 4.2× 10−21

Caps 2.9× 10−2

Church 1.7× 10−24

Flower 2.2× 10−11

Overhead 4.2× 10−21

Red boat 8.2× 10−19

Small alley 2.2× 10−17

Sunrise 6.5× 10−22

Sunset 4.8× 10−16

White flower 1.7× 10−24

metric for the detection of distortions in natural images;
this is done by using contrast thresholds and visual masking
to determine if the distortion is visible. VSNR is therefore
a good metric to compare visible distortions in STREAD
and STRESS. Default parameters for VSNR are used, these
being Alpha= 0.04 and viewing parameters equal to b= 0,
k= 0.02874, g = 2.2, r = 138, v = 27.5, num_levels= 5 and
filter_gains = 2.̂ (1:num_levels) The second metric is the
no-reference Natural Image Quality Evaluator (NIQE) [34],
which is a no-reference metric based on analysis of statistical
features from natural scene statistics and correlates well with
subjective scores on various distortions, including noise [35].
For NIQE, we calculate the results for each colour channel
and average them. The last objective metric is a contrast
metric, the RSC [36] which is a weighted multilevel contrast
metric. For RSC, we have used the optimal parameters from

Simone et al. [36]. We calculate the difference in contrast
between the contrast enhanced images and the original
image, so a higher value will indicate increased contrast and
a lower value indicates decreased contrast compared to the
original.

The results for VSNR, NIQE, and RSC are shown in
Figure 16. Higher VSNR values are better, given in dB in
the range 0 - Inf, while for NIQE, lower values are better,
where it has been found that values higher than 40 rarely
occur [37]. We see that for VSNR, all values for STREAD are
higher than STRESS, while for NIQE, all values for STREAD
are lower than STRESS. For all images, VSNR indicates that
STREAD has less visible distortions compared to STRESS. It
can also be seen that the difference between STREAD and
STRESS is image-dependent, and consistent with the results
from the subjective experiment. For the contrast metric RSC,
we notice that increasing the number of iterations produces
images with higher contrast compared to the original. The
exception is the imageChurch,where the STREADalgorithm
produces very uniform areas without noise, which lowers the
local contrast and therefore leads to a lower RSC value. It
can also be seen that STRESS produces higher RSC values,
which is partly due to the global contrast change because of
the colour shift in STRESS.

To supplement the analysis, we have also calculated the
difference between the original and the enhanced images.
This has been done by taking the normalized sum of
the absolute difference between the original and enhanced
images for each pixel for both STREAD and STRESS. We
visualize the results for the church image with 600 iterations
in Figure 17. It can be seen that the higher differences that
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Table IV. Raw data for image noise for the individual images (down) and iterations N (across).

300 350 400 450 500 550 600

Alley
STRESS 21 21 20 18 18 17 19
STREAD 1 1 2 4 4 5 3

Caps
STRESS 21 21 20 20 19 20 20
STREAD 1 1 2 2 3 2 2

Church
STRESS 22 22 22 22 22 22 22
STREAD 0 0 0 0 0 0 0

Flower
STRESS 21 21 20 20 21 21 20
STREAD 1 1 2 2 1 1 2

Overhead
STRESS 20 19 20 17 21 21 18
STREAD 2 3 2 5 1 1 4

Red boat
STRESS 21 22 21 20 19 22 20
STREAD 1 0 1 2 3 0 2

Small alley
STRESS 19 21 18 18 17 18 17
STREAD 3 1 4 4 5 4 5

Sunrise
STRESS 22 21 21 19 22 19 19
STREAD 0 1 1 3 0 3 3

Sunset
STRESS 22 22 22 22 18 22 21
STREAD 0 0 0 0 4 0 1

White flower
STRESS 22 22 22 20 22 21 22
STREAD 0 0 0 2 0 1 0

STRESS produces in the sky, the noise increases. The result

for the caps image is shown for 400 iterations in Figure 18.We

cannotice the same observation regarding noise in the sky for

STRESS, and that STREAD, in general, makes fewer changes

Table V. p -values for image preference with individual images (across) and iterations N (down). White: p ≥ 0.05, yellow: 0.05 > p ≥ 0.01, green: 0.01 > p ≥ 0.001, blue:
p < 0.001.

J. Imaging Sci. Technol. 16 Nov.-Dec. 2023



Sagvold, Farup, and Pedersen: Spatio–temporal retinex–inspired envelopes with anisotropic diffusion

Table VI. p -values for each image across iterations.

Alley 6.5× 10−22

Caps 2.5× 10−28

Church 8.8× 10−47

Flower 1.4× 10−31

Overhead 1.3× 10−23

Red boat 9.9× 10−33

Small alley 2.2× 10−17

Sunrise 1.9× 10−30

Sunset 6.1× 10−38

White flower 5.3× 10−41

Table VII. Raw data for image preference for the individual images (down) and
iterations N (across) for STREAD compared to the original. A total of 31 observers
participated in the experiment.

300 450 600 Sum

Alley
Original 21 22 23 66
STREAD 10 9 8 27

Caps
Original 13 11 11 45
STREAD 18 20 20 58

Church
Original 12 9 11 32
STREAD 19 22 20 61

Flower
Original 10 9 11 30
STREAD 21 22 20 63

Overhead
Original 8 12 12 32
STREAD 23 19 19 61

Red boat
Original 9 9 9 27
STREAD 22 22 22 66

Small alley
Original 9 7 8 24
STREAD 22 24 23 69

Sunrise
Original 14 18 15 47
STREAD 17 13 16 46

Sunset
Original 9 8 11 28
STREAD 22 23 20 65

White flower
Original 19 20 25 64
STREAD 12 11 6 29

Sum
Original 124 125 136 385
STREAD 186 185 174 545

to the images and treats the image more locally. STRESS
increases the edge of the shadows of the caps, while STREAD
can also enhance the areas between the shadows.

6. CONCLUSION
We have proposed an alternative algorithm for comput-
ing the envelopes of the STRESS algorithm using linear
anisotropic diffusion, leading to the STREAD algorithm. The
main goal of the transition was to reduce the chromatic
noise and thus increase the overall image preference. Both
subjective experiments and objective image metrics show
that both of these goals were achievedwith the new approach,
and that the STREAD images were preferred over both
STRESS images and the originals with statistical significance.
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