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Abstract. Deep neural networks (DNNs) utilized recently are
physically deployed with computational units (e.g., CPUs and
GPUs). Such a design might lead to a heavy computational
burden, significant latency, and intensive power consumption, which
are critical limitations in applications such as Internet of Things
(IoT), edge computing, and usage of drones. Recent advances in
optical computational units (e.g., metamaterial) have shed light on
energy-free and light-speed neural networks. However, the digital
design of the metamaterial neural network (MNN) is fundamentally
limited by its physical limitations, such as precision, noise, and
bandwidth during fabrication. Moreover, the unique advantages of
MNN’s (e.g., light-speed computation) are not fully explored via
standard 3×3 convolution kernels. In this paper, we propose a novel
large kernel metamaterial neural network (LMNN) that maximizes
the digital capacity of the state-of-the-art (SOTA) MNN with model
re-parametrization and network compression, while also considering
the optical limitation explicitly. The new digital learning scheme
can maximize the learning capacity of MNN while modeling the
physical restrictions of meta-optics. With the proposed LMNN, the
computation cost of the convolutional front-end can be offloaded to
fabricated optical hardware. The experimental results on two publicly
available datasets demonstrate that the optimized hybrid design
improved classification accuracy while reducing computational
latency. The development of the proposed LMNN is a promising
step towards the ultimate goal of energy-free and light-speed AI.
c© 2023 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2023.67.6.060404]

1. INTRODUCTION
Digital neural networks (DNN) are essential inmodern com-
puter vision tasks. The convolutional neural network (CNN)
is arguably the most widely used AI approach for image
classification [1–3], segmentation [4, 5], and detection [6,
7]. Even for more recent vision transformer-based models,
convolution is still an essential component for extracting
local image features [8–12]. Current CNNs are typically
deployed with computational units (e.g., CPUs and GPUs).
Such a design might lead to a heavy computational burden,
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significant latency, and intensive power consumption, which
are critical limitations in applications such as Internet
of Things (IoT), edge computing, and usage of drones.
Therefore, the AI community has started to seek DNN
models with less energy consumption and lower latency.
However, we may not achieve energy-free and light-speed
DNN following the current trends in research.

Fortunately, the recent advances in optical compu-
tational units (e.g., metamaterial) have shed light on
energy-free and light-speed neural networks (Figure 1). At
its current stage, the SOTA metamaterial neural network
(MNN) is implemented as a hybrid system, where the optical
processors are used as a light-speed and energy-free front-
end convolutional operator with a digital feature aggregator.
Such design reduces the computational latency since the
convolution operations are implemented by optical units,
which off-loads more than 90 percent of the floating-point
operations (FLOPs) in conventional CNN backbones like
VGG [13] and ResNet [14]. However, the digital design of
the MNN is fundamentally limited by its physical structures,
namely (1) the optic system can only take positive value;
(2) non-linear computations are challenging for free-space
optic devices at low light intensity; (3) the implementation
of the optical convolution is restricted by limited kernel
size, channel number, precision, noise, and bandwidth.
Furthermore, limitations also exist in the current optic
fabrication process: (1) only the first layer of a neural network
can be fabricated, and (2) limited layer capacity and weight
precision. Therefore, the unique advantages of the MNNs
(e.g., light-speed computation) are not fully explored via
standard 3× 3 convolution kernels. The large convolution
kernel (greater than 3 × 3) provides the larger reception
fields which plays essential roles in segmentation and
classification tasks [15–17]. Compared with traditional small
kernel convolution [18], A larger receptive field (achieved
using larger kernels or more convolutional layers) allows
the network to see and model larger spatial contexts, which
can be crucial in tasks where spatial details like boundaries
matter [19].
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Figure 1. This study provides a digital modeling platform for designing
and optimizing a metamaterial neural network (MNN). The proposed
large kernel metamaterial neural network (LMNN) is able to maximize
the performance of an MNN without introducing extra computational
complexity during the inference stage.

In this paper, we propose a novel large kernel metama-
terial neural network (LMNN) that maximizes the digital
capacity of the SOTA MNN with model re-parametrization
and network compression, while also considering the op-
tical limitation explicitly. Our model maximizes the ad-
vantage of the light-speed natural of optical computing
by implementing larger convolution kernels (e.g., 7 × 7,
11 × 11). The proposed LMNN yields larger reception
fields, without sacrificing low computational latency and
low energy consumption. Furthermore, the aforementioned
physical limitations of LMNNs are explicitly addressed
via optimized digital modeling. We evaluate our model
on image classification tasks using two public datasets:
FashionMNIST [20] and STL-10 [21]. The proposed LMNN
achieved superior classification accuracy as compared with
the SOTA MNN and model re-parametrization methods.
Overall, the system’s contributions can be summarized as
follows:

• We propose the large convolution kernel design for
an LMNN to achieve a larger reception field, lower
computational latency, and less energy consumption.
• We introduce themodel re-parameterization andmulti-
layer compression mechanism to compress the multi-
layer multi-branch design to a single layer for the
LMNN implementation. This maximizes the model
capacity without introducing any extra burden during
the optical inference stage.
• The physical limitations of LMNNs (e.g., limited kernel
size, channel number, precision, noise, non-negative
restriction, and bandwidth) are explicitly addressed via
optimized digital modeling.
• We implemented a single-layer LMNN with real
physical metamaterial fabrication to demonstrate the
feasibility of our hybrid design.

The rest of the paper is organized as follows. In Section 2,
we introduce background and related research relevant to
large kernel convolution, re-parameterization, and optical
neural networks. In Section 3, our proposed LMNN model
is presented. It includes the large kernel re-parameterization,
meta-optic adaptation, and model compression strategy.
Section 4 focuses on presenting the dataset and experiment
implementation details. Section 5 provides the experimental
results and ablation study. Then, in Sections 6 and 7, we
provide the discussion and conclude our work.

2. RELATEDWORK
2.1 Models with Large Kernel Convolution
For a decade, a common practice in choosing optimal kernel
size in convolution is to leverage 3 × 3 kernels. In recent
years, more attention has been put into a larger kernel
design. The Inception network proposes an early design
of adapting large kernels for vision recognition tasks [22].
After developing several variations [23, 24], large kernel
models became less popular. Global Convolution Networks
(GCNs) [16] employ the large kernel idea by utilizing
1×K followed by K × 1 to achieve improvement in model
performance for semantic segmentation.

Current limitations in leveraging large kernel convo-
lution kernel can be divided into two aspects: (1) scaling
up the kernel sizes lead to the degradation of model
performance, and (2) its high computational complexity.
According to the Local Relation Networks (LRNet) [25], the
spatial aggregation mechanism with dynamic convolution
is used to substitute traditional convolution operation. As
compared with the traditional 3× 3 kernels, the LRNet [25]
leverages 7× 7 convolution to improve model performance.
However, the performance becomes saturated by scaling up
the kernel size to 9× 9. Similar to RepLKNet [11], scaling
up the convolution kernel size to 31 × 31 without prior
structural knowledge demonstrates the decrease of model
performances. To leverage the heavyweight computation of
large kernel convolution, [26] introduced the Shufflemixer
for lightweight design.

2.2 Model Compression and Re-parameterization
Though many complicated ConvNets [27, 28] deliver
higher accuracy than more simple ones, the drawbacks are
significant. (1) The complicated multi-branch designs (e.g.,
residual addition in ResNet [14] and branch-concatenation
in Inception [23]) make the model difficult to implement
and customize, and slow down the inference and reduce
memory utilization. (2) Some components (e.g., depthwise
convolution in Xception [22] and MobileNets [29], and
channel shuffle in ShuffleNets [30]) increase memory access
costs and lack support for various devices.

Model compression [31] aimed to reduce the model size
and computational complexity [32, 33] while maintaining
their performance including pruning and quantization.
Pruning has been widely used to compress deep learning
models by removing the unnecessary or redundant parame-
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ters fromaneural networkwithout affecting its accuracy [34–
36]. Quantization has two categories: Quantization-Aware
Training (QAT) [37, 38] and Post-Training Quantization
(PTQ). QAT applies quantization operation in the training
stage. In contrast, PTQ takes a full precision network for
training and quantized it in the post stage [39–41]. At-
tempting to decrease the redundancy of CNN, SCConv [42]
compresses the model by exploiting the spatial and channel
redundancy among features.

2.3 Optical Neural Network
Optical neural network (ONN) uses light instead of electrical
signals to performmatrix multiplications [43–45] which can
be much faster and more energy-efficient than traditional
digital neural networks. Most ONNs use a hybrid model
structure and implement linear computation with optic
device and non-linear operation digitally [46–49]. Besides
the use of optical devices, ONNs have been implemented
on nanophotonic circuits [50, 51] and light-wave linear
diffraction [52, 53] to improve model efficiency. For non-
linear computation, [54, 55] have proposed implementing
non-linear operations with optic device on ONN.

3. METHOD
Problem statement. The goal of this study is to develop
a new digital learning scheme to maximize the learning
capacity of MNN while modeling the physical restrictions
of meta-optics. With the proposed LMNN, the computation
cost of the convolutional front-end can be offloaded into
fabricated optical hardware, so as to get optimal energy
and speed efficiency under current fabrication limitations.
We adapt our innovations with three aspects: (1) large
kernel re-parameterization, (2) meta-optic adaptation, and
(3) model compression.

3.1 Large kernel Re-parameterization
To tackle the limitation of fabricating only the first layer in
CNNs, we need to maximize the performance of the first
layer, while it is feasible to adapt the fabrication processing.
With significant progress in Vision Transformers (ViTs),
the key contribution for the performance gained is largely
credited to the large effective receptive field, which can be
generated similarly by the depthwise convolution with large
kernel sizes in CNNs. Therefore, we explore the feasibility of
adapting large kernel convolution in (1) single-branch and
(2) multi-branch settings. The overarching methodology for
large kernel design can be delineated into two primary steps:
(1) The deployment of stacked depthwise convolution layers
to accommodate expansive convolution kernel receptive
fields, as detailed in the ‘‘Single Branch Design’’ section; (2)
The amalgamation of results from various large convolution
layers, each offering distinct scales of view, elaborated in the
‘‘Multi-branch Design’’ section.

Single Branch Design. Inspired by [11], a large depth-
wise convolution kernel is equivalent to having the same
receptive fields to a stack of small kernels. With the

intrinsic structure of depthwise convolution, such a stack of
kernel weights, can be compressed into a single operator.
It is thus essential for the LMNN to maximize the model
performance via a relatively simple meta-optic design, with
a single compressed convolution layer. The compressed
design further introduces fewer model FLOPs in the model
inference stage. For conventional convolution operation, the
convolution weight matrix W ∈RCi×Co×Kh×Kw . The Ci and
Co are input and output channels of the convolution layer,
respectively. Kh and Kw are height and width of convolution
kernel. Note that we have an input patch x of sizeH ×W and
the output is y , we have conventional convolution as Eq. (1).

y =W ∗ x, (1)

where y =
∑ni

p=0 Wp ∗ xp, ∗ represents convolution between
matrices. For the input x , the computation time complexity
will be O(H ×W ×Ci×Co×Kh×Kw). For the depthwise
convolution model, channels Ci in the convolution layer
are separated along with the input data channels of x . The
depthwise convolution follows Eq. (2)

y ′i =Wi ∗ xi, (2)

where yi is the ith channel of output y , Wi and xi are the
ith channel from Convolution weight W and input data x ,
respectively. The time complexity is O(H ×W ×Ci×Kh×

Kw). Normally, the input channel number equals the output
channel number. We can infer the theoretical speed-up ratio
r on model FLOPs between convention convolution and
depthwise convolution following Eq. (3)

r =
O(H ×W ×Ci×Co×Kh×Kw)

O(H ×W ×Ci×Kh×Kw)
=O(Ci), (3)

where Ci is the channel number of the convolution layer.
Depthwise convolution has Ci = Co = C . The depthwise
convolution operation saves more FLOPs when the channel
number is large compared with convention convolution.

Multi-branch design. Inspired by RepVGG [56] and
RepLKNet [11], the multi-branch design demonstrates
the feasibility of adapting large kernel convolutions (e.g.,
31 × 31) with optimal convergence using a small kernel
convolution in parallel. The addition of the encoder output
enhances the large kernel convolution in the locality.
According to the properties of convolution operation, the
abstracted feature map from the parallel convolution path
can be overlapped by learning different features. By using
different convolution kernel sizes, the features from different
scales of view are abstracted simultaneously.

We denote that output y ′ and input patch x use a
two-branch convolution blockW .

y ′i =W1 ∗ x +W2 ∗ x, (4)

where W1 and W2 are two different convolution layers
with different kernel sizes. For multiple parallel paths, the
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Figure 2. The upper panel (a) shows the conventional CNN model on the image classification task with Batch Normalization (BN) and Multilayer
Perceptron (MLP). The lower panels (b) present our proposed LMNN method with digital design and optic implementation with depthwise convolution
(DWC) layer. The large kernel re-parameterization efficiently achieves a large receptive field with a multi-branch multi-layer structure. Physical constraints are
modeled via the meta-optic adaptation. The multi-branch multi-layer model is further compressed to a single-layer LMNN. (c) The digital design is fabricated
as a real meta-optic device for inference. The red arrow shows the main pipeline to build the LMNN. The green arrow shows the image processing path
in meta-optic imaging system.

N -branch convolution can be generated as Eq. (5).

y =
N∑
q=0

Wq ∗ x. (5)

According to the Eq. (5), output y has the feature map from
multiple scales of views. The overlap of convolution output
from different scales redistribute the feature map which is
proved by [11] to have better performance.

3.2 Meta-optic Adaptation
To integrate the large kernel convolution design into meta-
optic devices, we need to consider and model the physical
restrictions explicitly in our model design, beyond the
conventional digital training (Figure 2 and Figure 3). First,
the weight in convolution kernel should be positive for
fabrication. Second, the convolution layer that substitutes by
metalens should be the first layer of the model. Third, in
this study, metalens is designed at single wavelength (color).
Thus, all RGB images are transferred to grayscale images.

Fourth, for optic implementation purposes, the size of the
convolution kernel is limited. Last, the channel number of
the convolution layer is limited by the size of the optic device
capacity.

Split kernel. To keep the model convolution kernel
weight positive for the optic device implementation, we split
the convolution kernel into two parts; positive weight and
negative weight. As shown in Figure 4, the final convolution
kernel results are the subtraction of the two feature
maps from the positive and negative convolution kernels
respectively. Positively and negatively valued kernels are
achieved for incoherent illumination by using polarization
multiplexing, combined with a polarization-sensitive camera
and optoelectronic subtraction.

Removal of Non-linear Layer In traditional convolu-
tion operation, non-linear layer is typically added between
the convolution layers. The non-linear layer, including batch
normalization and activation layers (eg. ReLU) introduce
the non-linear transformation to the model. However, the
nonlinear operation is not included in our meta-optic
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Figure 3. An overview of our proposed large convolution kernel block with re-parameterization is presented. Learnable scaling factors are employed
to mimic the scaling function of batch normalization. In the inference stage, the block can be converted to a single convolution layer. ’FC’ refers to fully
connected layer in the figure.

device due to implementation cost. As shown in Fig. 4, the
non-linear layers are removed from the parallel convolution
branch and connected behind the large kernel convolution
layer.

Non-negative Weight in Optic Kernel In traditional
deep learning model, both positive weights and negative
weights are stored. The meta-optic model implementation
can only take positive kernel weights. Adaptation methods
are applied to convolutionmodel training to constrainmodel
weight to a positive value. Four methods are introduced in
model training; square of trigonometric functions, masking
out the negative value, adding non-negative loss, and
our proposed kernel split. The former three methods
constrain convolution kernel weight positive in digital model
training. The last, kernel split is achieved by meta-optic
implementation.

Square of trigonometric function: Instead of directly
updating the weight, we define weight as Eq. (6). The
weight Wi stays positive and in range [0, 1] whatever
the value of θ . To clarify, we utilize the square of the
trigonometric function to constrain weights within the [0,
1] range during the model training process. This approach
offers distinct advantages over normalizing the weights at
the inference stage. Specifically, the parameter θ can be
adjusted freely across any rangewithout introducing negative
weights, which is especially beneficial for our meta-optic
implementation.

Wi = Sin2(θi) (6)
Masking out the negative value: In the training process,

the weight smaller than 0 is assigned as 0 manually after each
iteration update.

Adding non-negative loss: Tomaintain themodelweight
positive, a non-negative weight loss is added to the loss
function, which is defined as Eq. (7).

loss=
∑

(model.weight< 0) (7)

Bandwidth and precision. Due to the accuracy of the
current fabrication ofmeta-optic, the optical inferencemight
lose precision. As a result, the model bandwidth and weight
precision should also bemodeled during the training process.
For example, PyTorch has a default 32-bit precision, which is
not feasible for the LMNN. Thus, the quantize is employed
to simulate the model performance when all digital neural
networks are implemented with optic devices. Taking the
noise in optic implementation into consideration, which will
affect themodel weights precision, we add theGaussian noise
to the digital convolution weight.

3.3 Model Compression
The stacked depthwise convolution and re-parameterization
can potentially improve the model performance by learning
with variance. The multi-layer structure can be regarded as
multiple stacked depthwise convolution layers which make
the model deeper. The multi-branch structure will make
the model wider. It is obvious that the designed model is
a complex structure. To save image processing time in the
inference stage, the multi-layer structure can be squeezed
into a single layer. In this paper, we only explore the squeezed
convolution layer. To get the equivalent squeezed layer, a
non-linear component should be eliminated. The non-linear
layers such as activation function and BN are moved out of
our squeezed block. The stacked convolution kernel follows
the Eq. (8).

y = (WN ∗ (WN−1 ∗ · · · (W2 ∗W1))) ∗ x
=W ∗ ∗ x (8)

W ∗ = (WN ∗ (WN−1 ∗ · · · (W2 ∗W1))) (9)

W ∗ is the equivalent weight to the stacked setting
in Eq. (9). As the number of stacked convolution layers
increases, the equivalent convolution kernel is larger. The
equivalent kernel size k and the number of stacked 3 × 3
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Figure 4. Adaptation for meta-optic implementation. (a) To implement the kernel with negative weight, we split the kernel into the positive kernel and
negative kernel and subtract from their feature map. (b) The non-linear layer needs to be removed from the parallel convolution path.

convolution layer n follow Eq. (10).

k= 2× n+ 1 (10)

For example, two 3× 3 convolution kernels are equiv-
alent to a 5 × 5 convolution kernel. The multi-branch
convolution layer can be compressed as shown in Fig. 3.

Since the convolution kernel value from the different
parallel branches is equivalent to a single kernel by over-
lapping kernel, a multi-parallel convolution branch can be
compressed into a single path.

4. DATA AND EXPERIMENTAL DESIGN
4.1 Data Description
Two public datasets, FashionMNIST [20] and STL10 [21],
were employed to evaluate the performance of the proposed
method on image classification tasks. For the FashionMNIST
dataset, we employed 60,000 images for training and 10,000
images for testing. The images were grayscale images in the
size of 28× 28. FashionMNIST was inspired by the MNIST
dataset, which classified clothing images rather than digits.
We employed STL-10 as another cohort with a larger input
image size (96× 96). In our experiments, the RGB images
in STL-10 were transferred to grayscale images due to the
physical limitation in the LMNN.

4.2 Large Kernel Re-parameterization
We proposed the large re-parameterized convolution kernel
design in our LMNN network to maximize the computa-
tional performance of the precious single metamaterial layer
by (1) taking advantage of high-speed light computation,
and (2) overcoming the physical limitations in an MNN
implementation.

To evaluate the large re-parameterized convolution
kernel on FashionMNIST, we constructed a naive model
that consisted of a large re-parameterized convolution kernel
block, a single fully connected layer, as well as non-
linear components (ReLU activation, BN, and the softmax
function). Different re-parameterization model structures
were evaluated. To demonstrate the impacts of the size, the
kernel was tested from 3× 3 to 31× 31. Besides the kernel
size, we evaluated multiple numbers of parallel branches,
from a single path to four paths.

4.3 Meta-optic Model Adaptation
The performance of the LMNN is fundamentally limited
by physical restrictions. We provide the model simulation
by modeling optic system limitations. Regarding model
limitations, the convolution kernel is implemented with
optical devices that can only have limited channels. To
include the meta-optic devices in our network, the layer that
is to be substituted should be the first layer of our model.
The following model structure can be designed digitally.
To validate model design on different sizes, deep neural
networks with multiple convolution layers are implemented.

To simulate the noise in real meta-optic fabrication,
we add random noise following Gaussian distribution.
To test the impact of noise level, we simulate the noise
amplitude range from0.05 to 0.2. Considering themeta-optic
implementation on the whole model for further research, we
quantize the model weight.

In order to evaluate the non-negative weight effect,
three methods are evaluated to constrain the model weight
positive. ‘‘Sin’’ means weights are defined by square of sin
function. ‘‘Mask out’’ is to eliminate the negative weight by
screening out. Loss function is also used to define the model
with positive weights.

The large kernel convolution design is validated on
fabricated meta-optic devices. Based on the well-trained
digital convolution kernel weight, meta-optic lenses are
implemented and tested in real optic systems shown in
Figure 5. The imaging system using a liquid-crystal-based
spatial light modulator (SLM) was built. An incoherent
tungsten lamp with a bandpass filter was used for SLM
illumination. The feature maps extracted by the meta-optic
were recorded by a polarization-sensitive camera (DZK
33UX250, Imaging Source) where orthogonally polarized
channels are simultaneously recorded using polarization
filters on each camera pixel. The algorithmwas programmed
based on Pytorch 1.10.1 and CUDA 11.0 with a Quadro RTX
5000/PCIe/SSE2 as the graphics cards.

4.4 Model Compression Efficiency
Through model compression, the model in inference stage
alleviates the computation load with lighter weights. The
fabricated convolution kernel by a meta-optic lens with the
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Figure 5. The meta-optic devices simulation and implementation platform. (a) Optic system for meta-optic lens test. The components in the figure are: Light
source: Tungsten Lamp; Filter: Wavelength filter; Pol: Polarizer; SLM: Spatial light modulator; Condenser: Lens to focus light on the SLM; MSs: Metasurfaces;
Ob: Objective lens. (b) Measured meta-optic kernel weight point spread function, used for optical convolution with the imaged object. (c) Theoretical
meta-optic kernel weight point spread function by simulation.

Table I. Large re-parameterized convolution experiment results.

FashionMNIST STL-10
Model Conv Test Model Conv Test

Naive model 3× 3 0.8495 3× 3 0.4500
RepLKNet [11] 7× 7 0.9015 7× 7 0.4993

11× 11 0.5241
RepVGG [56] 7+ 5+ 3 0.9081 7+ 5+ 3 0.5341

11+ 9+ 7 0.5650
Depthwise conv [22] 3 dwc 0.9084 3 dwc 0.5509

5 dwc 0.5935
Shufflemixer [26] 7× 7 0.9047 7× 7 0.5754

11× 11 0.9021 11× 11 0.5878
SCConv [42] 7× 7 0.8975 7× 7 0.5230

11× 11 0.8969 11× 11 0.5117
LMNN (Ours) 3 dwc+ 2 dwc+ 1 dwc 0.9115 5 dwc+ 3 dwc+ 1 dwc 0.6120

‘dwc’ refer to the depthwise convolution layer, convolution kernel size is 3× 3

digital backend is assembled as the hybrid model. We test
the model’s inference time by feeding the same image and
recording the model’s processing time.

To test the optimal LMNN structure under the meta-
optic fabrication limitation, the combination of layer num-
bers from one to five and channel numbers from nine to
twenty. Themodel digital computation load (FLOPs) and the
ratio of meta-optic is computed to find the model structure
achieves optimal efficiency.

5. RESULT
In this section, we first evaluate our proposed large kernel
networkwith a simplemodel structure, using FashionMNIST
dataset and STL-10 dataset.We then evaluate the large kernel
capability on complex CNNs with the same dataset.

5.1 Large Re-parameterized Convolution Performance
We evaluated the large re-parameterized convolution model
on FashionMNIST and STL-10 datasets. As shown in
Table I, the naive model with 7× 7 convolution kernels has
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Figure 6. Performance of the Large Convolution WideResNet-101 model on STL-10 dataset. The model was assessed using varying convolution kernel
sizes, ranging from 7×7 to 31×31. The LMNN consistently outperforms, highlighting the benefits of utilizing larger convolution kernels.

demonstrated better performance than that of 3× 3. With
structural re-parameterization, the model prediction accu-
racy further improves. Meanwhile, the model implemented
with a depthwise convolution (DWC) layer outperformed
the baselines with both small and large convolution kernels.
Other SOTAmodel performances are included: Shufflemixer
reaches 0.5878 with 7 × 7 kernel while SCConv performs
better on 11× 11 kernel (0.5230).

Our large kernel model was evaluated on STL10 dataset
with a larger image size (96× 96). As compared with per-
formance on FashionMNIST (image size 30× 30), the large
kernel convolution model reveals greater improvements, as
shown in Table I. The model with 11 × 11 kernel size
has better accuracy (0.5341) compared with that of using
3× 3 and 7× 7. By integrating the DWC design, the model
performance boosts from 0.5241 to 0.5935. Shufflemixer
and SCConv were evaluated on STL10 with kernel size
7× 7 and 11× 11 and shows comparable model accuracy.
Shufflemixer attained 0.9047 on 7× 7 and SCConv attained
0.8975 on 11 × 11 kernel size. Our proposed large kernel
block outperformed all SOTA approaches and achieved
the best accuracy of 0.6015 with teacher model supervised
training.

To further validate our large kernel with DWC de-
sign, we conducted experiments on more sophisticated
models by replacing all convolution layers with the large
re-parameterized convolution layers. Briefly, WideResNet-
101 was used as complex model backbone [57]. Model
performance is shown in Figure 6. By substituting the
first convolution layer with a larger kernel size, the model
performance improves from0.94 to 0.96whenutilizing larger
images (256× 256 RGB).

5.2 Performance of Model Adaptation
To validate our large kernel design on the real metasurface
fabrication model shown in Fig. 5, we implement a model
trained on FashionMNIST with a large kernel design, utiliz-
ing a digital design for comparison. The digital convolution
layer has 12 channels 7 × 7 convolution kernel which is
the optimal kernel design under the current meta-optic

Table II. Metasurface fabrication.

Method Test

Digital Neural Network (DNN) 0.9015
Large Kernel MNN (LMNN) 0.8760

implementation limit. As shown in Table II, the MNN
demonstrates excellent consistency with the theoretical
performance of a DNN.

Due to meta-optic implementation limits, four adap-
tation methods are applied to constrain kernel weights to
positive. According to the model performance, our proposed
kernel split method shows superior performance over the
common training strategies.

5.3 Ablation Studies
To evaluate the upper bound performance on FashionM-
NIST, a deep model structure is implemented and tested
on FashionMNIST. The number of convolution layers in
our model ranges from 1 to 5, and the channel number
ranges from 9 to 30. The model performance is shown in
Fig. 7(a). The model with more parameters shows a higher
accuracy. Regardless of themeta-optic fabrication limitation,
the meta-optic hybrid model achieves better performance.

To validate our model bandwidth and weight precision
limit simulation, the results of the experiment are shown in
Figure 8.

5.4 LMNN Efficiency and Speed Evaluation
To evaluate the model on both speed and computation load,
we computed the model FLOPs except the large convolution
layer and the FLOPs ratio of the layer implemented by
meta-optic material. The model performance with different
structures is shown in Fig. 7(b). The optimal model structure
is at the top left corner in the shadow area. As shown,
the model with 1 large re-parameterized convolution layer
and 12 channels is the optimal structure. To show the
speed advantage of our LMNN, the model inference time is
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Figure 7. (a) The large re-parameterized convolution model performance with different layer numbers and channel numbers. (b) Large convolution kernel
efficiency evaluation. The circle in different colors shows different convolution layer structures. The shadow area is the model structure that can be fabricated.
The circle area shows the FLOPs ratio of the layer implemented by meta-optic material. x-axis is the model FLOPs except the layer to be fabricated. (c) Model
inference time between the baseline digital model and hybrid model. The orange bar in the figure shows the time used in our model.

Figure 8. Plot of ablation study on LMNN. (a) Evaluating non-negative weight effect on model performance. (b) Measuring the effect of model bandwidth
and weight precision effect on model prediction accuracy. ‘Pr’ in Figure (b) means precision.

recorded. From Fig. 7(c), the hybrid model shows a speed
twice as fast as compared to the digital convolution model.

6. DISCUSSION
In this study, we present a convolution block with a
large kernel design that generates larger receptive fields
to maximize the digital capacity of LMNN. To validate
the large kernel convolution design, we further applied the
block to a complex model such as WideResNet-101. From
the experiments, two important components contribute to
the improvement of large kernel design from traditional
3 × 3 kernel size. First, the larger convolution kernel can
get larger receptive fields. According to the target image
size, the larger convolution kernel size is not the better. For
FashionMNIST in size of 30× 30, 7× 7 is the best kernel size.
For images from STL-10 dataset in size of 96× 96, 11× 11
kernel performed the best. Another interesting point is that
the stacked depthwise convolution layers have equivalent
computing operations to the single convolution layer with a
larger kernel size. Themulti-layer depthwise convolution and
multi-branch structure expand the model capacity without
parameter increase.

The proposed LMNN model bridges the disparity
between natural objects and digital neural network analysis.
Challenges in hybrid neural network design arise from the
optical front-end, stemming from noise sources in the analog
signals. These include stray light, detector interference,
image misalignment due to optical inconsistencies, off-axis
imaging aberrations, and fabrication flaws in the metalens
and kernel layers. The system’s bandwidth is constrained by

the multi-channel lens, given the kernel layer’s broadband
nature. Optimizing the balance between bandwidth and
aperture size is crucial for meta-optic systems. While the
current optical approach mainly supports linear operations,
future layers based on nonlinear media might facilitate
activation functions. Even without these functions, refining
the neural architecture can shift more linear tasks to the
front-end. End-to-endmodel optimization ensures themeta-
optic system effectively balances bandwidth and aperture
considerations.

Since the large convolution kernel achieved superior
performance on image classification tasks, more computer
vision tasks have scope for improvement. For image segmen-
tation task, it can be regarded as a pixel-level classification
problem. The large convolution design can be applied to
segmentation tasks. Object detection can be another choice
for large convolution kernel applications. Different sizes of
convolution kernel provide multiple fields of view. The views
from multiple scales can abstract representation with more
spatial information.

7. CONCLUSION
In this study, we introduced a large-kernel convolution block
tailored for implementation on a meta-optic lens. Through
model re-parameterization and multi-layer compression, we
were able to efficiently condense intricate digital layers,
making them compatible with the constraints posed by op-
tical fabrication techniques. By explicitly incorporating the
physical restrictions, we re-evaluated and refined the design
of a metamaterial neural network. The proposed LMNN
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demonstrated superior performance on FashionMNIST and
STL-10 datasets, attributable to its expanded receptive fields.
Notably, the incorporation of light-speed optical convolution
led to reductions in computational latency and energy
consumption. Our research underscores the efficacy of
optimized digital modeling, presenting a strategic pathway
for adapting to physical limits in future optic-digital hybrid
designs.
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