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Abstract. We propose a three stage learning-based approach for
High Dynamic Range (HDR) video reconstruction with alternating
exposures. The first stage performs alignment of neighboring frames
to the reference frame by estimating the flows between them, the
second stage is composed of multi-attention modules and a pyramid
cascading deformable alignment module to refine aligned features,
and the final stage merges and estimates the final HDR scene
using a series of dilated selective kernel fusion residual dense
blocks (DSKFRDBs) to fill the over-exposed regions with details.
The proposed model variants give HDR-VDP-2 values on a dynamic
dataset of 79.12, 78.49, and 78.89 respectively, compared to Chen
et al. [“HDR video reconstruction: A coarse-to-fine network and
a real-world benchmark dataset,” Proc. IEEE/CVF Int’l. Conf. on
Computer Vision (IEEE, Piscataway, NJ, 2021), pp. 2502–2511]
79.09, Yan et al. [“Attention-guided network for ghost-free high
dynamic range imaging,” Proc. IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (IEEE, Piscataway, NJ, 2019), pp.
1751–1760] 78.69, Kalantari et al. [“Patch-based high dynamic
range video,” ACM Trans. Graph. 32 (2013) 202–1] 70.36, and
Kalantari et al. [“Deep hdr video from sequences with alternating
exposures,” Computer Graphics Forum (Wiley Online Library, 2019),
Vol. 38, pp. 193–205] 77.91. We achieve better detail reproduction
and alignment in over-exposed regions compared to state-of-the-art
methods and with a smaller number of parameters. c© 2023
Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2023.67.5.050409]

1. INTRODUCTION
There is a difference and mismatch of dynamic range
information when capturing a physical scene. This means
that more visual information is available in the scene than
what can be captured and reproduced as conventional
camera system’s capabilities are limited in simultaneously
covering the wide range of luminance in a single exposure.
Additionally, a large part of the digital content currently used
is stored and captured using 8-bit integer values, offering
28
= 256 distinct levels. These device-referred formats such

as JPEG, PNG, TIFF, etc. are constructed according to the
limitations of display devices and accommodate according
to the capabilities of the imaging device with minimum care
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for loss of visual information that the imaging device cannot
display [1].

High Dynamic Range (HDR) video can be created
through reconstruction using single or multiple Low Dy-
namic Range (LDR) frames captured using conventional
cameras by alternating the exposure of each frame using
software solutions or using specialized single-shotHDRcam-
eras. HDR reconstruction using single exposure is further
divided into three unique sub-problems of decontouring
(Daly and Feng [2], Song et al. [3], Luzardo et al. [4],
Mukherjee et al. [5], tone expansion Banterle et al. [6, 7],
De Simone et al. [8], Masia et al. [9]) and filling of details
in over-exposed regions from its adjacent non-exposed
pixels [10, 11]. Time-sequential multi-exposure techniques
are anotherway to captureHDR images, by taking a sequence
of images with different exposures. Although an LDR sensor
may record only a small portion of the whole luminance
range of a scene at any given time, it has a functional
range with the potential to include the entire luminance
range by adjusting the exposure of each capture. The images
are further combined to generate an image with a higher
dynamic range. For video, one can obtain alternate exposures
between subsequent video frames, this had resulted in
multi-exposure techniques for video. In the case of HDR
reconstruction of video, the problem of frame alignment to
compensate for camera and object motion arises. This is
often solved by methods that rely on pixel-level alignment
with optical flow [12–15]. Recently, several learning-based
methods have been used for reconstructing HDR video.
Refs. [13–15] addresses the problem of HDR reconstruction
by using Convolutional Neural Network(CNN) with optical
flow to learn the HDR video reconstruction. Wu et al. [16]
aligned LDR frames by performing homography, which is a
non-flow-based approach. Yan et al. [17] applied attention
mechanism for content alignment and gave importance to
only those features that are similar to the reference image and
excluded regions with motion and severe saturation. Later,
they introduced a non-local neural network [18]. Despite
these appraoches it still remains a big challenge to reconstruct
ghost-free HDR videos from sequences with alternating
exposures.

In this paper, we introduce a learning-based approach
to address the issue of HDR video reconstruction with two
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alternating exposures. The goal is to obtain ghost-free videos
with good detail preservation. Our approach has three main
stages, the first stage performs alignment of neighboring
frames to the current frame by estimating the flows between
them, recovering a large part ofmissing details from the input
LDR images, and the second stage is composed of multi-
attention modules and a Pyramid Cascading Deformable
(PCD) alignment module [19] to refine previously aligned
features by performing a sophisticated feature alignment.
The final stage performs merging by estimating the final
HDR scene based on a series of Dilated Selective Kernel
Fusion Residual Dense Blocks (DSKFRDBs) with global
residual learning strategy [17, 20] that allows the network
to fill the over-exposed regions with rich details. The
entire network is trained in an end-to-end fashion to
reconstruct HDR video. We employ L1 and a combined
L1MS–SSIM [21] loss function to minimize the error
between the reconstructed and original HDR frames.

The major contributions of our work for HDR video
reconstruction are as follows:

• Introduction of multi-attention (particularly using a
selective kernel fusion module) blocks with the goal of
proper image alignment by extracting rich information
spatially, channel-wise, and giving attention to the scale
of the content in the input frames.
• For effective HDR video reconstruction, we employ
robust DSKFRDBs in the merge network for recovering
details in over- and under-exposed regions.
• Our proposed model has fewer network parameters
than previous learning-based techniques.
• Model training is performed using L1 and a combined
L1MS–SSIM loss to guide the optimization algorithm
by learningmore refined networkweight parameters for
HDR video reconstruction.

Our proposed multi-attention selective kernel fusion
HDR network (SKFHDRNet) method showed a fair im-
provement over existing techniques and makes it possible to
use LDR frames in HDR video reconstruction.

2. RELATEDWORK
Different approaches have been proposed for hardware-
based HDR video acquisition and computationally-based
HDR reconstruction. Nayar and Mitsunaga [22] and Nayar
et al. [23] proposed different types of per-pixel changeable
optical density masks that were used to vary the spatial
exposure to capture the scene at different exposures. Oth-
ers [24–26] were able to successfully capture a wider range
of HDR video through internal/external beam-splitters. The
sensor’s dynamic range capabilities are improved by [27],
while some sensors calculate the logarithm of the irradiance
in the analog domain using the logarithmic response of a
sensor [28, 29].

Many single-exposure computationally-based inverse
tone mapping operators made efforts to solve the issue
by applying separate expansion to pixels that are classified

as saturated recovering details in over-exposed regions [6,
30–34]. Didyk et al. [35] decomposed video frame com-
ponents into diffuse, reflections, and light sources using
a semi-manual classifier (Zhang and Brainard [10] and
Xu et al. [11]) to perform pixel-level image processing. A
dithering-based approach was proposed that adds noise to
mask banding artifacts due to quantization [2, 5]. More
recently, several methods have employed deep learning
strategies for single-exposure HDR image reconstruction.
Eilertsen et al. [36] used a CNN-based encoder and decoder
architecture reconstructing colors, intensities, and details in
saturated regions. By merging bracketed LDR images, Endo
et al. [37] indirectly recreated an HDR image from a single
LDR input. Liu et al. [38] developed three deep networks for
dequantization, linearization, and hallucination of missing
details in over-exposed regions.

Kang et al. [12] proposed the first HDR video recon-
struction algorithm for sequences with alternating exposures
using optical flow. Mangiat and Gibson [39] improved the
approach by Kang et al. [12] using a block-basedmotion esti-
mationmethod coupledwith a refinement stage. In follow-up
work, Mangiat and Gibson [40] proposed to filter regions
with a large motion to reduce blocking artifacts. Kalantari
et al. [41] proposed a patch-based optimization system to
synthesize themissing exposures at each frame.Gryaditskaya
et al. [42] improved the method of Kalantari et al. [41] by
adaptively adjusting the exposures. Li et al. [43] proposed the
HDR video reconstruction problem asmaximum a posteriori
estimation. Kalantari and Ramamoorthi [14] addressed the
drawbacks of their previous approach [13] by proposing
to use CNNs to learn the HDR video reconstruction
process. Eilertsen et al. [44] improved the temporal stability
of CNNs by introducing a regularization approach that
encourages the network to produce consistent results for
consecutive frames in a video. Yan et al. [17] proposed
an attention-guided deep neural network with an attention
mechanism for frame alignment for HDR imaging. Kim
et al. [45] addressed the reconstruction of (ultra high
definition) UHD HDR videos by simultaneously working
on the content super-resolution and inverse tone-mapping
and introducing GAN (Generative Adversarial Network)
based architecture with multiple subnets for specific tasks.
The super-resolution and inverse tone-mapping (SR-ITM)
framework is further extended by utilizing information at
multi-scale to enhance the network’s local receptive fields.
The approach involves downsampling image features at
various scales, enabling to catch complex image patterns
from pixels using varied local receptive field sizes [46]. Chen
et al. [47] suggested a deep learning pipeline composed
of adaptive global color mapping, local enhancement, and
highlight generation. For adaptive global color mapping,
they introduced a color condition block that extracts
global image priors and adapts them to different images.
Beside that, ResNet was used as their network architecture
and a GAN model for local enhancement and highlight
generation, respectively. Similarly, GAN-based framework
for HDR video reconstruction from LDR sequences with
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Figure 1. Representation of three consecutive frames with two alternate exposures of the carousel firework scene in Ref. [26] HDR dataset. Each frame in
three consecutive frame input contains few missing contents with the presence of noise in frame Fi −1 and Fi +1 in the darker region due to acquisition
with low exposure whereas Fi , which was taken with high exposure, lacks details in over-saturated and bright regions. The missing content of a final HDR
image has to be reconstructed from neighboring frames with alternating exposures. For our full model we also used the neighboring frames Fi −2 and
Fi +2 as well.

alternating exposures was adopted by Anand et al. [48].
Yang et al. [49] introduced amultimodal learning framework
for reconstructing HDR videos based on three components.
One component to align the frames; the second, a fusion
component based on confidence guided multimodal fusion,
and the last component to suppress flicker. Yang et al. [50]
proposed a lightweight-efficient network based on structural
re-parameterization, and a motion alignment loss to reduce
motion artifacts. Cogalan et al. [51] proposed aCNNmethod
for HDR image and video reconstruction that works for
both for single-shot acquisition with spatially-interleaving
exposures and for multi-shot acquisition with spatially-
interleaving and temporally-alternating exposures. Their
method used optical flow and is stated to work well for
non-linear motion as well. Liu et al. [52] focused on optical
flow estimation for LDR images of different exposures, and
they proposed an unsupervised approach that incorporates
a model-based algorithm and a data-driven deep network.
Martorell and Buades [53] proposed a variational temporal
approach to optical flow estimation that has data and
spatial smoothness terms, as well as a temporal smoothness
term and to match pixels from different frames. Jiang
et al. [54] introduced a tri-exposure quad-bayer sensors.
With a larger number of exposure sets uniformly distributed
over each frame, providing robustness to noise and spatial
artifacts. Ref. [55] produced high-dynamic range (HDR)
video using dual-exposure sensors, which capture differently
exposed and spatially interleaved half-frames in a single
shot, eliminating the need for exposure alignment. Neural
networks are employed for denoising, deblurring, and
upsampling tasks and optical flow is utilized for precise
warping. Recently, Chen et al. [15] came up with a two-stage
coarse-to-fine framework for HDR video reconstruction.
Their first stage aligns images using optical flow and
blending in the image space. Their second stage performs
more sophisticated alignment fusion for HDR video using
deformable convolution [56] in PCD module as well as
performing fusion temporally.

However, most single exposure-based techniques are
not built to handle videos and cannot handle noise in
the dark regions while hallucinating only smaller saturated
regions. Similarly, solving the issue of frame alignments

and temporal aspects of HDR video reconstruction through
single attention is challenging, and recentmodelswith optical
flow have a large number of parameters and struggle on
examples with large motions.

3. MULTI-ATTENTION GUIDED SKFHDRNet FOR
HDR VIDEO RECONSTRUCTION

Given an input LDR video/sequential frames {I |i= 1, . . . n}
with alternating exposures {t |i = 1, . . . n}, the
Multi-Attention SKFHDRNet reconstructs a high-quality
HDR video {H |i= 1, . . . n}. Similar to [13–15], input frames
in linear and LDR domain are stacked and passed to the
network for HDR video reconstruction shown in Figure 1.

3.1 Data Preprocessing
Similar to the work of [13–15] the camera response function
of the input frames Ii is assumed to be known. As in Refs. [14,
15], we replace the camera response function of the input
images with a fixed gamma curve as:

Fi = lini(Ii)=> (Iiti)1/γ , (1)

where γ is set to 2.2 and lini is a function that transfers
the image Ii from the linear HDR domain into LDR domain
at exposure ti. Similarity transforms that include rotation,
translation, and isometric scaling are applied to globally
align adjacent frames to simplify the learning process of our
proposed model.

Real-world cameras often produce noisy images and
are difficult to calibrate. It is necessary for the training
dataset to represent these limitations of conventional camera
systems to enable the learning-based model to perform and
generalize effectively on scenes captured with conventional
consumer cameras. Refs. [13–15] imitate the flaws of
common consumer cameras by introducing noise and
altering the tone of the synthetic images in their synthetic
training dataset for ensuring the generalizability of their
proposed network during inference time. Image acquisition
through conventional digital cameras usually contains noisy
pixels in dark regions. Then the information from those
darker regions of the image should be taken from the
high-exposure image which has more details in that region.
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Figure 2. Visualization of the network architecture of our proposed multi-attention SKFHDRNet for HDR video reconstruction with two alternating exposures.

The input LDR synthetic training dataset usually has the
same amount of noise for both exposures. Using the
dataset directly without modification, the content of the
high-exposure image in the dark regions will be unused,
which eventually produces noisy results in real scenes [14].
Similar to Kalantari and Ramamoorthi [14] and Chen
et al. [15], zero-mean Gaussian noise was added to the input
LDR images with low exposure making the models use the
information in the dark regions of a clean high exposure
image. The zero-mean Gaussian noise was specifically
applied to the images in the linear domain. The intention was
to magnify the noise in the dark regions after transforming
the image into the LDR domain. To account for noise
variation similar to [14, 15], random Gaussian noise range
using the standard deviation between 10×−3 and 3× 10−3

and the tone of the reference image was perturbed with
γ = exp(d) function, where d is randomly selected from
the range [−0.7, 0.7] for simulation of an inaccurate camera
response function. Cropped patches of size 256× 256 were
given as input to the proposed model along with random
horizontal/vertical flipping and rotation.

3.2 Pipeline
In Figure 2, the multi-attention SKFHDRNet comprises two
primary sub-networks. These sub-networks are designed to
align and recover missing content in the reference (cen-
ter) frame using attention modules, incorporating spatial,
channel, and attention through adaptive kernel selection
and fusion mechanisms. The multi-attention blocks focus
solely on the relevant features related to the center frame.
To achieve this, neighboring frame features are fused with
the reference frame, and the resulting features are passed
through themulti-attention blocks to extractmissing content
from surrounding frames in relation to the center frame.
Furthermore, to enhance temporal coherence and alignment,
the aligned features are passed through the PCD [19]
alignment module. These refined features are then fed
into the merge network, which is composed of a series of
DSKFRDBs. These DSKFRDBs with dilation convolutions
helps in recovering details due to over-exposure and motion
of objects by enlarging the receptive field and ultimately
estimating high-quality HDR video.

Motivated by the work of Ledig et al. [20] and Yan
et al. [17], global residual learning strategy was adopted by
adding the shallow reference frame feature Fr to OF5 before
reconstructing the final HDR frame. Our proposed method
predicts blending weights (see Section 4) and produces a 15
channel output. The input images are averaged using their
blending weights to obtain the final HDRi image at frame i.

3.3 Image Alignment Using Optical Flow
We adopted the optical flow network of Chen et al. [15]
for efficient frame alignment. Alignment of frames is done
in the initial phase of learning-based techniques with the
reference frame Li. Flows are estimated for neighbouring
frames Li−1 and Li+1, in relation to the reference frame, Li.
The nearby frames Li−1 and Li+1 are then warped with the
help of two estimated flows to set a series of aligned images
Li−1, i and Li+1, i in relation to the reference frame Li for
efficient treatment of non-rigid motion and the inaccuracies
introduced by global alignment.

3.4 Multi-Attention Guided Feature Alignment
The attention-guided blocks were given five 6-channels input
frames in linear and LDR domain Fi, where i= 1, 2, 3, 4, 5.
First neighbouring input frames Fi − 2, Fi − 1 and Fi + 1,
Fi+ 2were concatenated and fused (see Fig. 2) before passing
to the attention blocks.

3.4.1 Channel Attention
Wemake use of channel attention proposed byWoo et al. [57]
to take advantage and exploit dependencies among features
across channels. The architecture of the channel attention
network is represented in Figure 3.

In the channel attention blocks, spatial information is
collected from the feature maps through both average and
max-pooling operations, resulting in two sets of features Favg
and Fmax (refer to Eq. (2)). These two sets of features are then
fed into a shared Multi-Layer Perceptron (MLP) network
with one hidden layer for providing attention-guidedweights
for each channel, represented as W ∈ RC×1×1. The MLP’s
hidden layer parameter size is set to RC/r×1×1, where r
(reduction ratio) is utilized to reduce and control the size
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Figure 3. The channel attention sub-module uses a combination of max and average pooling, alongside a shared MLP network.

Figure 4. Represents selective kernel fusion attention block involving three main operations specifically, split, fuse and select.

of parameters in the hidden layer. Finally, the output feature
vectors from the shared network (MLP) corresponding to
the Favg and Fmax features are combined using element-wise
summation.

Ai = σ(MLP(Favg(Fir )))+MLP(Fmax(Fir ))
= σ(W1(W0((Fi, Fr )Favg))+W1(W0((Fi, Fr )Fmax))),

(2)

where σ denotes the sigmoid function, W0 ∈ RC/r×C and
W1 ∈ RC×C/r represent MLP layer weights, and Fir is the
concatenated feature by fusing Fi and Fr respectively. The
estimated attention maps are point-wise multiplied to attend
the features of the non-reference frames via Eq. (3):

F ′′i =Ai ◦ F ′i , (i= 1, 3), (3)

where ◦ denotes the point-wise multiplication between Ai
and F ′i , (i = 1, 3). Attention-guided features F ′′i − 1 and
F ′′i + 1 are concatenated and fused with the reference frame
Fr to get the final stack of channel attention-guided feature
Fca using Eq. (4).

Fsk =Concat(F ′′i − 1, Fr , F ′′i + 1), (4)

3.4.2 Soft Attention Using Selective Kernel Fusion
We utilize the work proposed by [58] as an adaptive soft
attention technique. This method involves employing mul-
tiple kernels with varying receptive field sizes to effectively
capture information from objects of different scales within
the input. The selective kernel fusion block consists of three

main operations: splitting, fusing, and selecting, as depicted
in Figure 4.

3.4.3 Split
Through split operation, the incoming features F ′i , Fr of size
H ′×W ′×C ′ are transformed to U3 and U5 features based
on the receptive field sizes of 3× 3 and 5× 5 and applying
efficient depthwise convolutions [59], followed by ReLU
activation function performing convolution with dilation
size of 2.

3.4.4 Fuse
Fuse module adaptively controls the information flow of
different scales of the two branches that have different
receptive fields into the activation functions in the upcoming
layer.

The data from the two branches is combined via
element-wise summation. Following this, global average
pooling is applied to incorporate global information and
produce channel-wise statistics represented as S ∈ RC (see
Eq. (5)).

S= F gp(U ′)=
1

H ×W

H∑
i=1

W∑
j=1

U ′(i, j), (5)

Moreover, the feature vector obtained from global
average pooling is then fed into a fully connected layer
to enable accurate and adaptive feature selection, resulting
in Z ∈ Rd×1. Additionally, a dimensionality reduction
parameter is incorporated in Eq. (6) for improving the

J. Imaging Sci. Technol. 5 Sept.-Oct. 2023



Ullah et al.: Multi-attention guided SKFHDRNet for HDR video reconstruction

efficiency of the attention block.

Z = F fc(S)= δ((WS)), (6)

where δ is the ReLU function andW ∈ Rd×C represent fully
connected (fc) layer parameters.

d =max(C/r, L), (7)

where C represents channel and d represents reduction
ratio which is controlled by parameter r for modifying the
parameter size of the fully connected layer and L = 32
represent the minimal value of variable d .

3.4.5 Select
The last step involves the adaptive selection of informative
content from the guided feature descriptor Z by applying
a channel-wise softmax operator, as described in Eq. (8).
Focusing on different scales of valuable information.

a= softmax(Z), b= softmax(Z) (8)

The softmax-based attention-guided feature maps are
multiplied with U3 and U5 features which was retrieved
previously through split process and then summed to obtain
the final attention-guided feature map using Eq. (9).

Ai = a ·U3+ b ·U5, (9)

where Ai represents soft attention-guided features that are
then pointwise multiplied with non-reference features F ′i
using Eq. (10).

F ′′i =Ai ◦ F ′i , (i= 1, 3), (10)

Attention guided features F ′′i − 1 and F ′′i + 1 are concate-
nated and fused with the reference frame Fr to get selective
kernel fusion based soft attention guided features Fsk by using
Eq. (11).

Fsk =Concat(F ′′i − 1, Fr , F ′′i + 1), (11)

3.4.6 Spatial Attention
Wealso utilize the findings of [17] to acquire spatial attention
maps for the non-reference frames as depicted in Fig. 2.
Fused features F ′i , i = 1, 3 of the non-reference images
are introduced to the convolutional attention module ai(·),
i = 1, 3 along with the reference frame feature map Fr ,
obtaining attention maps Ai, i = 1, 3 for the non-reference
frames using Eq. (12).

Ai = ai(F ′i , Fr ), (i= 1, 3). (12)

The predicted attention maps are used to attend to the
features of the non-reference images via Eq. (13):

F ′′i =Ai ◦ F ′i , (i= 1, 3), (13)

where ◦ denotes the point-wise multiplication between Ai
and F ′i , (i = 1, 3). The F ′′i denotes the feature maps with
attention guidance. The reference feature map Fr (i.e. Fi) and

the attention-guided features of the non-reference images
F ′′i − 1 and F ′′i + 1 are stacked and fused to get the final 64
channel attention-guided feature map Fs.

3.5 Refined Deformable Feature Alignment
Recently, for the task of video super-resolution,
researchers [56] introduced deformable convolution,
which has been effectively employed by [19] and [60].
The fundamental idea behind deformable alignment is to
predict an offset using an offset prediction module defined
by Eq. (14). This module employs general convolutional
layers and takes two features as input, our fused features Fs,
Fca, and Fsk, along with a reference frame feature map Fi.

1pi− 1= func([fused(Fs, Fca, Fsk), Fi]) (14)

After acquiring the learned offset, the fused multi-
attention guided features Fs, Fca, and Fsk can be sampled
and aligned to the reference frame Fi using deformable
convolution introduced by [56] using Eq. (15):

F̃i =DFConv(fused(Fs, Fca, Fsk),1pi− 1). (15)

The overall structure of the PCD alignment module is
represented in Figure 5 where the alignment is performed
at multiple scales between the fused refined features and
the reference frame. The final HDR video reconstruction
is optimized by implicit learning capabilities of deformable
convolution offsets for this alignment process.

3.6 Merge Network for HDR Image Reconstruction
The primary goal of the merge network is to reconstruct
a high-quality HDR frame using attention-guided aligned
features. This network is designed to identify and eliminate
any alignment artifacts that may still be present in the
registered images and to restore missing content in the
over and under-exposed regions, resulting in the final HDR
image.

We introduce the selective kernel fusion network, which
is based on a residual dense network architecture, similar
to the approach presented in Ref. [61]. Our merge network
comprises convolution layers and DSKFRDBs with the
incorporation of skip connections, as illustrated in Figure 6.

The merge network takes the stacked features from the
PCD alignment module. The merge network first applies
a conv layer to produce 64-channel feature maps. These
feature maps are then passed to three DSKFRDBs outputting
three corresponding feature maps OF1, OF2 and OF3. All
three feature maps are then concatenated to get OF4. Then
convolution operations are applied for extracting more
relevant information from all the three merged feature maps
produced from DSKFRDBs to get OF5.

3.6.1 Global Residual Learning With the Reference Features
Motivated by the work of [17, 20], global residual learning
strategy was adopted by adding the shallow reference frame
feature Fr to OF5 where the representation of the original
reference information is integrated before reconstructing the
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Figure 5. Represents architecture of PCD [19] alignment module.

Figure 6. Represents merge network composed of series of dilated selective kernel fusion residual dense blocks with skip connections.

final HDR image from OF5 to optimize the accuracy of the
model.

OF6 =OF5+ Fr , (16)

The final featuremapOF6 contains almost all the ingredients
for reconstructing the final HDR image without ghosting
artifacts with details recovered in over and under-exposed
regions with large motion. The final HDR image is estimated
in the HDR domain after two convolution layers followed by
activation funtion.

3.6.2 Dilated Selective Kernel Fusion Residual Dense Block
The merge network requires a larger receptive field for
hallucinating details since the reconstruction of some
local regions of the HDR images cannot receive enough
information from the LDR images due to the occlusion
of moving objects and saturation. Therefore, we used
a DSKFRDB having two branches with dilation. The
proposed DSKFRDB, which is represented in Figure 7,
perform final HDR video reconstruction by adaptive feature
selection using two different receptive fields using the split,
fuse, and select strategy with dense concatenation based
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Figure 7. Illustration of a three-layer dilated selective kernel fusion residual dense block structure following the residual dense block strategy of [61] as a
framework.

skip-connections where the input for each layers is the
concatenation of all feature maps from preceding layers.

4. PIXEL BLENDING
To our full multi-Attention SKFHDRNet, we provided five
6-channel input images in both LDR and linear domains
making a 30 channel input. Then, for these five images, our
network predicted the blending weights and produced a 15
channel output. To effectively utilize the information in each
color channel, we estimated blending weights for each color
channel in amanner similar to themethods proposed by [41,
62]. The five input images are averaged using their blending
weights to get the final HDR imageHDRi at frame i by using
Eq. (17).

HDRi

=
w1Li− 1+w2L̂i− 1+w3Li+w4L̂i+ 1+w5Li+ 1∑5

K=1 wk
,

(17)

where, wk is the estimated blending weight for each image.

5. LOSS FUNCTION
Following the works of [14, 15, 36] the linear HDR images
are transformed into log domain for boosting the pixel values
in the dark regions of the image. Directly applying the loss
function on the images in the linear HDR domain will
produce inaccuracies by underestimating the error in the
pixel values of the dark regions. We specifically employ the
differentiable µ-law function using Eq. (18):

Ti =
log(1+µHDRi)

log(1+µ)
, (18)

where HDRi represent linear HDR frame with the pixel
values in range of [0, 1]. The parameter µ is set to 5000 to
control the rate of compression range. Themodel parameters

are updated by minimizing the L1 distance between the
estimated, T̂i, and ground truth, Ti, HDR frames in the log
domain with Eq. (19):

E = ‖T̂i−Ti‖1. (19)

5.1 L1MS–SSIM Loss Function
According to [21], MS–SSIM preserves the contrast in
high-frequency regions better than the other loss functions.
On the other hand, L1 preserves colors and luminance and
error are weighted equally regardless of the local structure
but does not produce quite the same contrast as MS–SSIM.
To capture the best characteristics of both error functions,
[21] propose a combined L1MS–SSIM loss function which is
represented by Eq. (20):

Lmix = αLMS–SSIM + (1−α)GM
σ G · L1, (20)

where α is empirically set to 0.84 with point-wise mul-
tiplication between GM

σ G and L1. GM
σ G which represents

the computation of mean and standard deviations with a
Gaussian filter. We adopted the work of [21] to optimize
the training of our model. The parameters or weights of
the networks are modified using these computed gradients
continuously until convergence.

6. IMPLEMENTATIONDETAILS
PyTorch framework was used to implement the Multi-
Attention SKFHDRNet model architecture. We integrated
the flow network implemented by [15] using Pytorch into
our pipeline for HDR video reconstruction. End-to-end
training is done for both optical flow and multi-attention
SKFHDRNet. The technique used by [63] is used to initialize
the initial weights of the network parameters. Using ADAM
with default settings of β1 = 0.9 and β2 = 0.999 with a
learning rate of 0.0001, to solve the optimization problem.
Mantiuk et al. [64] approach was used for tone-mapping the
results. Given training images, we randomly crop the images
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Figure 8. Visualization of the model’s outputs having consecutive frames as an input with local motion and a conv layer feature maps after passing through
attention modules.

of size 256× 256 for training. The model was trained for
20 epochs on two NVIDIA Tesla V100 32 Gb of NTNU
cluster [65].

7. EXPERIMENT RESULTS
We conducted experiments and performed an evaluation on
synthetic test HDR scenes and real-world dataset (dynamic
and static scenes from [15], under CCBY-NC-SA 4.0 license)
to verify the effectiveness of the proposed method. All
models are visually compared, and the predicted HDR frame
is evaluated in terms of multiple image quality metrics.
We specifically used µ-law tone-mapped PSNR, HDR–
VDP2 [40] and HDR-VQM [66] (HDR-VQM for full model
comparison). We followed the HDR-VQM design of [15] to
assess the quality of HDR videos. Additionally, all models
were evaluated based on color difference error between
estimated and ground truth HDR using CIEDE2000 [67].
All visual results in the experiment are tone-mapped using
Mantiuk et al. [64] tone-mapping method.

7.1 Evaluation of Baseline Models
We performed our initial comparisons with [17] in the case
of no optical flow and no pixel blending where the model
estimated a 3-channel final HDR image. This was specifically
done to check and compare the effectiveness of our proposed
attention modules against [17] AHDRNet. The proposed
attention modules effectiveness is represented in Figure 8
indicating better performance in frame alignment against
reference frame with less ghosting artifacts in comparison
to AHDRNet [17] attention module. In Fig. 8, this is
seen especially in the hand and racket with fewer ghosting
artifacts.

Similarly, the robustness of our proposed DSKFRDBs in
filling rich details of over-exposed regions is illustrated in
Figure 9 against AHDRNet [17]. Our proposed DSKFRDBs

enable the model to produce results with rich details while
achieving more accurate content in over-saturated areas.
This can be seen by the proposed model having less color
difference in the highlights compared to AHDRNet.

Similarly, the zoomed regions of the CAROUSEL
FIREWORKS frame represented in Figure 10 show poor
performance of Yan et al. [17] AHDRNet. It struggles
in reducing ghosting artifacts due to large motion which
ultimately introduces higher color difference errors, which
can be seen in color difference maps of the images.
However, our proposedMulti-Attention SKFHDRNet model
performed better alignment in case of large motions and
produced a smaller color difference error in relation to the
ground truth HDR frame.

Our baseline model SKFHDRNet performed fairly well
in case of the static dataset. From the visual results,
the Yan et al. [17] model struggled to recover details in
over-exposed regions which are illustrated in the zoomed
regions of static dataset scene in Figure 11. Multi-attention
SKFHDRNet recovers much of the missing information in
the over-exposed regions with a small color difference error
as shown in Fig. 11. This indicates that using DSKFRDBs
in the merge network for filling missing content in the
over-exposed regions works better compared to the dilated
residual dense block of [17].

Quantitative results in terms of µPSNR and HDR–
VDP2 are represented in Table I. Our multi-attention
SKFHDRNet showed better performance in terms of visual
results as well as image/video quality metrics, where the
values are higher than Yan et al. in all datasets for both
µPSNR and HDR–VDP2. This indicates our multi-attention
modules efficiency which guidesmore relevant features from
the neighbouring frames in relation to the reference frame
and robustness of ourDSKFRDBs inmerge network in filling
missing content in the over-exposed regions.
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Figure 9. Dynamic scene Ground Truth (GT) test sample and its estimated HDR scene of AHDRNet [17] and our proposed multi-attention SKFHDRNet.
The top shows the full image, the middle images are a zoomed in area, and the bottom show the CIEDIE2000 color difference map.

Figure 10. Represents visual and color difference error results of baseline models on synthetic dataset (CAROUSEL FIREWORKS) scene.
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Figure 11. Represents visual and color difference error results on the static dataset scene.

Table I. Quantitative results of our baseline Multi-attention SKFHDRNet and Yan
et al. [17] AHDRNet on test datasets are represented. Bold text indicates the better
among models.

Model performance on synthetic dataset
Models µPSNR HDR–VDP–2
Yan et al. [17] 28.78 63.56
Multi-attention SKFHDRNet 32.11 65.65

Model performance on dynamic dataset
Yan et al. [17] 34.68 68.42
Multi-attention SKFHDRNet 40.77 73.81

Model performance on static dataset
Yan et al. [17] 33.06 69.81
Multi-attention SKFHDRNet 36.76 71.34

7.2 Per Frame Objective Metric Results Visualization of
Our Baseline Model Without Optical Flow and Pixel
Blending
Figure 12 represents our baseline model performance in
relation to Yan et al. [17] AHDRNet on all the three datasets.
Blue violin plots represent [17] model and orange violin
plots represent our baseline Multi-Attention SKFHDRNet.
The data points represent per frame image quality metrics
results specifically, µPSNR and HDR–VDP–2. The median
is represented by (the red point), and the first and third
quartile are represented by the black bar where the lower
region of the bar represent first quartile and the upper region
of the black bar represents the third quartile. Our baseline
model predicted better per frame quality metrics’ results
considering the median in a violin plot which is higher than
Yan et al. [17] AHDRNet on all three datasets. From the

results, an intersection between data points can be clearly
seen, especially in case of synthetic and dynamic datasets.
This represents the performance of models on low and high
exposure samples. The model shows higher performance
for samples with low exposure, which is represented mostly
in the third quartile region of the violin plot above the
median. Samples with center frame having high exposure
are represented below the median red point in the first
quartile region of violin plot. It is worth noting that the
proposed model is able to generate higher values in the
synthetic dataset, as seen in HDR-VDP-2, the lowest values
are approximately the same between the two models, but
the proposed model has higher maximum values. In µPSNR
we see a shift from a bottom heavy distribution to values
being increased. For the static dataset, we see a similar
behaviour for HDR-VDP-2, with a larger concentration of
values being towards the top end, while in µPSNR it is in
general, a shift upwards. Lastly for the dynamic dataset, the
proposed model shifts the values upwards for µPSNR with
more values concentrated towards the higher end, while in
HDR-VDP-2 the values have a larger spreadwithmore values
being above the highest values in AHDRNet. In general, our
model performance based onµPSNR and HDR–VDP–2 was
higher than Yan et al. [17] AHDRNet.

7.3 Evaluation of Our Full Model
We compared our full model performance with [13, 14, 17]
and [15] along with its individual networks CoarseNet and
RefineNet. We re-implemented Yan et al. [17] method for
alternating-exposure HDR video reconstruction and used
the already trained Chen et al. [15] network parameters
for comparison. For Kalantari et al. [13] and Kalantari
and Ramamoorthi [14], we took the results of the model
from [15] since the same datasets are used for comparison.
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Figure 12. Per frame representation of image quality objective metric
results on all three datasets using violin plot of our baseline architecture
(orange) against Yan et al. [17] AHDRNet (blue).

All models are visually compared and the predicted HDR
image is evaluated in terms ofmultiple image qualitymetrics.
We specifically used µ-law tone-mapped PSNR, HDR–
VDP2 [40] and HDR-VQM [66]. Additionally, all models
were evaluated based on the color difference error between
estimated and ground truth HDR using CIEDE2000 [67].

7.4 Synthetic Dataset for Training
Following the work of [13–15], we used 13HDR video scenes
from [26] and eight downsampled video scenes of resolution
1280× 720 from [68] for training purposes. Furthermore,
we also used a high-quality Vimeo-90K [69] dataset as
training samples similar to [15] due to the limited size of the
training HDR video dataset.

7.5 Evaluation on Synthetic Dataset
Our proposed multi-attention SKFHDRNet with
re-implemented AHDRNet [17] is evaluated on a synthetic
test dataset which is composed of two HDR videos (i.e.,
POKER FULLSHOT and CAROUSEL FIREWORKS)
of [26] HDR dataset with random Gaussian noise added
to low-exposure images like [15].

Figure 13 illustrates the model performance on POKER
FULLSHOT HDR scene. From the visual results, the color
difference error is more prominent in Yan et al. [17]
AHDRNet estimated HDR image. The reconstructed scene
is noisy and the color difference map shows error across
the scene. Similarly, there is higher color difference error
in the saturated regions specifically in the edges and the
curtain of the table in the scene reconstructed by [15]
where some pixels are still over-saturated which is detected
by the CIEDE-2000 color difference metric. However, the
reconstructed HDR scenes of our model variants have less
over-saturated pixels in the edges and the curtain on the
table. This indicates DSKFRDB’s robustness to filling rich
details in the over-exposed regions with 50% less model
parameters compared toChen et al. [15] and providing better
performance in accuracy.

Quantitative results using HDR-VDP2, HDR-VQM and
µPSNR of our multi-attention SKFHDRNet variants on the
synthetic dataset are presented in Table II.

Our multi-attention SKFHDRNet showed better perfor-
mance on all three image and video quality metrics. This
indicates our multi-attention modules’ efficiency regarding
noise reduction and filling details in over-exposed regions.

7.6 Evaluation on Real World Static Dataset
We test our multi-attention SKFHDRNet variants on a static
dataset that is composed of random global motions. Random
translation was performed for each frame in the range of
[0, 5] pixels. For all methods, no pre-alignment is done on
input frames similar to Chen et al. [15] to evaluate their
robustness to input with inaccurate global alignment. The
Yan et al. [17] model produce results with noise and the
error is captured and visualised in Figure 14 in the color
difference error map. While Chen et al. [15] model produce
results with out noise in the reconstructed frame but showed
higher color difference error in the over-saturated regions
in the scene which can be seen in the color difference error
maps represented in Fig. 14. Our model variants produce
better performance in case of noise and filling rich details
in over-saturated regions producing smaller color difference
error.

Similarly [15] model struggle to perform proper align-
ment in the zoomed and highlighted regions in Figure 15.
The straight lines are distorted in the highlighted region
of [15] reconstructed frame. In case of Yan et al. [17] model,
apart from distortions in the straight lines, there are also
more prominent color fringe patterns in the highlighted and
zoomed region shown in Fig. 15. However, our proposed
model variants showed better performance with reduced
distortion andwithout prominent color fringe patterns in the
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Figure 13. Visual and color difference error results on the synthetic dataset.

Figure 14. Represents visual and color difference error results on the static dataset.

highlighted region of reconstructed frame and the error is
recorded by CIEDE2000 color difference error maps.

Our multi-attention SKFHDRNet variants performed
better than Yan et al. [17] AHDRNet and [13, 14] learning-
based methods using objective image and video quality
metrics represented in Table II. Our models also performed
better than the [15] single models (CoarseNet and Re-
fineNet). However, the model of Chen et al. [15] showed
slightly better results compared to our multi-attention
SKFHDRNet variants based on image/video quality metrics.

Our proposed model showed comparable results on
static scenes in comparison to prior work with half the size of

network parameters than [15] full model, which can be seen
in Table II.

7.7 Evaluation on Real World Dynamic Dataset
The dynamic dataset contains large local motions, making
it challenging for the models to perform well in these
cases. Figure 16 visualizes the results of our multi-attention
SKFHDRNet variants along with [17] and [15] models. All
of our models clearly show high performance in large local
motion regions in the dynamic dataset scene, apart from
our model variant SKFHDRNet having L1 and MS-SSIM
loss, which can be seen in the zoomed region of the
dynamic dataset scene in Fig. 16. The arrow pointing to

J. Imaging Sci. Technol. 13 Sept.-Oct. 2023



Ullah et al.: Multi-attention guided SKFHDRNet for HDR video reconstruction

Figure 15. Represents visual and color difference error results on the static dataset.

Figure 16. Represents visual and color difference error results on the dynamic dataset.

Table II. Quantitative results of our multi-attention SKFHDRNet variants on all three datasets. The best model is represented with red text, the second best model is represented by blue
text, and the third best model is represented by green text.
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regions is where we can see the ghosting artifacts and blur
in the reconstructed scene of [15] results. Similarly, there
is ghosting artifact of whole racket in the reconstructed
scene of [17] results. This shows our multi-attention and
PCD module effectiveness regarding feature alignment of
neighbouring frames in to the reference frame. The color
difference error maps also show large deviation in color
information from the original HDR image in the motion
regions of the estimatedHDR frames of [17] and [15]models.

The performance of our proposed model variants
was better than Yan et al. [17] AHDRNet, [13, 14], and
Chen et al. [15] learning-based methods using objective
image/video quality metrics on dynamic dataset represented
in Table II. Ourmodels also showed better performance than
the [15] single models (CoarseNet and RefineNet).

This again indicates our model’s DSKFRDB fusion
block effectiveness in filling the missing content in large
over-exposed regions with local motion (see results in
Table II).

7.8 Per Frame Objective Metric Results Visualization of
Our Full Architecture
Figure 17 represents violin plots of our multi-attention
SKFHDRNet variants specifically, multi-attention SKFHDR-
Net with L1 loss, multi-attention SKFHDRNet with L1 loss
and PCD alignment module, multi-attention SKFHDRNet
with L1MS–SSIM loss along with PCD alignment module.
The performance of the mentioned model is compared
to [15] network.

Fig. 17 represents violin plot where the blue violin plots
represent our multi-attention SKFHDRNet with L1 loss. The
orange violin plot represents multi-attention SKFHDRNet
with L1 loss and PCD alignment module. The yellow
violin plot represents multi-Attention SKFHDRNet with
L1MS–SSIM loss function and PCD alignment module.
Purple violin plots represent Chen et al. [15] model results.
Our model variants produce consistent or in some cases
showed better results from [15] full model considering
µPSNR and HDR-VDP2 per frame image quality results.
By looking at the median point in red, the performance of
all models looks almost equivalent. However, in some cases,
like the result of our multi-attention SKFHDRNet with PCD
and L1 loss (orange) in terms of HDR–VDP–2 image quality
metric, produce better results by considering the median
(red point) point of a violin plot. It is also worth noting
that for the dynamic dataset (bottom), the Chen et al. [15]
model produces higher minimum values than the others for
HDR-VDP-2, but the others have slightly higher maximum
HDR-VDP-2 values. A similar behaviour can also be seen
on the synthetic dataset (top). Overall, the behaviour of
all models were similar, where all the models performed
well in the case of HDR test scenes with a center frame
under-exposed, while producing inferior results in the case
of scenes with a center frame highly over-exposed with large
motions.

Figure 17. Per frame representation of image quality objective
metric results on all three datasets using violin plot of our multi-
attention SKFHDRNet variants blue violin representing our multi-attention
SKFHDRNet with L1 loss, orange representing multi-attention SKFHDRNet
with L1 loss and PCD alignment module, and yellow represents
multi-attention SKFHDRNet with L1MS–SSIM loss function and PCD
alignment module against purple points of Chen et al. [15] model results.

8. NETWORK PARAMETERS ANALYSIS
The full model of Chen et al. [15] is composed of 6.1 million
parameters, with 3.1M parameters for CoarseNet and 3.0M
for RefineNet, while Yan et al. [17] model contained 1.9M
parameters and Kalantari and Ramamoorthi [14] model
had 9.0M parameters mentioned by [15]. However, our
full model without the PCD module has 1.3M parameters.
Our other model variants having the PCD module have
2.9Mparameters providing almost similar or even surpassing
performance of Chen et al. [15] model which has network
parameters more than half the size of our model. However,
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Table III. Performance of the proposed network.

Synthetic dataset Dynamic dataset Static dataset Network parameters
Models 1920× 1080 1476× 753 1536× 813

Kalantari et al. [13] 185 s – –
Yan et al. [17] 0.82 s 0.46 s 0.52 s 1.9M
Kalantari and Ramamoorthi [14] 0.59 s – – 9.0M
Chen et al. [15] Full model 0.84 s 0.63 s 0.89 s 6.1M
Our SKFHDRNet (L1) 1.21 s 0.68 s 0.97s 1.3M
Our SKFHDRNet (PCD+ L1) 2.02 s 1.15 s 1.29 s 2.9M
Our SKFHDRNet (PCD+ L1+MS–SSIM) 2.04 s 1.16 s 1.30 s 2.9M

Figure 18. The top row represents estimated HDR scenes for CAROUSEL FIREWORKS scene using two alternating exposures. The bottom row shows the
zoomed region where all the models introduced decolorized pixels. By looking at the model inputs, where the center (reference) frame Li is over-exposed
in the highlighted region and the missing content should be recovered from the neighboring frames with low exposure, Li −2, Li −1 and Li +1, Li +2.
Because of significant displacement of objects due to large motions along with high exposure in that region none of the methods are able to properly
register and reconstruct details in that region of the image, producing ghosting artifacts which can be seen from the bottom row. Therefore, our method is
similar to other approaches and contains artifacts in this region.

our full model variants had a high inference time on the test
images, which is represented in Table III.

9. LIMITATIONS OF OUR PROPOSED
METHODOLOGY

In general, our approach performs better and produces
high quality HDR video. However, some use cases were
harder, and the model struggled to produce satisfactory
HDR video reconstruction. One typical example of our
model poor performance is observed in cases where the
center (reference) frame has highly over-exposed regions
and there is apparently large movement of objects during
consecutive frames with large occlusion. As can be seen
in Figure 18, our method results in ghosting and other
distortions, such as decolorized pixels. Other methods from

the results also encounter difficulties in these regions and
provided estimated HDR with a similar type of artifacts.

Moreover, in cases where the center (reference) image
has low exposure and the neighboring frames with high
exposure contain darker pixels in the same region; this
scenario makes it harder for the models to recover detail
in darker regions because the information is very limited
in all the frames which produce noise in those regions.
This is illustrated in the zoomed region of the static
dataset scene in Figure 19. However, our full model results
are still considerably better than the other learning-based
techniques.

10. FUTUREWORK
Considering the real-time scenarios, further research is
needed to make the model more interactive by minimizing
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Figure 19. The top row represents the estimated HDR scenes for static scene using two alternating exposures. The bottom row shows the zoomed region
where all the models introduced noise in the dark region. By looking at the model inputs, where the center (reference) frame Li is under-exposed and the
highlighted region have very dark pixels. Upon that the neighboring frames with high exposure, Li −2, Li −1 and Li +1, Li +2 also have darker pixel
values in the same regions. Due to less information in the middle as well as neighbouring frames, the models produced noisy texture in those regions which
is visualized in the zoomed sections in the bottom row. Therefore, our method, similar to other approaches contains artifacts in this region. However, our
multi-attention SKFHDRNet variants have less noisy estimated HDR scene than the other methods.

the inference time of the model. As an example, performing
HDR video estimation without an optical flow network will
further reduce the model inference time.

Although our methodology showed improved per-
formance regarding recovering details in over-exposed
regions of LDR images, further improvement is required as
most of the prior work similar to our proposed method
showed inferior performance in recoveringmissing details in
challenging over-exposed examples.

In the future, we will extend the evaluation by conduct-
ing a psychophysical study to evaluate model performance.
Additionally, it would be interesting to modify our system to
work with different types of capturing setups, for example,
stereo cameras with various exposures.

11. CONCLUSION
Weproposed a learning-based technique having optical flow,
multi-attention, and PCD alignment modules for improved
model performance regarding image alignment and ghosting
artifacts. For recovering lost details in under and over-
exposed regions, we merged the previously refined aligned
features using a series of (DSKFRDBs) for estimating high-
quality final HDR scenes. We demonstrate the performance
of our method on a number of HDR test datasets containing
challenging cases with over-exposed regions and large
motions. Our learning-based method achieves better results
in most cases than recent state-of-the-art methods with

model parameters half the size of the recent state-of-the-art
method.

REFERENCES
1 R. K. Mantiuk, K. Myszkowski, and H.-P. Seidel, High Dynamic Range
Imaging (Wiley Encyclopedia of Electrical and Electronics Engineering,
2015).

2 S. J. Daly and X. Feng, ‘‘Bit-depth extension using spatiotemporal
microdither based on models of the equivalent input noise of the visual
system,’’ Proc. SPIE 5008, 455–466 (2003).

3 Q. Song, G.-M. Su, and P. C. Cosman, ‘‘Hardware-efficient debanding and
visual enhancement filter for inverse tone mapped high dynamic range
images and videos,’’ 2016 IEEE Int’l. Conf. on Image Processing (ICIP)
(IEEE, Piscataway, NJ, 2016), pp. 3299–3303.

4 G. Luzardo, J. Aelterman, H. Luong,W. Philips, andD. Ochoa, ‘‘Real-time
false-contours removal for inverse tone mapped HDR content,’’ Proc.
25th ACM Int’l. Conf. on Multimedia (ACM, New York, NY, 2017),
pp. 1472–1479.

5 S. Mukherjee, G.-M. Su, and I. Cheng, ‘‘Adaptive dithering using curved
Markov–Gaussian noise in the quantized domain for mapping SDR to
HDR image,’’ Int’l. Conf. on Smart Multimedia (Springer, Cham, 2018),
pp. 193–203.

6 F. Banterle, P. Ledda, K. Debattista, and A. Chalmers, ‘‘Inverse tone
mapping,’’ Proc. 4th Int’l. Conf. on Computer Graphics and Interactive
Techniques in Australasia and Southeast Asia (ACM, New York, NY,
2006), pp. 349–356.

7 F. Banterle, P. Ledda, K. Debattista, A. Chalmers, and M. Bloj, ‘‘A frame-
work for inverse tone mapping,’’ Vis. Comput. 23, 467–478 (2007).

8 F.De Simone,G.Valenzise, P. Lauga, F.Dufaux, and F. Banterle, ‘‘Dynamic
range expansion of video sequences: A subjective quality assessment
study,’’ 2014 IEEE Global Conf. on Signal and Information Processing
(GlobalSIP) (IEEE, Piscataway, NJ, 2014), pp. 1063–1067.

J. Imaging Sci. Technol. 17 Sept.-Oct. 2023

https://doi.org/10.1002/047134608X.W8265
https://doi.org/10.1002/047134608X.W8265
https://doi.org/10.1002/047134608X.W8265
https://doi.org/10.1117/12.472016
https://doi.org/10.1109/ICIP.2016.7532970
https://doi.org/10.1145/3123266.3123400
https://doi.org/10.1145/3123266.3123400
https://doi.org/10.1145/3123266.3123400
https://doi.org/10.1007/978-3-030-04375-9_17
https://doi.org/10.1145/1174429.1174489
https://doi.org/10.1145/1174429.1174489
https://doi.org/10.1145/1174429.1174489
https://doi.org/10.1007/s00371-007-0124-9
https://doi.org/10.1109/GlobalSIP.2014.7032284
https://doi.org/10.1109/GlobalSIP.2014.7032284
https://doi.org/10.1109/GlobalSIP.2014.7032284


Ullah et al.: Multi-attention guided SKFHDRNet for HDR video reconstruction

9 B. Masia, A. Serrano, and D. Gutierrez, ‘‘Dynamic range expansion based
on image statistics,’’ Multimedia Tools Appl. 76, 631–648 (2017).

10 X. Zhang and D. H. Brainard, ‘‘Estimation of saturated pixel values in
digital color imaging,’’ J. Opt. Soc. Am. A 21, 2301–2310 (2004).

11 D. Xu, C. Doutre, and P. Nasiopoulos, ‘‘Correction of clipped pixels in
color images,’’ IEEE Trans. Vis. Comput. Graph. 17, 333–344 (2011).

12 S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, ‘‘High dynamic
range video,’’ ACM Trans. Graph. (TOG) 22, 319–325 (2003).

13 N. K. Kalantari and R. Ramamoorthi, ‘‘Deep high dynamic range
imaging of dynamic scenes,’’ ACM Trans. Graph. 36, 1–12 (2017).

14 N. K. Kalantari and R. Ramamoorthi, ‘‘Deep hdr video from sequences
with alternating exposures,’’Computer Graphics Forum (Wiley, Hoboken,
NJ, 2019), Vol. 38, pp. 193–205.

15 G. Chen, C. Chen, S. Guo, Z. Liang, K.-Y. K. Wong, and L. Zhang,
‘‘HDR video reconstruction: A coarse-to-fine network and a real-world
benchmark dataset,’’ Proc. IEEE/CVF Int’l. Conf. on Computer Vision
(IEEE, Piscataway, NJ, 2021), pp. 2502–2511.

16 S. Wu, J. Xu, Y.-W. Tai, and C.-K. Tang, ‘‘Deep high dynamic range
imaging with large foreground motions,’’ European Conf. on Computer
Vision ECCV 2018: Computer Vision – ECCV 2018 (Springer, Cham,
2018), pp. 120–135.

17 Q. Yan, D. Gong, Q. Shi, A. v. d. Hengel, C. Shen, I. Reid, and Y. Zhang,
‘‘Attention-guided network for ghost-free high dynamic range imaging,’’
Proc. IEEE/CVFConf. onComputerVision andPatternRecognition (IEEE,
Piscataway, NJ, 2019), pp. 1751–1760.

18 Q. Yan, L. Zhang, Y. Liu, Y. Zhu, J. Sun, Q. Shi, and Y. Zhang, ‘‘Deep
HDR imaging via a non-local network,’’ IEEE Trans. Image Process. 29,
4308–4322 (2020).

19 X. Wang, K. C. K. Chan, K. Yu, C. Dong, and C. C. Loy, ‘‘EDVR: Video
restoration with enhanced deformable convolutional networks,’’ Proc.
IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops
(IEEE, Piscataway, NJ, 2019), pp. 1954–1963.

20 C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, ‘‘Photo-realistic
single image super-resolution using a generative adversarial network,’’
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (IEEE,
Piscataway, NJ, 2017), pp. 105–114.

21 H. Zhao, O. Gallo, I. Frosio, and J. Kautz, ‘‘Loss functions for image
restoration with neural networks,’’ IEEE Trans. Computational Imaging
3, 47–57 (2016).

22 S. K. Nayar and T. Mitsunaga, ‘‘High dynamic range imaging: Spatially
varying pixel exposures,’’ Proc. IEEE Conf. on Computer Vision and
Pattern Recognition. CVPR 2000 (Cat. No. PR00662) (IEEE, Piscataway,
NJ, 2000), Vol. 1, pp. 472–479.

23 pp. I–IS. K. Nayar, V. Branzoi, and T. E. Boult, ‘‘Programmable imaging
using a digital micromirror array,’’ Proc. 2004 IEEE Computer Society
Conf. on Computer Vision and Pattern Recognition, 2004. CVPR 2004
(IEEE, Piscataway, NJ, 2004), Vol. 1.

24 M. D. Tocci, C. Kiser, N. Tocci, and P. Sen, ‘‘A versatile HDR video
production system,’’ ACM Trans. Graph. (TOG) 30, 1–10 (2011).

25 J. Kronander, S. Gustavson, G. Bonnet, and J. Unger, ‘‘Unified HDR
reconstruction from raw CFA data,’’ IEEE Int’l. Conf. on Computational
Photography (ICCP) (IEEE, Piscataway, NJ, 2013), pp. 1–9.

26 J. Froehlich, S. Grandinetti, B. Eberhardt, S. Walter, A. Schilling, and
H. Brendel, ‘‘Creating cinematic wide gamut HDR-video for the evalu-
ation of tone mapping operators and HDR-displays,’’ Proc. SPIE 9023,
279–288 (2014).

27 T. Lulé, H. Keller, M. Wagner, and M. Böhm, ‘‘LARS II-a high dynamic
range image sensor with a-si: H photo conversion layer,’’ 1999 IEEE
Workshop on Charge-Coupled Devices and Advanced Image Sensors,
Nagano, Japan, Citeseer (IEEE, Piscataway, NJ, 1999).

28 U. Seger, U. Apel, and B. Höfflinger, ‘‘HDRC-imagers for natural visual
perception,’’ Handbook Comput. Vis. Appl. 1, 2 (1999).

29 S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, and
J. Bogaerts, ‘‘A logarithmic response CMOS image sensor with on-chip
calibration,’’ IEEE J. Solid-State Circuits 35, 1146–1152 (2000).

30 E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, ‘‘Photographic tone
reproduction for digital images,’’ Proc. 29th Annual Conf. on Computer
Graphics and Interactive Techniques (ACM, New York, NY, 2002),
pp. 267–276.

31 L. Meylan, S. Daly, and S. Süsstrunk, ‘‘The reproduction of specular
highlights on high dynamic range displays,’’ Proc. IS&T/SID CIC14:
Fourteenth Color Imaging Conf. (IS&T, Springfield, VA, 2006), pp. 333–
338.

32 A. G. Rempel, M. Trentacoste, H. Seetzen, H. D. Young, W. Heidrich,
L. Whitehead, and G. Ward, ‘‘Ldr2hdr: on-the-fly reverse tone mapping
of legacy video and photographs,’’ ACM Trans. Graph. (TOG) 26 (2007)
39-es.

33 F. Banterle, P. Ledda, K. Debattista, and A. Chalmers, ‘‘Expanding low
dynamic range videos for high dynamic range applications,’’ Proc. 24th
Spring Conf. on Computer Graphics (ACM, New York, NY, 2008),
pp. 33–41.

34 R. P. Kovaleski and M. M. Oliveira, ‘‘High-quality reverse tone mapping
for a wide range of exposures,’’ 2014 27th SIBGRAPI Conf. on Graphics,
Patterns and Images (IEEE, Piscataway, NJ, 2014), pp. 49–56.

35 P. Didyk, R. Mantiuk, M. Hein, and H.-P. Seidel, ‘‘Enhancement of bright
video features for HDR displays,’’ Computer Graphics Forum (Wiley,
Hoboken, NJ, 2008), Vol. 27, pp. 1265–1274.

36 G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and J. Unger, ‘‘HDR
image reconstruction from a single exposure using deep CNNs,’’ ACM
Trans. Graph. (TOG) 36, 1–15 (2017).

37 Y. Endo, Y. Kanamori, and J. Mitani, ‘‘Deep reverse tone mapping,’’ ACM
Trans. Graph. 36 (2017) 177–1.

38 Y.-L. Liu, W.-S. Lai, Y.-S. Chen, Y.-L. Kao, M.-H. Yang, Y.-Y. Chuang, and
J.-B. Huang, ‘‘Single-imageHDR reconstruction by learning to reverse the
camera pipeline,’’ Proc. IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (IEEE, Piscataway, NJ, 2020), pp. 1651–1660.

39 S. Mangiat and J. Gibson, ‘‘High dynamic range video with ghost
removal,’’ Proc. SPIE 7798, 779812 (2010).

40 S. Mangiat and J. Gibson, ‘‘Spatially adaptive filtering for registration
artifact removal in HDR video,’’ 2011 18th IEEE Int’l. Conf. on Image
Processing (IEEE, Piscataway, NJ, 2011), pp. 1317–1320.

41 N. K. Kalantari, E. Shechtman, C. Barnes, S. Darabi, D. B. Goldman, and
P. Sen, ‘‘Patch-based high dynamic range video,’’ ACM Trans. Graph. 32,
1–8 (2013).

42 Y. Gryaditskaya, T. Pouli, E. Reinhard, K. Myszkowski, and H.-P. Seidel,
‘‘Motion aware exposure bracketing for HDR video,’’ Computer Graphics
Forum (Wiley, Hoboken, NJ, 2015), Vol. 34, pp. 119–130.

43 Y. Li, C. Lee, and V. Monga, ‘‘A maximum a posteriori estimation
framework for robust high dynamic range video synthesis,’’ IEEE Trans.
Image Process. 26, 1143–1157 (2016).

44 G. Eilertsen, R. K.Mantiuk, and J. Unger, ‘‘Single-frame regularization for
temporally stable cnns,’’ Proc. IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (IEEE, Piscataway, NJ, 2019), pp. 11176–11185.

45 S. Y. Kim, J. Oh, and M. Kim, ‘‘Jsi-gan: Gan-based joint super-resolution
and inverse tone-mapping with pixel-wise task-specific filters for uhd hdr
video,’’ Proc. AAAI Conf. on Artificial Intelligence (AAAI, Washington,
DC, 2020), Vol. 34, pp. 11287–11295.

46 H. Zhang, L. Song, W. Gan, and R. Xie, ‘‘Multi-scale-based joint super-
resolution and inverse tone-mapping with data synthesis for UHD HDR
video,’’ Displays 79, 102492 (2023).

47 X.Chen, Z. Zhang, J. S. Ren, L. Tian, Y.Qiao, andC.Dong, ‘‘A new journey
fromSDRTV toHDRTV,’’Proc. IEEE/CVF Int’l. Conf. onComputerVision
(IEEE, Piscataway, NJ, 2021), pp. 4500–4509.

48 M. Anand, N. Harilal, C. Kumar, and S. Raman, ‘‘HDRVideo-GAN: deep
generative HDR video reconstruction,’’ Proc. Twelfth Indian Conf. on
Computer Vision, Graphics and Image Processing (ACM, New York, NY,
2021), pp. 1–9.

49 Y. Yang, J. Han, J. Liang, I. Sato, and B. Shi, ‘‘Learning event guided
high dynamic range video reconstruction,’’ Proc. IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (IEEE, Piscataway, NJ, 2023),
pp. 13924–13934.

50 Q. Yang, Y. Liu, and J. Yang, Efficient HDR reconstruction from real-
world raw images, arXiv preprint arXiv:2306.10311 (2023), 10 pages.

51 U. Cogalan, M. Bemana, K. Myszkowski, H.-P. Seidel, and T. Ritschel,
‘‘Learning HDR video reconstruction for dual-exposure sensors with
temporally-alternating exposures,’’ Comput. Graph. 105, 57–72 (2022).

52 Z. Liu, Z. Li, W. Chen, X. Wu, and Z. Liu, ‘‘Unsupervised optical flow
estimation for differently exposed images in ldr domain,’’ IEEE Trans.
Circuits Syst. Video Technol. 1–1 (2023).

J. Imaging Sci. Technol. 18 Sept.-Oct. 2023

https://doi.org/10.1007/s11042-015-3036-0
https://doi.org/10.1364/JOSAA.21.002301
https://doi.org/10.1109/TVCG.2010.63
https://doi.org/10.1145/882262.882270
https://doi.org/10.1145/3072959.3073609
https://doi.org/10.1111/cgf.13630
https://doi.org/10.1109/ICCV48922.2021.00250
https://doi.org/10.1007/978-3-030-01216-8_8
https://doi.org/10.1007/978-3-030-01216-8_8
https://doi.org/10.1007/978-3-030-01216-8_8
https://doi.org/10.1109/CVPR.2019.00185
https://doi.org/10.1109/TIP.2020.2971346
https://doi.org/10.1109/CVPRW.2019.00247
https://doi.org/10.1109/CVPRW.2019.00247
https://doi.org/10.1109/CVPRW.2019.00247
https://doi.org/10.1109/CVPR.2017.19
https://doi.org/10.1109/TCI.2016.2644865
https://doi.org/10.1109/CVPR.2000.855857
https://doi.org/10.1109/CVPR.2000.855857
https://doi.org/10.1109/CVPR.2000.855857
https://doi.org/10.1109/CVPR.2004.1315065
https://doi.org/10.1109/CVPR.2004.1315065
https://doi.org/10.1109/CVPR.2004.1315065
https://doi.org/10.1145/2010324.1964936
https://doi.org/10.1109/ICCPhot.2013.6528315
https://doi.org/10.1109/ICCPhot.2013.6528315
https://doi.org/10.1109/ICCPhot.2013.6528315
https://doi.org/10.1117/12.2040003
https://doi.org/10.1109/4.859503
https://doi.org/10.1145/566654.566575
https://doi.org/10.1145/566654.566575
https://doi.org/10.1145/566654.566575
https://doi.org/10.2352/CIC.2006.14.1.art00061
https://doi.org/10.2352/CIC.2006.14.1.art00061
https://doi.org/10.2352/CIC.2006.14.1.art00061
https://doi.org/10.1145/1276377.1276426
https://doi.org/10.1145/1921264.1921275
https://doi.org/10.1145/1921264.1921275
https://doi.org/10.1145/1921264.1921275
https://doi.org/10.1109/SIBGRAPI.2014.29
https://doi.org/10.1109/SIBGRAPI.2014.29
https://doi.org/10.1109/SIBGRAPI.2014.29
https://doi.org/10.1111/j.1467-8659.2008.01265.x
https://doi.org/10.1145/3130800.3130816
https://doi.org/10.1145/3130800.3130816
https://doi.org/10.1145/3130800.3130816
https://doi.org/10.1145/3130800.3130834
https://doi.org/10.1145/3130800.3130834
https://doi.org/10.1145/3130800.3130834
https://doi.org/10.1109/CVPR42600.2020.00172
https://doi.org/10.1109/CVPR42600.2020.00172
https://doi.org/10.1109/CVPR42600.2020.00172
https://doi.org/10.1117/12.862492
https://doi.org/10.1109/ICIP.2011.6115678
https://doi.org/10.1109/ICIP.2011.6115678
https://doi.org/10.1109/ICIP.2011.6115678
https://doi.org/10.1145/2508363.2508402
https://doi.org/10.1111/cgf.12684
https://doi.org/10.1111/cgf.12684
https://doi.org/10.1111/cgf.12684
https://doi.org/10.1109/TIP.2016.2642790
https://doi.org/10.1109/TIP.2016.2642790
https://doi.org/10.1109/TIP.2016.2642790
https://doi.org/10.1109/CVPR.2019.01143
https://doi.org/10.1109/CVPR.2019.01143
https://doi.org/10.1109/CVPR.2019.01143
https://doi.org/10.1016/j.displa.2023.102492
https://doi.org/10.1109/ICCV48922.2021.00446
https://doi.org/10.1145/3490035.3490266
https://doi.org/10.1145/3490035.3490266
https://doi.org/10.1145/3490035.3490266
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01338
http://arxiv.org/abs/2306.10311
https://doi.org/10.1016/j.cag.2022.04.008
https://doi.org/10.1109/TCSVT.2023.3252007
https://doi.org/10.1109/TCSVT.2023.3252007
https://doi.org/10.1109/TCSVT.2023.3252007


Ullah et al.: Multi-attention guided SKFHDRNet for HDR video reconstruction

53 O. Martorell and A. Buades, ‘‘Variational temporal optical flow for
multi-exposure video,’’ VISIGRAPP (4: VISAPP) (SciTePress, Setubal,
2022), pp. 666–673.

54 Y. Jiang, I. Choi, J. Jiang, and J. Gu, HDR video reconstruction with
tri-exposure quad-bayer sensors, arXiv preprint arXiv:2103.10982 (2021),
10 pages.

55 U. Cogalan, M. Bemana, K. Myszkowski, H.-P. Seidel, and T. Ritschel,
‘‘Learning HDR video reconstruction for dual-exposure sensors with
temporally-alternating exposures,’’ Comput. Graph. 105, 57–72 (2022)
https://www.sciencedirect.com/science/article/pii/S0097849322000607.

56 J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, ‘‘Deformable
convolutional networks,’’ Proc. IEEE Int’l. Conf. on Computer Vision
(IEEE, Piscataway, NJ, 2017), pp. 764–773.

57 S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, ‘‘Cbam: Convolutional block
attention module,’’ Proc. European Conf. on Computer Vision (ECCV)
(Springer, Cham, 2018), pp. 3–19.

58 X. Li, W. Wang, X. Hu, and J. Yang, ‘‘Selective kernel networks,’’ Proc.
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (IEEE,
Piscataway, NJ, 2019), pp. 510–519.

59 A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, Mobilenets: Efficient convolutional neural
networks for mobile vision applications, arXiv preprint arXiv:1704.04861
(2017), 9 pages.

60 Y. Tian, Y. Zhang, Y. Fu, and C. Xu, ‘‘Tdan: Temporally-deformable
alignment network for video super-resolution,’’ Proc. IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (IEEE, Piscataway, NJ, 2020),
pp. 3360–3369.

61 Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, ‘‘Residual dense network
for image super-resolution,’’ Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (IEEE, Piscataway, NJ, 2018), pp. 2472–2481.

62 P. E. Debevec and J. Malik, ‘‘Recovering high dynamic range radiance
maps from photographs,’’ SIGGRAPH ’97: Proc. 24th Annual Conf. on
Computer Graphics and Interactive Techniques (ACM, New York, NY,
1997), pp. 369–378.

63 X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ Proc. Thirteenth Int’l. Conf. on Artificial
Intelligence and Statistics, JMLR Workshop and Conf. Proc. (JMLR,
Cambridge, MA, 2010), pp. 249–256.

64 R. Mantiuk, S. Daly, and L. Kerofsky, ‘‘Display adaptive tone mapping,’’
ACM Trans. Graphics 27, 1–10 (2008).

65 M. Själander, M. Jahre, G. Tufte, and N. Reissmann, EPIC: an energy-
efficient, high-performance GPGPU computing research infrastructure,
arXiv:1912.05848 (2019), 6 pages.

66 M. Narwaria, M. P. Da Silva, and P. Le Callet, ‘‘HDR-VQM: An objective
quality measure for high dynamic range video,’’ Signal Process., Image
Commun. 35, 46–60 (2015).

67 M. R. Luo, G. Cui, and B. Rigg, ‘‘The development of the CIE 2000
colour-difference formula: CIEDE2000,’’ Color Res. Appl. 26, 340–350
(2001).

68 J. Kronander, S. Gustavson, G. Bonnet, A. Ynnerman, and J. Unger, ‘‘A
unified framework for multi-sensor HDR video reconstruction,’’ Signal
Process., Image Commun. 29, 203–215 (2014).

69 T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, ‘‘Video enhancement
with task-oriented flow,’’ Int. J. Comput. Vis. 127, 1106–1125 (2019).

J. Imaging Sci. Technol. 19 Sept.-Oct. 2023

http://arxiv.org/abs/2103.10982
https://doi.org/10.1016/j.cag.2022.04.008
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://www.sciencedirect.com/science/article/pii/S0097849322000607
https://doi.org/10.1109/ICCV.2017.89
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1109/CVPR.2019.00060
https://doi.org/10.1109/CVPR.2019.00060
https://doi.org/10.1109/CVPR.2019.00060
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/CVPR42600.2020.00342
https://doi.org/10.1109/CVPR42600.2020.00342
https://doi.org/10.1109/CVPR42600.2020.00342
https://doi.org/10.1109/CVPR.2018.00262
https://doi.org/10.1109/CVPR.2018.00262
https://doi.org/10.1109/CVPR.2018.00262
https://doi.org/10.1145/258734.258884
https://doi.org/10.1145/258734.258884
https://doi.org/10.1145/258734.258884
https://doi.org/10.1145/1360612.1360667
http://arxiv.org/abs/1912.05848
https://doi.org/10.1016/j.image.2015.04.009
https://doi.org/10.1016/j.image.2015.04.009
https://doi.org/10.1016/j.image.2015.04.009
https://doi.org/10.1016/j.image.2013.08.018
https://doi.org/10.1016/j.image.2013.08.018
https://doi.org/10.1016/j.image.2013.08.018
https://doi.org/10.1007/s11263-018-01144-2

	Introduction
	Related Work
	Multi-Attention Guided SKFHDRN et for HDR Video Reconstruction
	Data Preprocessing
	Pipeline
	Image Alignment Using Optical Flow
	Multi-Attention Guided Feature Alignment
	Channel Attention
	Soft Attention Using Selective Kernel Fusion
	Split
	Fuse
	Select
	Spatial Attention

	Refined Deformable Feature Alignment
	Merge Network for HDR Image Reconstruction
	Global Residual Learning With the Reference Features
	Dilated Selective Kernel Fusion Residual Dense Block


	Pixel Blending
	Loss Function
	L1MS–SSIM Loss Function

	Implementation Details
	Experiment Results
	Evaluation of Baseline Models
	Per Frame Objective Metric Results Visualization of Our Baseline Model Without Optical Flow and Pixel Blending
	Evaluation of Our Full Model
	Synthetic Dataset for Training
	Evaluation on Synthetic Dataset
	Evaluation on Real World Static Dataset
	Evaluation on Real World Dynamic Dataset
	Per Frame Objective Metric Results Visualization of Our Full Architecture

	Network Parameters Analysis
	Limitations of Our Proposed Methodology
	Future Work
	Conclusion
	References

