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Abstract. The optimal colors with maximum chroma at constant
lightness present an ideal target for the colorants pursuing the
ultimate wide color gamut. MacAdam proved that optimal colors
are composed of square pulse-shaped spectra with at least two
tansition wavelengths λ1 and λ2 whose reflectances change from 0
to 1 or 1 to 0. The optimal color gamut is created from two-types, a
convex-type with reflectance 1.0 in w = λ1 ∼ λ2 and 0.0 otherwise,
or a concave-type with reflectance 0.0 in w = λ1 ∼ λ2 and 1.0
otherwise. It takes a high computation cost to search the optimal
color candidates in high precision and to create the 3D color gamut.
In addition, the human visual spectral responses to the optimal color
spectra remain unknown. This paper (1) proposes an alternative
simple method for creating the optimal color gamut with GBD
(Gamujt Boundary Descriptor) technique, and (2) clarifies how
human vision spectrally respond to the optimal colors based on
Matrix-R theory, for the first time which was unknown until now, and
(3) presents centroid-invariant novel color gamut expansion method
considering the optimal color as an ideal target and finally apply it to
actual low-saturation images to verify its effect. c© 2023 Society for
Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2023.67.5.050414]

1. INTRODUCTION
The idea of optimal colors was first introduced by Ostwald.
Schrödinger [1], a famous Nobel Prize winner, and predicted
the optimal color pigments with highest luminosity at
constant chromaticity, where the spectral reflectances must
have at most two transitions between 0 and 1. Thus, two
types of ‘‘optimal color’’ spectral reflectances are possible;
either the transition goes to 1 in the middle from 0 at the
both ends of spectral range (Convex-type), or goes to 0 in the
middle from 1 at the both ends conversely (Concave-type).
Dyes or pigments with rectangular pulse wave-like spectral
distribution do not exist, and such virtual dye is called ‘‘block
dye’’ [2]. The optimal color presents an ideal target for
developing the colorants with the wider color gamut.

MacAdam [3] gave the first complete proof of the
optimal color theorem and the precise coordinates on
the boundary of the optimal color solid which is called
MacAdam limits. West and Brill [4] generalized the math-
ematical conditions under which reflectance functions are
optimal. MacAdam limits are useful for evaluating the
colorimetric reproducibility of the real colorants. Perales
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et al. [5] searched the optimal colors with 0.1 nm step and
succeeded in the formation of high precision optimal color
gamut. Fu Jiang et al. [6] estimated the number of discernible
object colors fromblock dye spectral reflectanceswith 0.1 nm
step based on color appearance model CIECAM02.

Although the higher the wavelength resolution, the
greater the number of optimal colors seeked out, but it
takes high computation cost to create the entire color
gamut and makes it hard to compare with that of real
colorant quickly. Recently, Contore [7] presented an elegant
zonehedral approach to create the optimal color gamut more
simpler.

Another motivation in this paper lies in how the human
vision responds to the rectangular pulse wave-like block dye
spectra with step function. Since the spectral sensitivities of
LMS cones have the smoothed band-limited profiles, any dull
spectral responses may appear in the human vision when
responding to the sharp step functions and may cause the
limited chromatic saturation.

This paper discusses afresh the optimal color problem
focusing on the following three subjects.

(1) A simple method for creating the optimal color gamut
with GBD (Gamut Boundary Descriptor) used for
Gamut Mapping

(2) How the human vision responds to the rectangular pulse
wave-like step function of block dye spectra.

(3) Application for image gamut expansion aiming at the
optimal color gamut as an ideal target.

Figure 1 shows a flow diagram for searching the optimal
colors and forming its 3-D color gamut.

2. GENERATIONOF BLOCK-DYE SPECTRAL
REFLECTANCE

The optimal colors come from the two types of spectral color
chips as shown in Figure 2.

(A) Convex-typewith reflectance 1.0 inw = λ1 ∼ λ2 and 0.0
otherwise

(B) Concave-type with reflectance 0.0 in w = λ1 ∼ λ2 and
1.0 otherwise

Assuming the visible wavelength range of 380 nm–
730 nm, all possible block dye spectra are generated by
changing the two parameters of (λ1, w) as follows.

λ1 = 380+1λ(j− 1) : j= 1∼ (n− 1). (1)
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Figure 1. A simple method for forming optimal color gamut with computer generated block dye spectra.

Figure 2. Two types of spectral reflectances for creating optimal colors.

The width w is limited to

w = 730− λ1 = k1λ : k= 1∼ (n− j), (2)

where, n denotes the discrete sampling number as

n= (730− 380)/1λ+ 1= 350/1λ+ 1. (3)

Since the number of possible shapes for each type in
Fig. 2 is given by n(n+ 1)/2, the total number of generated

spectra is
N = n(n+ 1). (4)

In this paper, the block-dye spectral chips Cm (m= 1∼
N ) are generated for the two cases of

(a) Coase: n= 71 dimension,1λ= 5 nm, N = 5112
(b) Fine: n= 351 dimension,1λ= 1 nm, N = 123552

3. VISUAL RESPONSE TOOPTIMAL COLOR
SPECTRA

Since an optimal color with block-dye shaped spectrum
shown in Fig. 2 is a nonexistent ideal colorant, the visual
spectral response to such virtual dye is unknown and hasn’t
been reported so far.

Though, thinking that a reflective spectrum fromablock
dye is composed of a set of single spectra contained in the
range of w = λ1 ∼ λ2, the visual spectral response to such
block dye should be obtained by integrating their single
spectral responses.

Figure 3. Matrix R composed of two different wavelength resolution 1λ.
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Figure 4. Decomposition of block dye spectrum through Matrix R.

Now, recall that theMatrix-R [8] is a projection operater
to HVSS (Human Visual Sub Space) from specral space.
Since the Matrix-R extracts a visible spectrum (called
fundamental) from a n-dimensional spectra, we can estimate
the visual response to the block dye spectrum. Based on
Matrix-R theory, the fundamental Qm, that is, the visual
spectral response to a block dye chip Cm is mathematically
described by

Qm = RCm,R=A(AtA)−1At
: t = transpose

where,A= [x(λ)y(λ)z(λ)] : color matching func.
(5)

Here, CIE1964 10 degree color matching function A is used.
Now, input Cm is decomposed to fundamental Qm and

the metameric black Bm through the projection operator R
as

Cm =Qm+Bm, Bm = Cm−Qm = RKCm, RK = I −R.
(6)

Figure 3(a) and (b) illustrate the 3-D profiles ofmatrix-R
for1λ= 5 nm and1λ= 1 nm resolutions individualy.

Figure 4 shows a sample how the block dye spectral
reflectance is decomposed into the fundamental Qm and
the metameric black Bm, where Qm is perceived to human
vision as visible spectrum, while Bm, is casted as an invisible
component with zero tristimulus value.

As noticed in the profile ofQm in Figure 5, human vision
cannot respond to the sharp spectral change like as step
function but shows a dull response.

The fundamental Qm carries the XYZ tristimulus value
Tm of block dye spectrumCm so that the sameTm is obtained
even if operating the matrix R on either Cm or Qm over
and over again [9]. That is, R means an identity projection
operator as follows.

Qm = RQm = R (R · · · (RQm)= RqQm(q= 1∼∞)

Tm =AtCm =AtQm, while TBm =AtBm = 0. (7)

Now, describing the Eq. (5) in detail, the visible spectral
component Qm is expressed as

Qm = RCm = [u1 u2 u3 · · · · · · · · · un]tCm

=



Qm(λ1)

Qm(λ2)
...

Qm(λj)
...

Qm(λn)



=



u1(λ1)u1(λ2)u1(λ3) · · · u1(λn)

u2(λ1)u2(λ2)u2(λ3) · · · u2(λn)
...

...

uj(λ1)uj(λ2)uj(λ3) · · · uj(λn)
...

...

un(λ1)un(λ2)un(λ3) · · · un(λn)





Cm(λ1)

Cm(λ2)
...

Cm(λj)
...

Cm(λn)


. (8)
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Figure 5. Dull human visual spectral response to block dye caused by integrated monochromatic fundamentals gated through block dye pulse.

It’s worthy of notice that the fundamentals {uj} correspond-
ing to the monochromatic light stimuli are arranged in each
row and column in the Matrix-R. That is, each row vector
uj denotes the fundamental to the monochromatic light
stimulus Pj whose jth entry is 1.0 alone at the wavelength λj
and others are 0.0 as

uj = [uj(λ1)uj(λ2)uj(λ3) · · · uj(λn)] = RPj
Pj = [0 · · · 0 1 0 · · · 0]t : monochromatic stimulus
with jth entry = 1 for λj and others= 0.

(9)
Since the Matrix-R is symmetric, there is the following

relation between the row and column entries

uj(k)= uk(j). (10)

Hence Eq. (8)means that the fundamentalQm perceived
to human vision is given by the weighted sum of each
fundamental uj and the entry Cm(λj) corresponding to
wavelength λj of the input block dye spectrum Cm.

Fig. 5 illustrates an example of how our vision system
responds to a block dye spectrum with the reflectance 1.0 in
the range of 470–510 nm. The profiles of 9 row vectors in the
Matrix-R are shown sampled by1λ= 5 nm step. According
to the Eq. (8), the block dye input works to pass the the
fundamentals {uj} inw = 470–510 nm just as a gate pulse. As
a result, the integrated single spectral fundamentals passing
through the block dye gate cause a dull fundamental Qm
(red marked) perceived as a visible sensation. This is the first
mathematical interpretation clarified in this paper, and it is
due to the utility of the Matrix-R theory. Figure 6 illustrates

the typical samples how the human vision perceives these
optimal colors in relation to the block dye spectra.

Cm versus the fundamentals Qm as their visual re-
sponses. It should be noted that human vision cannot
respond to sharp spectral changes in block dyes, and exhibits
a dull responses.

4. EXTRACTIONOF OPTIMAL COLORS BY GBD
METHOD

The generated block dye spectra are mapped to CIELAB
color space. Figure 7 shows the color distribution for
convex, concave and both block-dye chips in (a) N = 5112
(1λ = 5 nm) and (b) N = 123552 (1λ = 1 nm). Though
the shell-shaped distributions are little bit sparse around the
center, the outer surfaces both in (a) and (b) form the 3D
gamut approximately close to the high precision model by
Perales et al. [5] with 1λ = 0.1 nm. In practice, the color
distributions in case (b) may be enough to get the optimal
color gamut even if using such a rough sampling pitch as
1λ= 5 nm.

In this paper, the optimal colors are extracted by
applying our GBDmethod [10] for the color distributions in
Fig. 7. The GBD is represented by a set of maximum radial
vectors {rGBD(θp, ϕq)} in the segmented polar coordinate as
shown in Figure 8. The optimal colors are extracted as the
surface colors located at the tips of the maximum radial
vectors.

Letting the CIELAB value be QLAB
m = [L∗m, a∗m, b∗m] for

the fundamentalQm, the radial vector rm pointed to (θm, ϕm)
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Figure 6. Visual response and color appearance for typical optimal colors.

from the centroid ropt is described as follows.

rm(θm, ϕm)=QLAB
m − r0; r0 = [L0, a0, b0] = [L

∗

m, a
∗
m, b
∗

m]

(11)

θm = tan−1
(
b∗m− b0

a∗m− a0

)
; 0≤ θm ≤ 2π

ϕm =
π

2
+ tan−1

(
L∗m− L∗0

{(a∗m− a∗0)2+ (b∗m− b∗0)2}
1/2

)
;

0≤ ϕm ≤ π (12)

where, ϕm is treated as a positive value by adding the offset
by π/2.

Now, segmenting the radial vectors {rm(θm, ϕm)} to the
fan-shaped sectors divided by (1θ , 1ϕ) and finding the
maximum vector in each sector, we get the GBD as a set of
maximum radial vectors as shown in Eq. (13).

roptGBD(θp, ϕq)=
N

max
m=1
{rm(θm, ϕm)};

1≤ p≤ P and 1≤ q≤Q
where, (p− 1)1θ ≤ θp ≤ p1θ
and (q− 1)1ϕ ≤ ϕq ≤ q1ϕ
1θ = 2π/P and 1ϕ = π/Q.

(13)

Figure 9 shows a 3-D color solid constructed from the
optimal colors extracted from the color distributions in Fig. 7.
Here the color solid is rendered with GBD by the maximum
radial vectors. The smoothness of gamut surface depends on
the resolution1λ and segmentation pitches (1θ ,1ϕ) for the
radial vectors {rm(θm, ϕm)}.

Since the maximum radial vectors {roptGBD(θp, ϕq)} are
quantized to P × Q(p = 1 ∼ P, q = 1 ∼ Q), the number of
optimal colors located at the tips of them is limited to at
most M = P ×Q. Though, all the fan-shaped sectors don’t
always include the color chips but some of them become
empty, because the color distributions of block-dye chips are
not uniform in CIELAB space.

Indeed, in case of Fig. 9(a), P × Q = 16 × 16 = 256
optimal colors are expected to be found, but M = 241
colors are extracted with 15 empty sectors. Of course, even
in this coarse resolution of 1λ = 5 nm, the number of
extracted optimal colors could be increased to M = 677 by
sub-dividing the sectors to P ×Q= 32× 32= 1024, but the
ratio of empty sectors relatively increases too.

In case of Fig. 9(b) with fine resolution of 1λ= 1 nm
and P × Q = 64 × 64 = 4096, we could find M = 3565
optimal colors and create the smoother gamut, andmoreover
up toM = 12011 for P ×Q= 128× 128 with1λ= 1 nm as
shown in Table I below.

Table I lists up the numbers of extracted optical colors.
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Figure 7. Generated Block dye color chips with different resolutions in 1λ.

Table I. Numbers of extracted optimal colors.

Number of
Sectors P × Q Block dye

Resolution 16× 16 32× 32 64× 64 128× 128 Chips N

M 1λ= 5 nm 241 677 1480 — 5132
1λ= 1 nm 251 967 3565 12011 125332

Figure 10 shows a comparison with the standard sRGB
and a wide gamut PDP display (Panasonic). Clearly the

optimal color gamut is large enough to completely cover the
actual device gamuts.

5. APPLICATION TO IMAGE GAMUT EXPANSION
The optimal color gamut is an ideal target for the imaging
colorants or display devices. Although a variety of Gamut
Mapping Algorithms (GMAs) [10] have been developed,
most of them have aimed at compression from wide image
gamut to narrow device gamut so far. As the imaging devices
with wider color gamut developed, the expansion GMA for
the images with narrower gamut than display or printer is
required to reproduce the vivid and emotional colors. Our
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Figure 8. GBD as a set of maximum radial vectors in Polar coordinates.

previous works proposed the Image-to-Device GMA [11]
and compact description [12] of GBD by radial vectors and
advanced to the image gamut expansion GMA [13].

Lastly, an application to the GBD-based image gamut
expansion is challenged targeted on the optimal color gamut.
Here the following two methods for image gamut expansion
were comparatively tested.

5.1 Simple Expansion
A conventional simple method for image gamut expansion is
to stretch the image CIELAB vector laborgimg by a gain factor G
into the outer direction, getting the expanded result as

labexpandimg =G laborgimg. (14)

5.2 Centroid-Invariant Adaptive Expansion (Proposed)
In contrast, the new method proposed in this paper expands
a imageCIELAB vector laborgimg so that the position of centroid
immovable even after expansion like as

labexpandimg =G laborgimg+ (1−G)rimg

where, rimg = Centroid[laborgimg]. (15)

Here, rimg means the centroid of original image color
distribution.

As a measure, the gain factor G > 1 may be decided
statistically, with reference to the standard deviation ratio of
optimal color versus original image color GBDs as

G=G0(σopt/σimg)

σopt/σimg = Sigma[{r
opt
GBD(θp, ϕq)}]/Sigma[{r

img
GBD(θp, ϕq)}].

(16)

The constant G0 is adjusted not to exceed the optimal
color gamut boundary considering the image color GBD
r img
GBD(θp, ϕq).

Figures 11–13 show the gamut expanded examples for
typical three images with high, medium, and low saturations.

Fig. 11 is an amateur photo with good color reproduc-
tion. Although it seems unnecessary to expand the color
gamut, there is still a small amount of space that can be
stretched compared to the optimal color gamut. In the simple
expansion result (b), the colors are overflowing a bit beyond
the boundary for the gain factor G= 1.3, while they are just
fitted inside the optimal gamut shell for the same gain factor
G in the result (c) by the proposed method . The colors in
blue sky or red roof of tower are well expanded and nicely
reproduced in vivid and are clean.

Fig. 12 is a result for ‘‘Harbor’’ with medium saturation.
This is a kind of standard image but it looks a little
desaturated. In Fig. 11, the image gamut was sucessfuly
expanded to be just fitted inside the optimal color gamut for
the gain factor G= 1.34 by the proposed method as shown
in (c), while the simple expansion result (b) is causing a
little overflow for the same gain factor G, because the gravity
center of expanded color distribution moved upwards.

Fig. 13 is an example which still has room in the color
space for gamut expansion. In this sample, it was possible
to expand up to G = 1.65, which is the very limit of the
optimal color gamut boundary by the adaptive method as
shown in (c), while the colors much overflowed after the
simple expnsion in (b).

6. ADDITIONAL EXPANSION TESTS & DISCUSSION
Figures 14–16 show additional test resultes for different type
of images from Figs. 11–13.
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Figure 9. Extracted optimal colors and formation of 3-D gamut.

Figure 10. Comparison in color gamuts between devices and optimal color.
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Figure 11. Image color gamut expansion example (amateur Photo).

Figure 12. Image color gamut expansion texample (standard image).
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Figure 13. Image color gamut expansion example (low saturation image).

Figure 14. Image color gamut expansion texample (standard Movie).

Fig. 14 is the expanded result in JPEG still image picked
up from the test movie named ‘‘Euro Market’’ with high
saturation.

Although this image seems unnecessary to expand the
color gamut similar to Fig. 11, There is still some room for

expansion, and surprisingly, it could be expanded with gain
G = 1.3. of course using the proposed Centroid-invariant
method [B].

Fig. 15 is another sample applied to the well known
test movie ‘‘Street Car’’. Since this image is less saturated as
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Figure 15. Image color gamut expansion texample (standard Movie).

Figure 16. Image color gamut expansion texample (amateur Photo).

compared with ‘‘Euro Market’’, it could be expanded up to
the very edge of the gamut boundary of the optimul colors
with G= 1.52.

Fig. 16 is a professional photo taken under clear blue
sky. In this sample, the gain factor G was automatically set to
G= 0.975 according to Eq. (16). It showed the lowest value
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Table II. Gamut expansion rate.

Image Lake Harbor Sagano

VG 0.987 1.765 3.105

among all tested images. If G= 1, no color gamut expansion
is performed as indicated by Eq. (15), so the gamut expansion
rate in this example was also the lowest value 0.85 as shown
in Table III.

In any of all above examples, the reason why the
proposed expasion method [B] is significantly better than
simple expansion method [A] is that the center of gravity
of the color distribution after expansion is unchanged while
maintaining the center of gravity of the original image color
distribution.

The proposed Centroid-invariant Adaptive Expansion
[B] is fundamentally different in principle from the con-
ventional methods, and is realized by the simple but clever
formula Eq. (15).

The feature is that the expansion is performed by
averaging the color vector laborgimg of each pixel and the
centroid rimg of the original image with weights G and (1-G).

7. MEASURING EXPANSION RATE OF GAMUT
VOLUME

The Gamut expansion effect can bemeasured by the increase
in gamut volume. Since the calculation of 3-D gamut volume
for complicated color disribution is not easy, here we roughly
estimated it by an ellipsoidal approximation.

The 3D shape of clustered color distributions as shown
in Figs. 11–13 is fitted to an ellipsoid whose semi-axes are
estimated using PCA (Principal Component Analysis), then
the geometric volume of ellipsoid is mathematically given by

Vol{ellipsoid} = (4π/3)
√
λ1
√
λ2
√
λ3, (17)

where, {λ1, λ2, λ3} denotes 1st, 2nd and 3rd eigenvalues.
Here, their square roots correspond to the half axes of

ellipsoid.
Thus each gamut expansion rate for the images of

Figs. 11–13 was measured by the rate of gamut volume after
versus before expansion Vol{expanded} versus Vol{original}
noted as

Vol Gain=VG=Vol{expanded}/Vol{original}. (18)

Table II summarizes the gamut expansion rate for each
image.

As well, the gamut expansion rate for the additional
images of Figs. 14–16 was measured as shown in Table III.

8. DISCUSSIONS
The results in Table II show that the Lake image does not
have an expansion effect and retains its original volume. This
seems strange at first glance, but the reason is that this source
image is originally highly saturated and there is almost no gap

Table III. Gamut expansion rate (additions).

Image Euro Market Street Car Mt. Fuji

VG 1.271 1.280 0.850

to the color gamut boundary, and it tells us that expansion
beyond 1 is impossible, so it is a convincing result.

In addition, for low-saturation images such as Harbor
and Sagano, the expansion rate seems to be automatically
adjusted adaptively to the saturation of the image. It can be
said that the proposed model worked reasonably.

Table III, on the other hand, tells an interesting result.
Among all the images tested in this paper, image 16 showed
the lowest values for both G and expansion rate VG. Only
the G value is less than 1.0, which means that it is the most
difficult to expand the color gamut. This image is believed to
have been taken by a professional photographer. Could it be
an indicator of skill? Very interesting.

The constant G0 is set to around 0.5 in all of the above
samples. Though it should be optimized in more rational
and theoretically considering the relation between the both
GBDs of given image and the optimal colors characteristics.
Development of more rigorous mathematical optimization
method for the gain factor G adaptive to any image is left
behind as a future work.

9. CONCLUSIONS
This paper discussed on the optimal colors afresh from a
different point of view. A harvest is summarized as follows.

(1) A simple and easy method for shaping the optimal color
gamut by GBD is proposed.

(2) Visual spectral response to block dye is analyzed for the
first time based on the Matrix-R theory and clarified
how their dull responses appear as a result of integrated
fundamentals to the monochromatic single spectal
stimuli.

(3) A novel Centroid-invariant image gamut expansion
method is first introduced. Optimal color gamut is
utilized as an ideal target and succeeded in improving
the color appearances of low-saturation images by
expanding their color gamuts maintening the gravity
center of color distribution in original image.
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