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Abstract. Similarity detection seeks to identify similar, but distinct
items over multivariate datasets. Often, similarity cannot be defined
computationally, leading to a need for visual analysis, such as in
cases with ensemble, computational, patient cohort, or geospatial
data. In this work, we empirically evaluate the effectiveness of
common visual encodings for multivariate data in the context
of visual similarity detection. We conducted a user study with
40 participants to measure similarity detection performance and
response time under moderate scale (16 items) and large scale
(36 items). Our analysis shows that there are significant differences
in performance between encodings, especially as the number of
items increases. Surprisingly, we found that juxtaposed star plots
outperformed superposed parallel coordinate plots. Furthermore,
color-cues significantly improved response time, and attenuated
error at larger scales. In contrast to existing guidelines, we found
that filled star plots (Kiviats) outperformed other encodings in terms
of scalability and error. c© 2023 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2023.67.6.060406]

1. INTRODUCTION
Similarity detection seeks to identify items which resemble
other items without being identical to them, sometimes over
collections of multivariate items. Detecting similarity is an
intrinsic part of comparison, alongwith judging dissimilarity
or differences between items. However, comparison is
oftentimes a detailed, precise, finely tuned operation using
specific channels such as size. Furthermore, comparison is
usually performed in a one-to-one setting, where two items
are placed side-by-side and compared pairwise. In contrast,
similarity detection over moderate or large collections of
items often involves a simultaneous, fast, coarse assessment
of multiple items at the same time, where the items are
characterized by multiple variables.

Interestingly, similarity cannot always be defined com-
putationally in a dataset; for example, when the weights
of the different features of the items with respect to
similarity are yet to be determined. These situations lead
to a need for visual analysis. Visualization allows direct
interaction with the user, and user steering of the analysis
process, which is hard to achieve through non-visual
means. Such situations arise commonly in the analy-
sis of ensemble simulations [1], multiple computational
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models [2, 3], patient data repositories [4–6], geospatial
data [7], computer networks [8, 9], and sports games [10]. In
these common practical instances, the collection of items to
analyze is typically of moderate size: most of these datasets
feature dozens of items [1, 11], but not hundreds, and the
data items are multivariate [1, 4, 5], but not necessarily
high-dimensional.

From a visual analysis perspective, the design space
explored by practitioners for encoding similarity is sur-
prisingly narrow. One option is using, whenever possible,
relative position to encode similarity, based on Gestalt and
visual-cue perception theory [12, 13]; items grouped together
in space are also perceived as more similar to each other than
items outside the group [14, 15]. However, the use of spatial
position is not always possible, for example, when the data
itself is spatial in nature. When the use of spatial position
to encode similarity is not feasible, the multivariate items
to be visually analyzed are typically encoded as superposed
(overlaid)multivariate encodings, such as parallel coordinate
plots. A common variation of this option is the use of radial
axes, such as overlaid star plots, despite a contrary body of
evidence in the literature and popular culture that indicates
radial layouts are less legible than linear layouts [13, 16, 17].
As these superposed representations suffer from clutter, they
are often augmentedwith color-cues and interaction. Last but
not least, when screen real estate is available, a third option
is encoding the items as juxtaposed (i.e., next to each other)
glyphs.

Whereas these alternative approaches for representing
multivariate data have been studied in the context of various
specific tasks (relationship, composition, distribution, one-
on-one comparison), there is no rigorous evaluation as to
which encoding, or even what layout paradigm is better for
similarity detection over multivariate data involving several
items. For example, parallel coordinate plots are known to
be effective in detecting correlation between neighboring
axes when showing hundreds of items [13], but there is
no equivalent knowledge on their performance in similarity
detection. We note that similarity detection seeks to identify
similar, but distinct items over multivariate datasets. In
contrast, correlation detection is the process of establishing
a relationship or connection between two or more variables
(or measures), although the strength of positive correlation
can indicate similarity ofmultivariate items. Likewise, several
variations of juxtaposed radial layouts have been examined
in the context of one-on-one similarity detection, where
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Figure 1. Similarity detection over multivariate data using five visual encodings (clockwise order from top left): Kiviat diagrams, Lines-only glyphs, Color-cue
Kiviat diagrams, Parallel coordinate plots, and Color-cue parallel coordinate plots. In these experiments, star-glyph variants use a juxtaposed layout, whereas
parallel coordinate plot variants use superposition.

lines-only star glyphs, which encode variables using radial
axis lengths, have been found to be superior to star glyphs
using an enclosed polygon [18]. However, it is not clear
whether those findings generalize tomultiple items similarity
detection. We furthermore do not know what is the impact
of color-cues on encoding effectiveness. Additionally, recent
studies [19, 20] have re-examined, in a part-to-whole context,
the value of radial layouts versus linear layouts, with
surprising results. Furthermore, we do not know if or how
the effectiveness of a specific encoding may scale with the
number of items. Anecdotally, in our own lab, we have also
witnessed passionate disputes between visiting visualization
researchers (against) and application domain experts (pro)
regarding the use of Kiviat diagrams (a juxtaposed radial
glyph) to help detect similarity.

To help elucidate these issues, and motivated by these
disputes, we conducted an exploratory empirical evaluation
with 40 participants. We measured similarity detection
accuracy and response time under two conditions; 16 items
(moderate scale) and 36 items (large scale). We approached
this problem by examining variants of several encodings
commonly used in similarity detection; lines-only glyphs,
Kiviat diagrams, and parallel coordinate plots (Figure 1). Our
statistical analysis shows that there are significant differences
in encoding performance, especially in the large-scale setting
of the experiment.

2. RELATEDWORK
2.1 Visual Encodings for Multivariate Data
Chan et al. [21] have identified a taxonomy of four broad
categories for visualizing multivariate data; pixel-oriented

techniques, hierarchical display, geometric projection, and
iconography. Before discussing the use of these represen-
tations in similarity detection, let us briefly examine these
classes.

Pixel-based techniques represent individual attributes
via various color schemes. The most popular of these are
stacked bar-chart variants, as well as lesser-known methods
such as trend images [22, 23], or pixel-oriented dense
visual encodings [24]. However, these techniques require the
existence of a known similarity measure item dimensions,
not items, in order to create the pixel layout. Without this
optimization, the representation quickly becomes noise [25].
Likewise, hierarchical methods such as treemaps and di-
mensional stacking [21] are appropriate for hierarchical
structures, but are not a good fit with similarity detection
when that hierarchical structure does not exist and it is not
introduced as part of the computational analysis process [26].

Projection-based methods attempt to map the higher-
dimensional space into a lower dimensional space. These
methods are typically considered a good choice for identi-
fying correlations, and scale well with large datasets. These
methods are most often variants of scatter plots or parallel
coordinate plots (PCPs). Whereas scatter plots do not scale
to support multi-dimensional individual item analysis and
comparison, PCPs and their variations allow individual items
to be displayed as a continuous contour across multiple
dimensions, making PCPs a popular encoding used for
identifying similar data points.

Finally, in iconography, items are shown as glyphs. A
glyph is the visual representation of a data item where
the attributes of a graphic entity are dictated by one
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or more attributes of a data [15]. Glyph-based methods
are well-suited for similarity detection, as visual feature
similarity can map directly to numerical similarity.

2.2 Using Position to Encode Similarity
Lee et al. [14] evaluated the effectiveness of four different
visual encodings when conveying similarity information in
multivariate data, and found that encodings which used
spatial arrangement of the items yielded faster and more
accurate answers. Likewise, Borgo et al. [15] indicate that
elements arranged on a line or curve are perceived to
be more related than elements not on the line or curve.
To take advantage of these principles, similar multivariate
item representations over large datasets can be placed in
close proximity in a 2D space, for example via techniques
such as lower-dimensional embeddings. However, it is not
always possible to encode similarity using position when
the data itself is spatial in nature—for example, when the
representations are anchored to zipcodes on city maps
or to anatomical locations in medical visualization [27].
Furthermore, dimensionality reduction or aggregation are
not always acceptable, for example, in algorithm explainabil-
ity [28]. Finally, similarity may not always be computed a
priori, as in our driving examples fromensemble simulations,
or in the analysis of multiple computational models.

2.3 Similarity Detection: Juxtaposed Glyph Encodings
When relative location cannot be used as an indicator of
similarity, multivariate data-points are oftentimes encoded
by glyphs placed side by side, i.e., juxtaposed [29], or at
discrete locations. Juxtaposed glyphs may support similarity
detection through icon attributes such as shape, colors,
texture and so on [30]. One of the earliest proposed
glyphs are Chernoff faces [31], where the different parts
of a conceptualized human face (mouth, nose, etc.) encode
different dimensions of an multidimensional data set.

Given their small graphic footprint, radial layout glyphs,
including juxtaposed star plots and their variations, are also
frequently used [32]. Fuchs et al. [33] systematically reviewed
64 user-study papers on glyphs, many of which compare the
performance of different types of glyphs when dealing with
similarity or comparison tasks, including Borg and Staufen-
biel’s study of snow flake and sun glyph performance [34].
Star plots and their variations, in particular, were found to
be effective, although a multitude of studies have tried to
understand if the ordering of the axes in the glyphs has
any impact on their performance [35, 36]. Furthermore,
Fuchs et al. [18] studied how contours in star plots influence
similarity perception. Their results showed that the ‘‘Data
Lines Only’’ variation of the star plot, which does not include
a glyph contour, performed best. However, their study only
considered a 3× 3 grid placement of the glyphs, with the
target in center, whereas, potential matches surrounded the
target. This setting is not realistic for similarity detection over
larger collections of multivariate data.

Keim [37] categorized different types of visual en-
codings for multidimensional data, including icon-based

(e.g., Chernoff faces, stick figures [38]), or pixel-oriented.
Keim and Kriegel later carried out an experiment [25] to
assess the performance of charts for visual data mining tasks,
including finding groups of similar data, finding correlations
between attributes, and similarity retrieval. They specifically
designed a pixel-oriented technique, which was able to
represent as many items as possible in the same display,
and compared it to classical approaches such as parallel
coordinate plot and stick figure techniques. They concluded
that the pixel-oriented approach they developedwas superior
with respect to standard techniques when trying to visualize
thousands of items of data, subject to the window size and
data limitations discussed in the earlier subsection. However,
pixel-oriented representations require optimization of the
layout based on an existing similarity measure among the
item dimensions.

2.4 Similarity Detection: Superposed Encodings
PCPs and their older variation, nomograms [4] are super-
posed encodings [29] that assign variables to parallel axes,
and overlaymultiple items. Due to their scalability and ability
to dealwithmanydimensions, these encodings are often used
to explore variable correlation or similarity [39–42]. PCPs
are effective for the exploration of hundreds to thousands
of items [13]. However, Keim and Kriegel [25] posit that on
a set of thousands of data items, a pixel-oriented encoding
outperformed PCPs. Radar charts or star plots can also be
superposed for the exploration of a large number of items.

3. METHODS
3.1 Experimental Design
This study has a well-defined scope, motivated by practice
in visual analysis. We focus on analyzing the efficiency
of commonly used visual encodings in a multidimensional
similarity detection task. Given a target item, we seek to
determine whether the chosen visual encoding affects the
ability of a person to identify the most similar items in a
set of candidate items. In this context, we first explore the
effectiveness of several commonly-used encodings, and the
influence of dataset scale over encoding effectiveness. In a
secondary analysis, we explore the influence of color-cue use.

3.1.1 Encodings Selection
We begin by noting that the juxtaposed and superposed
terminology originates from Gleicher’s theoretical frame-
work for visual comparison [29], which distinguishes com-
parison methods along juxtaposition, superimposition, and
explicit difference encoding. The juxtaposed and superposed
terminology is also appropriate in similarity detection,
although explicit difference encoding does not carry over
to multiple item similarity detection beyond, arguably, the
simple use of color-cues. However, comparison methods
and visual encodings are not independent design variables.
For example, all parallel coordinate plots are superposed.
Likewise, all traditional star plots, including transparent
radar charts, use a radial layout and can be used as
superposed encodings. At the same time, several encodings
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related to star plots, including lines-only glyphs and Kiviat
diagrams, are always juxtaposed encodings. Thus, the
specific visual encodings and comparison methods are
not independent variables, and should not be analyzed
as separate dimensions. In this study, we focus on visual
encoding effectiveness.

We then consider the space of appropriate visual
encodings, according to visualization theory, as well as the
encodings used in similarity detection practice. Overall, we
selected our encodings set based on the following criteria:

Popularity: We chose encodings, which are commonly used
in the visual analytics literature and can be implemented
with common data visualization software. Linear and
radial plots are common in many popular software
packages, while more esoteric encodings such as many
pixel-based methods or Chernov faces are not, making
the usability of findings related to those methods of
limited use.

Losslessness: Because visual similarity detection is typi-
cally used when no computable similarity measure is
available, it is important to be able to quantify when
important information is reduced away. Therefore, we
avoided lossy data encodings, such as dimensionality
reduction techniques and normalized bar charts.

Footprint Scalability: We included visual encodings whose
footprint scales at most linearly with either the number
of items or dimensions, as opposed to methods such as
scatterplot matrices that require a quadratically scaling
number of plots.

Coverage: We included encodings that cover both juxtapo-
sition and superposition paradigms, as well as schemes
with and without color-cues.

Parsimony: We included a representative and reasonable
set of encodings and scales, that allow us to better
understand scale issues in similarity detection without
undue hardship to the user. This criterion allows us to
circumvent the need to factor user fatigue.

From the possible space of multivariate encodings, as
indicated earlier, pixel-based techniques and hierarchical
displays are not a good fit with encoding several possible
independent variables. We therefore did not pursue this
category of encodings.

Next, we considered projection-based encodings. PCPs,
including their radial variations, allow individual items to be
displayed across multiple dimensions, and have been found
to be superior in visualizing clusters than other projection
based methods [43], making them a good candidate for
similarity detection. Whereas, parallel coordinate plots are
not anchored to a spatial location, in practice they can be
linked to specific item spatial locations via brushing and
linking across coordinated views. We include two variants of
this encoding in our study.

Under the parsimony criterion, because overlaid star
plots are also used in visualization practice, we performed
a calibration pilot usability study (five participants, 12 trials
per participant) in order to assess the overlaid star plot
potential as a similarity detection encoding, compared to that
of linear parallel coordinate plots. The pilot results agreed
with the existing literature [13, 16]. We also found that
parallel coordinate plots outperformed slightly overlaid star
plots, and that the similarity detection tasks took significantly
more time to complete in the overlaid radial layout (22%
error increase and 49% more time in the larger setting). In
consequence, overlaid star plotswere not included in the final
experiment.

Last, we considered the space of glyph-based repre-
sentations. Under the popularity and parsimony criteria,
we excluded from our study esoteric methods such as
Chernov faces or stick figures [38]. Furthermore, with
respect to juxtaposed star glyph variants, the Fuchs et al. [18]
study had found that lines-only star glyphs outperformed
polygon-outline-only glyphs. In consequence, in our study
we excluded polygon-outline-only glyphs. In the similarity
detection literature, we furthermore noted the use of Kiviat
diagrams [4, 5, 44], a glyph encoding related to star plots.
Often confused with star plots or radar charts, this diagram
is a radial glyph introduced in 1974 [45], where, as in
standard star plots, each radial axis represents a variable and
the position along the axis encodes the quantitative value.
However, in a Kiviat diagram the resulting contour is filled
with solid color. Kiviat diagrams are thus a type of glyph and
are typically juxtaposed. We included Kiviat glyphs, along
with line-only glyphs.

We note that our resulting encoding selection closely
reflects the encodings used in current practice of similarity
detection [1–10]. Overall, we considered 3 base encodings.
In a secondary analysis, we included 2 color-cue variations
as well. These encodings include methods that rely on the
juxtaposition paradigm (Kiviat and line-only glyphs), where
the encodings are laid out at specific locations, as well as
methods that rely on a superposition paradigm (PCPs),
where visual marks for the items are superimposed on top
of each other. The encodings we studied are:

• Parallel coordinate plots (PCPs). Because in a pilot
test unicolor polylines were not distinguishable without
interacting with each polyline, each line was colored,
based on a categorical color scheme, and testers
could use interactive brushing to highlight a particular
polyline. The target item was represented using higher
thickness tomake itmore visible.We further allowed the
user to filter items by selecting sub-sections of different
axes and to highlight items by increasing their line
thickness when moused-over.
• Lines-only star plots (LSP). These plots are a glyph

variant of the star plot with only the radial segments
extending from the center, and no filled contour. These
plots have also been referred to as whisker plots or fan
plots [18].
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Figure 2. Experimental setup for user study protocol. From left to right: (a) 36-item trial with Kiviat encodings, with the target item identified via its ID in
the top-screen message; (b) item selection in a 16-item trial with Kiviat encodings, with the currently selected item highlighted; (c) 16-item trial with PCP
encodings, with the target item identified via a thicker mark; (d) 16-item trial with PCP encodings, with the currently selected item highlighted.

• Kiviat diagrams, a glyph variant of star plots. Tradi-
tionally, a contour is formed by connecting the quantity
marks along each radial axis. In our default Kiviat
diagram, the contour was filled in with a neutral gray.
• Color-cue Kiviat diagrams (CCue Kiviat). This encod-
ing is a variation of the Kiviat diagram, in which the
glyph polygon is filled with color. In the practitioner
literature, the Kiviat color is typically mapped to an
attribute of that item. To test whether Kiviat color
could be interpreted as a similarity cue, we deliberately
mapped color to our simulated ground truth similarity
measure instead. We deliberately did not inform the
users that color was mapped to a simulated measure
of similarity. We used a divergent red-green-blue color
scheme from ColorBrewer2 [46], where red indicated
completely dissimilar items, and blue indicated identical
items.
• Color-cue parallel coordinate plots (CCue PCP). This
encoding is a variation of the PCPs, in which polylines
are colored, as in the color-cue Kiviats above, based
on their similarity with the target polyline. Testers
could use interactive brushing to highlight a particular
polyline. Again, we deliberately did not inform the
testers that color was mapped to our simulated measure
of similarity.

3.1.2 Dimensions and Scalability with Number of Items
Next, we considered the number of data dimensions and
the number of items to show during the study. Because
the common instances of the similarity detection problem
feature multi-dimensional, but not highly-dimensional data;
we considered the number of dimensions reported in the
existing literature related to similarity detection. Juxtaposed
star plots are typically used in similarity detection for data
with five to seven dimensions in real datasets [1, 4, 5], and
up to ten dimensions in synthetically-generated user study
datasets [18]. Given these considerations, and the value of
real visual analytics data and scenarios, we selected a real
dataset with seven dimensions rather than a synthetic dataset
for our experiments. To simulate realistic charts for our
study, we used an anonymized cancer dataset of 1100 patients
with seven features of interest [4]. The dataset included a
mixture of continuous and categorical variables with 2–4
categories, which were treated as ordinal variables that were

uniformly distributed between 0 and 1. Continuous variables
were individually scaled to be between 0 and 1. Values or axis
labels were not shown.

In our study, we additionally tested the effect that scale
had on the encoding effectiveness, where scale refers to
the number of items on the screen during an individual
comparison task. Because the common instances of the
similarity detection problem typically feature dozens, but not
hundred of items [1, 11], we decided to examine two different
scale factors; a moderate scale, with 16 total items, and a
large scale, with 36 total items, including the target item.
These factors ensured easily legible renditions of all our visual
encodings, whether juxtaposed or overlaid, on a 15.4 inch
laptop display, similar to the displays routinely used by our
collaborators across disciplines (Figure 2).

In total, five encodings were tested at two different
scales, resulting in 10 total trials per participant, excluding
introductory practice tests.

3.2 Hypotheses
We identified and tested four main hypotheses, based on
previous findings reported in the literature [18] and on
practical visual analytics experience:

H1. At moderate scale (16 items), all encodings studied will
yield equivalent scores.

H2. At large scale (36 items), juxtaposed encodings will
outperform superposed encodingswith respect to score.

H3. At large scale (36 items), LSPs will outperform other
encodings with respect to score.

H4. At both scales, color-cue encodings will outperform
other encodings with respect to time, but not score.

3.3 Participants and Protocol
We recruited 40 volunteers (12 females, 28 males, age
between 18 and 59 years) from our university campus,
following institutional review board (IRB) approval. One
participant disclosed a color-vision issue, but was able to
complete the tasks adequately. Participants had a variety of
expertise with data visualization (2 novices, 13 with basic
familiarity, 14 familiar and 11 experts). The familiar- and
expert-level participants had experience with both glyphs
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and PCPs, although they did not use visual encodings
to analyze data in daily activities. They also had diverse
educational backgrounds (5 with a high school degree, 23
with a Bachelor’s, 10 with a Master’s and 2 with a PhD). No
monetary or material incentives were given.

3.3.1 Protocol
We designed a similarity detection task to evaluate our
hypotheses. For each different type of visual encoding
and color variant, we showed seven variables of either
16 (moderate scale) or 36 (large scale) items. The items
were randomly sampled from the patient dataset, to ensure
adequate case coverage. In each trial, we asked the participant
to select, in order, the top three items most similar to a
specified target item in the display. We selected two grid
arrangements to test the scalability of the encodings. For
the juxtaposed encodings, participants first worked on a
4× 4 grid (16 items), then on a 6× 6 grid (36 items). The
target item was placed randomly among the other 15 or 35
candidate items. For the PCP encodings, we presented 16 or
36 superposed lines on a single chart, respectively. Due to
the random selection, none of the screen arrangements was
repeated among participants. Once the participant selected
the similar top three items, they would proceed to the next
trial.

A study session consisted of four steps; introduction,
tutorial, experiment trials, and debriefing questionnaire.
During introduction, the testers were briefed on the purpose
of the study and asked to fill out a demographics survey.
Participants were also informed that the test would be timed,
but that they were not expected to optimize for time.

In each trial, the data items were shown on the screen;
each item was identified by a numerical ID displayed next to
that item (Fig. 2). The tutorial consisted of 3 trials, one for
each encoding, excluding color-cue variants. For the glyph
encodings section of the tutorial, participants performed the
similarity task on a 3× 3 grid. Instructions were displayed
at the top of the screen, in the following format: ‘‘This is a
demo serving as introduction to the tasks. Click on the 3most
similar items to the item number 4.’’ The tester selections
were acknowledged by a brief highlighting of their selection.
For the overlaid encoding section of the tutorial, the target
item was shown with a thicker line, and hovering over
another item highlighted that item, to better support visual
identification of that item. This implementation replicated
the brushing operation available in practice for this type of
encodings. After each tutorial trial, we revealed the right
answer by expanding the text message at the top of the screen
(i.e.,‘‘The correct answers are: 8, 2, 7’’). During this stage, we
answered any questions the participants had about the study
or how similarity was measured.

For each trial, items were selected randomly from the
database, and one item was randomly selected to be the
‘‘target’’ item. To discount the possible influence of the
distance between the target item and the similar items, the
target item was placed randomly on the display grid and
referenced in the selection task only by its ID. For the glyph

encodings, items were arranged in a grid of 4× 4 (16 items),
or 6× 6 (36 items). Regardless of the encoding, the tester
was prompted to select 3 items that were most similar to the
target item by clicking on themwith themouse. After 3 items
were selected, the tester was allowed to process to the next
trial by selecting the ‘‘next’’ button. In the main experiment,
participants performed 10 trials each, for the two test scales.
During the test session, the ground truth was not revealed
to the tester. A progress bar allowed participants to see their
overall experiment progress.

After finishing all trials, participants were asked to
fill out a short-answer questionnaire with the following
questions:

• Which was the most complicated visual encoding to
process?
• Which was the easiest visual encoding to process?
• Which of the visual encodings was the most scalable?
• Which of the visual encodings scaled the worst?

We explicitly defined scalability as ‘‘scalability with the
number of items’’ in the online questionnaire, and encour-
aged participants to explain their reasoning in appropriate
text boxes.

Each study session was performed on a web browser on
the same laptop (15.4-inch display, 2880× 1800 resolution).
The participants used only mouse interaction during each
trial. For each experiment trial, we logged the time spent
per task, the similarity ranking of the items selected by the
participant for each task, and the total experiment time. The
time spent per task ended when the tester clicked the Next
button. Additionally, we recorded the demographic survey
and debriefing questionnaire results.

3.4 Scoring
In this study, the existence of a computable similarity mea-
sure is only required for the purpose of measuring the tester
performance. In order to simulate the ground truth similarity
between items and to measure performance, we used cosine
similarity over the seven variables of the data points. The
cosine measure is reasonably appropriate in information
retrieval tasks over high-dimensional categorical data, such
as our dataset based on patient records [47], and in the
case of text data [48]. The cosine measure has the additional
benefit of not being misleadingly based on an immediate set
of visual cues, in contrast to other distances like the Euclidean
distance. Arguably, if similarity could be easily calculated and
reported, based on Euclidean distance, visual analysis would
not be as beneficial to the analyst.

Nevertheless, to account for variations in the similarity
ground truth for other possible datasets, our score formula,
described below, was carefully crafted to be robust with
variations in how the ground truth was measured. To
quantify the influence of the ground truth measure, we used
the cosine measure and an Euclidean measure to calculate
pairwise similarity among a sample dataset. To this end,
we generated 500 datasets of 16 items from the patient
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repository, and selected for each dataset a random ‘‘target’’
item. For each sample, we ranked the most similar items
in that sample set based on each metric, and calculated
the overlap between the two rankings. In terms of the top
three ranked items, the average number of shared items was
2.52, whereas in terms of all 16 ranked items, the average
number of shared items was 6.86. These result suggest that
the difference in the ground truths will be exacerbated more
for the harder trials, i.e., our cosine metric results would be
more different, relative to an alternative (Euclidean) ground
truth, when there is a high error already.

Based on this calibration, the error for each trial was
computed based on the average difference in rank between
the selected items and the 3 most similar items. For each
trial, items were ranked in order of similarity with the target
item.Given the ranks of a tester’s answer denoted by r1, r2, r3,
sorted in ascending order of their rank, we then compute the
Manhattan distance between their answer and the optimal
solution (i.e. when r1 = 1, r2 = 2, r3 = 3). The error is given
by the formula below, where 6 denotes the sum of the
rankings of the 3 optimal choices, and thus allows the error
to be 0 when the same top 3 items are selected by the tester,
regardless of rank, as the top 3 items indicated by the ground
truth:

Error =
r1+ r2+ r3− 6

3
. (1)

In summary, this formula accounts for randomness in
the generated trials by aggregating the top 3 selections. The
formula also makes the calculated error order-agnostic. The
resulting error can be interpreted as the average number
of items in each trial that had a greater similarity than the
selected items.

3.5 Statistical Analysis
We report the mean error and trial time, along with
95% confidence intervals for each encoding type at each
scale, as well as the change in mean values. The data
was tested for extreme outliers using boxplot analysis,
and we confirmed that all score data-points were more
than 1.5% of the interquartile range from the upper or
lower quartile [49]. The time data included three outliers,
not correlated with the scores. We removed these outliers
from the time analysis. The raw data was furthermore
skewed, as typical with count data. Therefore, we tested the
normality of the data using a Shapiro-Wilk normality test
and found that both trial error (M = 4.82, skew = 1.46,
kurtosis = 2.02, W (39) = 0.86, p < 0.001) and trial time
(M = 48.6s, skew = 1.51, kurtosis = 3.77, W (36) = 0.90,
p < 0.001) were not normally distributed, overall. As the
data was not normally distributed, 95% confidence intervals
were calculated using non-parametric bootstrapping with
10,000 samples for each distribution [50]. We chose this
route, as opposed to a power transformation, for increased
interpretability of our results, and also because applying a
Yeo-Johnson power transform [51], which could handle zero
error cases, did not result in normally-distributed trial error
data.

Linear mixed-effect models were created to test for
multivariate significant effects for trial error and trial time.
This approach was chosen over a repeatedmeasures ANOVA
because it does not require that the dependent variable be
normally distributed. For each model, the encoding type, the
number of items, and whether the encoding was a color-cue
variant were modeled as fixed effects, while each participant
was modeled as a random effect by fitting an intercept to
each participant. Chart type was dummy encoded as binary
variables for when an encoding was a variant of a LSP or
PSP. Number of items and use of color-cues were coded as
binary variables to indicate whether 36 items were shown
and whether color-cues were used. Models that considered
user’s self-reported familiaritywith data visualization and the
interaction between trial time and error were also tested, but
were excluded as they did not have significant effects.

Each effect was tested for statistical significance using
a likelihood ratio test [52]. To provide an approximation of
effect size, we report Cohen’s f 2 factor, which is a calculation
of the amount of variance explained in the model by adding
in a variable, given by formula:

f 2
variable =

R2
Fullmodel−R2

Model without variable
1−R2

FullModel
, (2)

where R2 is the residual of the mixed effect model [53].
We further performed the non-parametric Wilcoxon

signed-rank test to compare error and trial time between
each encoding type at different scales to identify statistically
significant differences between encodings. Family-wise error
correction was performed across all significance tests using
the Holm-Bonferroni method [54].

The study interface was built upon Experimentr.js [55], a
front-end framework that aids in the data collection process
and application hosting. Our backend, a Node.js server and
a Redis database (BSD licensed), ran locally on our machine
(offline). We developed the visual encodings using D3.js.
Data analysis was performed in python using the statsmodels
package [56] and R. Reproducibility is discussed in our
Supplemental Materials.

4. RESULTS
4.1 Encoding and Scale Effects on Score
For trial error, we found within the transformed data
the largest effect from encoding type (f 2

= 0.29, p <

0.001), followed by the number of items shown (f 2
= 0.21,

p < 0.001). We found a small but measurable interaction
effect between encoding and number of items (f 2

= 0.02,
p < 0.01), and a non-significant effect from color-cue
(f 2
= 0.01, p> 0.05).
Mean raw error within each encoding type and item

count is shown, for easier interpretability, in Table I, and
raw error distributions, including confidence intervals, are
plotted in Figure 3. Kiviat diagrams had the lowest error,
followed by LSPs and PCPs. PCPs had the highest error
at both the moderate scale (M = 4, 95% CI = [3.4, 4.5])
and large scale (M = 10.8, 95% CI = [9.5, 12.1]). Color-cue
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Figure 3. Notched box plots of mean trial error and time for each encoding type at different scales. Upper and lower bounds of the boxes show the
upper and lower quartiles of the data within each setting, whereas notches show the estimated median of the data, along with 95% confidence intervals
estimated via bootstrapping with 10,000 samples. Mean error (left) increased with the number of items, and was highest for parallel coordinate plot
variants at both scales while color-cue Kiviat diagrams performed the best. Trial time (right) was lowest in all settings for color-cue Kiviat diagrams followed
by color-cue parallel coordinate plots.

Table I. Mean rank error and 95% confidence intervals for each encoding. Error was
affected least for Kiviat plot variants (bold) when scaling up the number of items.

Encodings
16 Items 36 Items

1 Error
Mean 95%CI Mean 95%CI

PCP 4.0 3.4–4.5 10.8 9.5–12.1 6.8
CCue PCP 4.1 3.6–4.7 8.5 7.1–9.9 4.4
LSP 2.6 2.1–3.0 6.2 4.8–7.5 3.6
Kiviat 2.5 1.9–3.0 5.0 3.6–6.4 2.6
CCue Kiviat 2.3 1.8–2.9 4.0 2.9–5.0 1.6

Kiviat diagrams had the lowest error at both the moderate
(M = 2.3, 95% CI = [1.8, 2.9]) and large scale (M = 4.0,
95% CI = [2.9, 5.0]).

Significant results from pairwise comparisons between
encoding types within each setting are shown in Table II. At
each scale, juxtaposed encodings consistently outperformed
superposed encodings. Kiviats and LSPs outperformedPCPs,
and color-cue Kiviats outperformed color-cue PCPs at both
scales. The difference was most pronounced for non-color-
cue variants and at larger scales, where PCPs had over
twice the error of Kiviats (1Error = 5.8, p < 0.001) and
LSPs (1Error = 4.6, p < 0.001). Kiviat diagrams had a
non-significantly lower error than LSPs at both themoderate
scale (1Error = 0.1, p> 0.05) and large scale (1Error = 1.2,
p> 0.05).

In terms of error, color-cue variants weakly outper-
formed their non-color-cue variants as the number of
items increased. In large scale, color-cue Kiviat diagrams
weakly outperformed normal Kiviat diagrams (1Error =
1.0, p > 0.05), and color-cue PCPs performed better than
non-color-cue PCPs (1Error = 2.3, p> 0.05). However, this
difference was not observed in the moderate 16 item setting.

Table II. Pairwise comparisons for rank error between encodings. Mean differences
and Holm-adjusted p-values are reported for statistically significant results. At each scale,
juxtaposed encodings outperform superposed encodings.

Encoding 1 Encoding 2 Items 1 Error P

Kiviat PCP 36 5.8 <0.001
LSP PCP 36 4.6 <0.001
CCue Kiviat CCue PCP 36 4.5 <0.01
Kiviat PCP 16 1.5 <0.01
LSP PCP 16 1.4 <0.05
CCue Kiviat CCue PCP 16 1.8 <0.05

Relative differences between encodings were amplified
when scaling from 16 to 36 items. Of encodings without
color-cues, PCPs scaled the worst with an increase average
error of 6.8, followed by LSPs with an error increase of
3.6, and Kiviat diagrams with an increase of 2.6. Color-cue
variants scaled better, with color-cue Kiviat digrams having
an increased mean error of 1.6, which is the only encoding
with a relative increase of less than 100%.

4.2 Encoding and Scale Effects on Response-time
With respect to response time, we found a small but
significant effect from use of color-cue (f 2

= 0.039, p <

0.001) and choice of encoding (f 2
= 0.030, p < 0.001).

There was an insignificant effect from the number of items
(f 2
= 0.006, p= 0.08), and no significant interaction effects.
Response time for each encoding type and item scale is

shown in Table III; time distributions are plotted in Fig. 3.
Response time was longest for PCPs with 16 items (M = 71s,
95%CI = [60s, 80s]) and lowest for color-cueKiviats with 16
items (M = 40s, 95% CI = [35s, 45s]). Color-cue encodings
always outperformed with respect to time non-color-cue
encodings, regardless of encoding type or scale.
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Figure 4. Subjective ratings of encoding difficulty (left) and scalability (right). Among the testers who expressed an opinion, Kiviat diagrams were rated
most positively in terms of both difficulty and scalability, whereas PCPs were rated the worst.

Table III. Mean trial time in seconds, and 95% confidence intervals for each encoding,
at two scale settings. Response time was affected least for color-cue variants (bold) when
scaling up the number of items. Time decreased with scale for normal PCP and Kiviat
variants, and increased for color-cue PCP and LSPs. Values reported use 37 testers, with
3 extreme outliers removed.

Encodings
16 Items 36 Items

1 Time
Mean 95%CI Mean 95%CI

PCP 71 60–80 58 49–65 −12.9
CCue PCP 46 41–51 46 41–52 0.4
LSP 47 38–54 50 43–56 2.9
Kiviat 54 48–59 48 44–53 −5.6
CCue Kiviat 40 35–45 37 32–42 −2.6

Table IV. Pairwise encoding-comparisons for response time, color-cue variant versus
regular variant. Mean differences and Holm-adjusted p-values are reported only for
statistically significant results. At both scales, color-cue Kiviats are faster (see Fig. 3 Right
for further data).

Encoding 1 Encoding 2 Items 1Time (s) P

LSP PCP 16 −24 <0.01
CCue PCP PCP 16 −25 <0.001
CCue Kiviat Kiviat 16 −14 <0.01
CCue Kiviat Kiviat 36 −11 <0.01

Significant results for the pairwise comparisons are
reported in Table IV. At the moderate scale, PCPs had a
significantly longer response time than LSPs (1Seconds =
−24, p < 0.01) and color-cue PCPs (1Seconds=−25, p <

0.001). Color-cue Kiviat diagrams also outperformed their
regular variants at the moderate scale (1Seconds = −14,
p< 0.01), and the large scale (1Seconds=−11, p< 0.01).

The relative number of items did not have a consistent
effect on the average response time, and the effect of items
count overall had a very small effect on time. Response time
decreased for PCPs (−12.9 s), Kiviats (−5.6 s), and color-cue
Kiviats (−2.6 s), while LSPs and color-cue PCPs had an
increase in their average time (2.9 s and 0.4 s, respectively).
Overall, color-cue variants had the smallest absolute change
as well as baseline average time.

4.3 Subjective Feedback
Figure 4 shows the number of times either Kiviat diagrams,
LSPs, or PCPs were referenced in the exit questionnaire with
respect to difficulty or scalability. Cases where testers did
not specify any of the encoding types are excluded from
these counts. Kiviat diagrams had the most (11) positive
ratings in terms of difficulty and scalability, as well as the
fewest negative ratings. Only three participants reported
Kiviat diagrams as the most difficult, and one participant
believed thatKiviat diagramsdid not scalewell. LSPs received
fewer positive ratings in terms of difficulty (3) and scalability
(5), and more negative votes (12 and 8, respectively). PCPs
had the most negative reviews. 23 out of 40 participants
considered PCPs to be the most challenging encoding, and
25 reported that it was the least scalable, while only 3
participants rated it as the easiest or most scalable. Most
testers reported difficulties telling items apart in regular
PCPs, for reasons related to the presence of a large amount
of partially or totally overlapping segments. Regular PCPs
further used a 10-hue color scheme for 36 items, whichmade
brushing, and thus additional interaction, necessary in order
to distinguish similarly colored items when they crossed
through the same point. Color-cue helped alleviate the issue;
testers felt the polylines in other hues but the target hue could
be ignored.

Overall, the number of negative ratings were propor-
tional to the mean error for each encoding, where more
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Figure 5. Log response-time versus error per trial for Kiviat diagrams and parallel coordinate plots with a robust linear regression fit shown with 95%
confidence intervals for each encoding. Plots show results for plots without color-cue (left) versus with color-cue (right). Regression lines highlight the overall
lack of correlation between error and time. The plots indicate several testers invested significant time into the task, even when the resulting error was high.

difficult ratings correspond to higher trial error, suggesting
that the testers’ perceived difficulty accurately followed their
actual performance.

4.4 Time-Score Analysis
Correlation between trial time and error was measured
for each setting using the Pearson correlation coefficient.
Interestingly, time and error were not significantly correlated
overall (r36 = −0.01, p = 0.80), or in any setting except
for the color-cue PCP with 36 items, which showed a
significant negative correlation between time and error
(r36 = −0.51, p < 0.01). PCPs showed a non-significant
negative correlation between error and time except for PCPs
in the moderate setting, which showed a non-sigificant
positive correlation (r36 = 0.06, p = 0.7), while correlation
for juxtaposed encodings was inconsistent in direction.
Plots of time versus error across both scales for Kiviat
diagrams versus PCPs, with andwithout color-cue are shown
in Figure 5 and in the Supplemental materials. The plots
indicate testers invested significant time and effort into the
task, even when the resulting error was high.

PCP variants showed more extreme cases with very low
time and high error, suggesting that the stronger general
correlation between error and time may be due to a larger
number of cases where the tester ‘‘gave up’’ and guessed the
answer, but the general payoff for additional time beyond a
baseline was not beneficial.

5. DISCUSSION
Evaluation of the results shows that for accuracy in similarity
detection, juxtaposed star plot variants (Color-cue Kiviats,
Kiviats, LSPs) outperform superposed encodings (non-color-
cue PCPs, color-cue PCPs) at both themoderate and the large
scale. We therefore reject hypothesis H1 (At moderate scale
(16 items), all encodings studied will yield equivalent scores),
as encodings do not have equal performance at moderate
scale; superposed encodings are worse.

At the same time, we accept hypothesis H2 (At large
scale, juxtaposed encodings will outperform superposed

encodings), and we furthermore find that it holds at
moderate scale as well. This is an interesting finding, because
ourmoderate and large scales are significantly below the sug-
gested PCP effectiveness threshold of hundreds of items [13].
One interpretation is that, PCPs are excellent tools for
correlation detection and analysis, and similarity detection
does not necessarily involve inter-variable correlation. We
also note that color-cue in PCPs helps with respect to
similarity detection scores, but does so only at large scale, and
the effect is moderate.

Within the star glyph variants, color-cue Kiviats and
Kiviats scored similarly at both scales. At the large scale,
color-cue Kiviats scored significantly better than LSPs. At
moderate scale, all star glyph variants perform similarly with
respect to error. These findings are in direct contradiction
with the results of Fuchs et al. [18], who found that
LSPs outperformed all other star glyph variations, including
Kiviats. We believe the experimental setting may explain this
discrepancy. First, in a 3× 3 grid layout (9 items) with the
target located centrally, as in Fuchs et al., similarity detection
turns into a series of one-on-one comparison tasks with
all items near the target. When scale increases, as in our
experiments, items can no longer be placed immediately
side by side for comparison. Second, when the number of
variables encoded in the Kiviats is artificially large, as in the
synthetic data used in the Fuchs et al. study, the shape of a
Kiviat becomes harder to discern. With lower-dimensional
items, Kiviatsmay benefitmore from the pre-attentive nature
of shape. In general, Kiviat-style glyphs may yield superior
results in similarity tasks, as they do in pattern recognition
tasks [57, 58].

As a result, we reject hypothesis H3 (At large scale,
LSP encodings will outperform other encodings), and we
furthermore find that H3 does not hold at the moderate
scale, either. Overall, our results support the use of Kiviats
and color-cue Kiviats for similarity detection at scales
and dimensions used in this study. As expected, most
encodings yield significantly worse scores as scale grows. The
one notable exception are color-cue Kiviats, which further
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supports their use in practice. The qualitative feedback
also indicates that juxtaposed Kiviats are easier to read
and interpret than both LSP encodings and superposed
encodings.

With respect to time, we found significant differences
across encodings in both settings, and a significant correla-
tion between use of color-cues and trial time was found in
our mixed-effects model. Color-cue variants were, overall,
less affected by scale, and were non-significantly faster than
their non-color equivalents at the larger scale. Color-cue
Kiviats were faster than Kiviats at both scales (p< 0.01), and
were the fastest encoding at the large scale. At the moderate
scale, LSPs, and color-cue PCPs were significantly faster than
non-color-cue PCPs, but this difference was not significant
at the large setting due to a drastic drop (−12.9 s) in average
trial time for regular PCPs when going from 16 to 36 items,
that was not seen in other encodings. However, differences
in trial time between settings did not correlate with trial
error, and use of color cues did not have a significant effect
on error. H4 is therefore valid (At both scales, color-cue
encodings outperform other encodings with respect to time,
but not with respect to score). The one moderate exception
are PCPs in the large scale, where color-cue PCPs onlyweakly
outperformed regular PCPs (p> 0.05).

Because color-cue does not lead to better similarity
detection scores for Kiviats at either scale, it may be safe to
map the Kiviat color to one of the item variables, as currently
done in practice. The notable improvement that color-cues
had on response time as the number of items increased
may be due to the effect of perceptual grouping. Color-cues
may help testers scan the candidate items for ‘‘similar’’ items
while filtering out the ‘‘dissimilar’’ items. This interpretation
is consistent with previous findings that show that search
tasks are easier when distractors are more dissimilar to a
target item [59–62].We also note that we deliberately chose a
red-green-blue divergent colormap, as it would be harder for
testers to associate with order.We speculate that amore easily
interpretable color scale (e.g., one with monotonic variation
in lightness) would have an even larger effect, as variations in
lightness has been shown to have a larger effect on perceived
bias than hue [63].

The complex relationships between the number of items,
error, and response time suggest that the perceived task
difficulty may influence the tester approach to the similarity
detection process. For PCPs, the mean and median time
decreased drastically, while the error increased, suggesting
that testers may have ‘‘given up’’ for particularly difficult
tasks, or encountered more mental fatigue when performing
an initial search. Mean trial time for color-cue encodings,
however, stayed within 5% of the trial time at 16 items, which
could be interpreted as a regulating effect from color-cue by
keeping the perceived difficulty of the taskmanageable as the
number of items increased.

In terms of the effect of tester background, we note that
most of our participants were knowledgeable about visual
encodings, with two outliers. While statistical analysis is not
feasible on such a small sample, we note that the two testers

with no visualization expertise were outliers with respect to
both error (higher error) and time (less time).

In terms of limitations, our study examines two relatively
modest settings, and a relatively moderate set of variables,
based on a real dataset. However, the significant variation
in encoding performance indicates that even this scale can
capture and document visual encoding scalability issues. Our
study furthermore reports error with respect to a ground
truth calculated via cosine similarity, which is appropriate
for our dataset. However, our score function was designed
to be resilient with variation in how the ground truth was
calculated. Moreover, when compared against Euclidean
ground truth in a post-hoc analysis, the rankings of the
encodings in terms of average score/error were the same
as in our results using cosine similarity (color-cue Kiviats
> Kiviats > LSP > color-cue PCP > PCP). The results
indicate that our findings are significant enough to stand
with variations in the similarity ground truth calculation.

Additionally, our experiments were focused on eval-
uating error due to the encoding choice, and so rely on
randomized samples of data from each trial. In order to
generate adequate coverage of the dataset samples, and to
avoid learning effects from repeating trials with the same
encoding for the tester, our score formula used the average
error for 3 item choices instead of 1, which smoothed the
variance in the error without introducing as many learning
effects from repeated trials in the same setting. This effect
was modeled in the mixed-effects model for estimating trial
size, and so our statistical tests and results hold. However,
this comprehensive study did not generate enough samples
to model trial-specific variation, and thus we only report
inter-subject variation; in contrast, we can not draw strong
conclusions about time versus score. It is possible testers
spent most of the trial time scanning the candidate items
before doing a granular comparison, and thus the difficulty
of a given sample may have had a greater effect on the time
the tester spent on each trial. Whereas, our results show
consistent, comprehensive findings with respect to the effect
encoding has on error, our response time results showed
inconsistent effects from encoding and scale, which may be
due to large changes in difficulty that are not captured in
the mixed effects model. Despite this aspect of time analysis,
our error findings are statistically rigorous and account for
random variance in the data.

In the interest of limiting tester fatigue, ensuring glyph
legibility on a relatively small screen, and based on critiques
and earlier reports on the efficiency of specific encodings,
we also did not include a wider range of encodings and
scales. However, given the qualitative tester feedback and our
numerical results, we expect our findings will also hold at
larger scales. Last but not least, in terms of generalizability,
our findings may not generalize to similarity detection tasks
that involve hundreds of items, simply because juxtaposition
requires more screen space than superposition.

Despite these limitations, our study involved 40 partic-
ipants, 2 scale settings, and 10 trials per session. This setup
enabled us to successfully investigate how accurately and
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quickly people can identify similar data points using different
encodings.We found, surprisingly, that Kiviat diagrams were
the most suitable encoding in terms of accuracy, especially
in a large-scale context. In contrast, superposition-based ap-
proaches under-perform due to difficulties in distinguishing
between items, and are often slower to read, possibly due to
these difficulties.

5.1 Visual Analytics Similarity Guidelines
Similarity among multi-dimensional items may sometimes
be computed, for example, using an Euclidean metric, in
which case the exact ranking can and should be reported
to the analyst in numerical form. In situations where the
similarity is not directly computable, for example, when
the weights of various features still need to be determined,
visual similarity detection is particularly appropriate and
beneficial.

With respect to visual similarity detection, overall, for
multivariate, but not highly-dimensional collections similar
to our dataset and up to several dozens of items, our findings
support the use of juxtaposed Kiviats. For datasets with fewer
than five dimensions, Kiviats would degenerate into simpler
shapes, and other glyphs may be equally successful. In
general, our findings support the use of juxtaposed encodings
as opposed to superposed encodings. Where appropriate,
the use of color-cues may furthermore assist the analyst in
pre-filtering dissimilar items, andmitigate the effects of scale.

In the case of collections of a hundred to thousands of
items, screen space becomes an issue and juxtaposition may
not be feasible. Still, our analysis indicates that the legibility
of superposed encodings is problematic with increasing
scale. Wherever possible, it is worth introducing filtering or
sorting operations to reduce the number of items considered
simultaneously at any given time. For example, in a large
repository of electronic health record data, it is worth
stratifying the patient data first into smaller cohorts, and
using a juxtaposed layout for visual analysis on the smaller
cohort. Where PCPs are the only design option available,
we strongly recommend the use of more advanced variants
of PCPs than the plain PCP versions currently used by
practitioners. Doing so may require the explicit integration
of these more advanced variants into popular visualization
platforms.

6. CONCLUSION
In conclusion, we examined the effectiveness of five visual
encodings for multivariate data in the context of similarity
detection. We conducted a user study with 40 participants
to measure similarity detection accuracy and response time
under two conditions: moderate scale (16 items) and large
scale (36 items). Our study produced new evidence that
similarity judgments are easier using juxtaposed glyph
than superposed visualizations, and that color-cues can
mitigate detriments in performance that otherwise occur
by increasing the size of the dataset. Our statistical analysis
shows that there are significant differences in encoding
performance, especially in the large scale setting of the

experiment. In all settings, we found that plain PCPs are
slower to read and lead to lower accuracy than juxtaposed
(side-by-side) star glyph approaches. Among juxtaposed
approaches, glyph variants like the Kiviat and color-cue
Kiviat encodings scale well, are reasonably fast to read, and
achieve good accuracy. When the number of items grows,
juxtaposed color-cue Kiviats outperform other encodings,
including LSPs, and are therefore suitable for similarity
detection when dealing with larger multivariate datasets.
Findings from this user study provide empirical evidence and
guidance for the visualization design in similarity detection.
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