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Abstract. Recently, a theoretical framework was presented for
designing colored filters called Locus Filters. Locus filters are
designed so that any Wien-Planckian light, post filtering, is mapped
to another Wien-Planckian light. Moreover, it was also shown that
only filters designed according to the locus filter framework have this
locus-to-locus mapping property. In this paper, we investigate how
locus filters work in the real world. We make two main contributions.
First, for daylights, we introduce a new daylight locus with respect
to which a locus filter always maps a daylight to another daylight
(and their correlated color temperature maps in analogy to the
Wien-Planckian temperatures). Importantly, we show that our new
locus is close to the standard daylight locus (but has a simpler and
more elegant formalism). Secondly, we evaluate the extent to which
some commercially available light balancing and color correction
filters behave like locus filters. c© 2023 Society for Imaging Science
and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2023.67.5.050407]

1. INTRODUCTION
Colored filters have been historically used in photography to
modulate the color of the prevailing illuminant. A filter is
usually a piece of colored glass (or another substrate) that is
placed in front of the lens of the camera leading to a change in
the colors of the scene in the acquired photo. One of themain
goals of using these filters is to change the way the camera
sees the light, which depends on the spectral properties of
the filter used. As an example, a ‘warm’ filter can be used
when taking a picture under a cool light in order to render
the effective illuminant color neutral.

A black-body radiation can be modeled by Planck’s
law or Wien’s approximation of this law [1]. A Planckian
light, by definition, is dependent on a single number, the
color temperature (measured in Kelvin). As we move from
3000 to 5000 to 10,000 Kelvin the corresponding Planckian
light ‘looks’ yellowish, whitish, and bluish respectively. The
higher the temperature the cooler the color of the light. The
Planckian locus is the line that connects the chromaticity
points of the series of color temperatures of black body
radiators. The Planckian locus is plotted with respect to
the uv chromaticity diagram in Figure 1 (blue solid line).
From right to left, the color temperature varies from 4000 to
20,000 K.

In daily life, most lights have spectra that are not well
described by the Planckian or Wien-Planckian equations
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(mostly, we will consider the Wien-Planckian lights in this
paper). These include natural light sources such as the sun
and sky, and artificial ones like incandescent lamps and
LED lamps. However, these non-Planckian illuminants can,
in analogy to the temperature defining Planckian lights, be
characterized by their correlated color temperatures (CCT).
The CCT is the temperature of the Planckian illuminant
having the closest chromaticity coordinates to those of a
given illuminant [2].

Regarding daylights, there is a second daylight locus (also
plotted on the chromaticity diagram for the 4000 to 20,000 K
CCT range, the red dash-dotted line in Fig. 1) that accounts
for the colors of some daylights. Given a target CCT, the
corresponding chromaticity point on the daylight locus can
be found and the corresponding daylight spectrum [3] can
be calculated. In the standard daylight nomenclature, D100
and D40 correspond to 10,000 K and 4000 K CCT daylights.

In this study, we investigate how colored filters filter
illuminants. Prior research in the literature that has consid-
ered this question has focused on finding a particular filter
that changes a specific illuminant in the scene to another
chosen one. Gage [4] presented a study of the properties
of a filter that brings a Wien-Planckian illuminant with
one color temperature to another specific one. It also turns
out that a Gage-filter maps any Wien-Planckian to another
Wien-Planckian (our own analysis starts with this result).
For known film-types, given lights, and a set of approximate,
physically realizable, Gage-type filters, McCamy [5] investi-
gated how these filters could be practically used to optimize
the exposure of color films. Importantly, it was observed
by Henry Hemmendinger— and reported in [6]—that the
yellowing of the lens of the eye as we age can be thought of
as approximately following a Gage-type equation. In related
research, Weaver [7] and Estey [8] respectively considered
the filter design question from a theoretical (what filters we
might design) and practical (how do commercial filters filter
light) viewpoints.

Interestingly, the question of how filters modulate
arbitrary light had not, to our knowledge, been considered
quantitatively till our previous work [9] on locus filters.
There, we showed that it was possible to design a filter
that guarantees that the resulting light stays on the Wien
Planckian locus. We called such a filter a ‘Locus Filter’ and
presented a physical basis for the design of such filters. A
locus filtermaps a given input color temperature to an output
temperature. The mapping function, which we discuss in the
next section, is non-linear. Significantly, it was proven [9]
that the locus filters are the only ones that have the property
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Figure 1. (a) Planckian locus (blue solid) and daylight locus (red dash-dotted) in u,v chromaticity diagram. (b) Zoomed in.

that they map Wien-Planckian lights to other lights that are
also Wien-Planckians.

We investigate further the behavior of locus filters in
general and how they filter daylights in particular. Using
standard daylights as a useful single parameter family
of lights (i.e., they are parameterized by their correlated
color temperature (CCT)), we can place Wien-Planckians
in correspondence with daylights. Each pair has a Wien-
Planckian with a given color temperature and a daylight
with the same CCT. Then, we asked the following question:
does there exist a correction filter that takes each Wien-
Planckian to its corresponding daylight? We find, to a
good approximation, that such a filter exists. We also
show that when daylights and Wien-Planckians are in
this ‘filter’ correspondence, a locus filter (designed for
Wien-Planckians) must map a daylight with a given CCT to
another daylight. Moreover, the CCTs for daylights shift in
the same way as the corresponding Wien-Planckians.

Our new correction filtered representation of daylights
results in a new daylight locus which is found to be very
similar to the current locus. Usefully, our new daylight
equation is similar in structure to the Wien-Planckian
equation and, daylight spectra are simple (and intuitive)
to generate. In contrast, the existing standard daylight
methodology [3] is a little cumbersome to implement.
Additionally, being able to obtain daylights by applying
a filter to Wien-Planckian lights has direct application
in computer vision. The Wien approximation of Planck’s
law has the nice property that the logarithm of spectral
band-ratios (e.g., r/g and b/g) ofWien-Planck lights fall along
a line. This linear constraint has proven to be very useful in
calculating light-intensity independent invariants which in
turn has made it easier to detect and remove shadows from
images and to solve for color constancy e.g., see [10–12].
The work in this paper, in effect, extends this prior art in
computer vision to also be applicable for daylights that lie on
or close to the daylight locus.

In a second contribution of this paper, we wished to
compare locus filters to already existing Kodak Wratten
filters that are, analogously, designed to change the color

temperature of lights. We will examine the color filtering
performance (effectively, howmuch like locus filters they are)
for four Kodak Wratten filters [13].

The rest of the paper is organized as follows. In Section 2,
we present the physical andmathematical basis for the design
of locus filters. Then, in Section 3, we apply locus filter
theory to daylights. We solve for a color filter that—to
a good approximation—places Wien-Planckian lights with
given temperatures in correspondence with daylights that
have the same CCTs, and we empirically demonstrate that
locus-filtered daylights stay on the daylight locus, and they
shift in color temperature as if they were Wien-Planckians.
In Section 4, we study empirically how well our daylight
filter model daylights, and how locus filters affect daylights.
Additionally, we compare some commercially existingKodak
filters to locus ones in terms of the changes they exhibit on
lights. The paper concludes with Section 5.

2. THE LOCUS FILTER
In a Lambertian scene, sensors responses (of a camera or
XYZ color matching functions (CMFs)) ρk can be written
as a function of their spectral sensitivities Qk(λ) (where
k= R,G,B for RGB camera sensors or k= X ,Y ,Z for color
matching functions), the surface spectral reflectance S(λ),
and the spectral power distribution of the illuminant E(λ):

ρk =

∫
ω

Qk(λ)S(λ)E(λ)dλ, (1)

where ω is the range of visible wavelengths [1].
Ignoring complexities such as interreflections, when a

colored filter is put in front of the lens of the vision system,
the filtered sensor responses ρFk can be written as:

ρFk =

∫
ω

Qk(λ)S(λ)F(λ)E(λ)dλ, (2)

F(λ) defines the filter spectral transmittance.
A Planckian black-body illuminant EP is a function of

color temperature T and wavelength λ, and is written as [1]:

EP(λ,T )= kc1λ
−5(e

c2
Tλ − 1)−1, (3)

J. Imaging Sci. Technol. 2 Sept.-Oct. 2023



Deeb, Finlayson, and Daneshvar: Locus filters: theory and application

where c1 and c2 are constants equal to 3.74183× 10−16 Wm2

and 1.4388× 10−2 mK, respectively. The scalar kmodulates
the intensity of the Planckian light [1].

In the range of typical lights (2000 K to 20,000 K), a
simple approximate form of Planck’s equation—calledWien’s
approximation [14]—can be used to describe black body
illumination. These Wien-Planckian lights are written as:

E(λ,T )= kc1λ
−5e−

c2
Tλ . (4)

Here, k modulates intensity and the constants c1 and c2
are as defined after Eq. (3).

Based on the Wien approximation of Planck’s law, a
locus filter can be designed [9]. A locus filter takes a
Wien-Planckian illuminant with a temperature T1 to a
second Wien-Planckian with a temperature T2. By dividing
the spectra of these two illuminants (Eq. (4)), a filter
transmittance function FLocus(λ,Tf ) is obtained:

FLocus(λ,Tf )= e
−

c2
Tf λ . (5)

The Tf parameter is called the locus filter temperature
(LFT) [9], and is equal to:

Tf =
1

1
T2
−

1
T1

. (6)

It is clear from Eq. (6) that LFT, Tf , is not uniquely de-
fined by the pair ofWien-Planckian lights with temperatures
T1 and T2. That is, there are many temperature pairs that can
lead to the same LFT. Also following from Eq. (6), the LFT
can be negative.

Let us now calculate the product of the filter
FLocus(λ,Tf ) with a third light that has a temperature
T3 to make a new light spectrum Enew(λ) [9]:

Enew(λ)= FLocus(λ,Tf )E(λ,T3)

= Ic1λ
−5e
−

c2
Tf λ e−

c2
T3λ

= Ic1λ
−5e−

c2
Tnewλ . (7)

Clearly, Enew(λ) lies on the Planckian locus with
temperature Tnew calculated as [9]:

Tnew
=

1
1
Tf +

1
T3

. (8)

In summary, a locus filter is designed to map a light
of one color temperature to another and is parameterized
by its LFT. Equation (7) asserts that a given locus filter
will map any Wien-Planckian to another light that is also a
Wien-Planckian and Eq. (8) states the formula for calculating
the temperature of filtered light (given knowledge of the
temperature of the unfiltered light and the locus filter’s LFT).
Taken together, these equations also teach that given a single
Wien-Planckian with a temperature T we can generate all
Wien-Planckian lights (for any color temperature) given an
infinite set of locus filters with the requisite LFTs.

Importantly, it has been proved [9] that the form of the
filter equation is unique. That is, there is no other filter which
always maps all Wien-Planckian lights to corresponding
lights that themselves are Wien-Planckians.

We note that the definition of locus filter has another
degree of freedom. Specifically, we can scale the locus filter
to transmit more or less light. In Eq. (9), we add the scalar
µ to model this variable transmittance. Clearly, if one locus
filter is a scalar, say <1, from another then it will map
Wien-Planckian lights to the same counterparts but they will
be darker [9].

FLocus(λ,Tf )=µe
−

c2
Tf λ . (9)

The change of temperature after applying the filter
depends on both the initial temperature of the Wien-
Planckian light and the LFT of the applied filter (see
Eq. (8)). In order to observe the nature of this change, we
apply some locus filters with different LFTs with positive
and negative values to several Wien-Planckian lights with
different color temperatures. The first three columns of
Table I shows the change of temperature when applying
locus filters with a positive LFT of 5000, 7500 and 10,000 to
different Wien-Planckian illuminants. The last two columns
of Table I are for the negative LFTs, −12,000 and −20,000.
Note from Table I that filtering a Wien-Planckian light with
a filter with positive LFT always makes the light warmer
and conversely, a negative LFT will result in a filter that will
always make lights cooler in appearance.

In Figure 2, we show in the u, v chromaticity diagram,
how a Wien-Planckian light with a color temperature of
5000 K shifts differently when being filtered with two
different locus filters. In the first case, the light is filtered
with a locus filter with a positive temperature (LFT = 5000)
making it warmer. In the second case, the same light is
filtered with a locus filter with a negative temperature
(LFT = −12,000) which makes it cooler. In both cases, the
new lights are, as theymust be, on theWien-Planckian locus.

Curiously, Eq. (8) also indicates that a filtered light
can have a negative color temperature but, of course,
this is not physically possible. However, for the purposes
of our work we will allow negative color temperatures
(see [9] for more details). A negative color temperature
Wien-Planckian results in all positive light spectrum but
that it is even bluer than an infinite color temperature light.
In Figure 3, we show on the uv chromaticity diagram the
Planckian locus in solid blue and the additional colors in
an extended locus are shown in a red dotted line. This
extended locus allowed the negative color temperatures. To
elaborate this point on the Planckian locus from left to right
the temperature monotonically decreases from limT→∞ to
limT→0+ . Conversely, in the extended locus from right to left
the temperature monotonically increases from limT→−∞ to
limT→0− [9].
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Figure 2. Color temperature shifts on the Planckian Locus in the u, v
chromaticity diagram after applying two different locus filters, one with a
positive LFT and the other with a negative one.

Figure 3. The Planckian locus and the extended locus.

Table I. Colour temperature shifts after applying locus filters on Wien-Planckian lights.
Column one records the colour temperature in Kelvin for 4 input lights, ranging from
4000 to 10,000 K. The columns show the LFT ranging from −20,000 to 10,000 K. In
position (i , j ) we see the output colour temperature for the ith input light filtered by a
locus filter with the jth LFT.

Input light temperature
Output colour temperature for LFT (Tf )

(5000) (7500) (10,000) (−12,000) (−20,000)

4000 K 2222 K 2609 K 2857 K 6000 K 5000 K
6000 K 2727 K 3333 K 3750 K 12,000 K 8571 K
8000 K 3077 K 3871 K 4444 K 24,000 K 13,333 K
10,000 K 3333 K 4286 K 5000 K 60,000 K 20,000 K

3. FROMWIEN-PLANCKIANS TODAYLIGHTS
We see in Fig. 1, a pictorial representation of the daylight
locus in the uv chromaticity diagram. Visually, the daylight
locus runs parallel to the Planckian locus. Ultimately, in
this section we propose a simple and elegant formula for
generating a daylight spectrum, given a target CCT. We
claim elegance as—we shall see—our formula is simple
(as simple as the Wien approximation formula itself) and,
because—in comparison to our new formula—calculating

daylight spectra using the conventional methodology [3]
is slightly laborious. We recapitulate the standard daylight
calculation below.

Given a desired correlated color temperature (CCT) T
we, first, calculate the xT chromaticity coordinate [1] of the
light with this temperature according to:

xT =



−4.607× 109

T 3 +
2.9678× 106

T 2 +
0.09911× 103

T
+ 0.244063, if T ∈ [4000 K, 7000 K]

−2.0064× 109

T 3 +
1.9018× 106

T 2 +
0.24748× 103

T
+ 0.23704, if T ∈ (7000 K, 25,000 K]

.

(10)

Now, the yT chromaticity coordinate [1] is calculated:

yT =−3x2
T + 2.87xT − 0.275. (11)

The daylight spectrum ET (λ) which corresponds to
(xT , yT ) is formed as a weighted sum of E0(λ), E1(λ) and
E2(λ) (the spectra are principal component lights that result
from an analysis of Judd [15]) as follows:

D(λ,T )= E0(λ)+m1E1(λ)+m2E2(λ), (12)

wherem1 andm2 are defined as [1]:

m1 =
−1.3515− 1.7703xT + 5.9114yT
0.0241+ 0.2562xT − 0.7341yT

(13)

m2 =
0.003− 31.442xT + 30.0717yT
0.0241+ 0.2562xT − 0.7341yT

. (14)

In this paper, we replace the standard daylight spectral
calculation with the simple formula:

DC (λ,T )= kc1λ
−5C(λ)e−

c2
Tλ , (15)

where C(λ) denotes a fixed filter correction function and
the superscript C indicates that we are using the correction
filter form of the daylight calculation (and not the standard
methodology). The meaning of T here is correlated color
temperature (or equally temperature as it applies to the
Wien equation). The other terms are as before (see Eq. (4)).
Equation (15) asserts that Wien-Planckians and daylights
with the same temperature are in one-to-one correspondence
where one is mapped to the other by C(λ). See Figure 4 for
the C(λ) that is empirically derived.

With this derivation, it is possible to find a correction fil-
ter that—more or less—maps Wien-Planckians to daylights.
The details of how we solve for the filter are presented, next,
in Section 3.1.

3.1 Solving for the Correction Filter
In order to obtain the correction filter C(λ), let us represent
spectra as vectors. For a given temperature T and a
Wien-Planckian E(λ,T ) we denote the corresponding light
vector as ET . If the visible spectrum is represented at 10
nanometers sampling from 400 nm to 700 nm, then ET

J. Imaging Sci. Technol. 4 Sept.-Oct. 2023



Deeb, Finlayson, and Daneshvar: Locus filters: theory and application

is a 31-component vector. According to Eqs. (10)—(14)
for a CCT of T we can calculate a corresponding daylight
spectrum which we denote as an n-vector DT (where n is
typically 31). Also, representing the function C(λ) as the
n-vector C , we rewrite Eq. (15) in the discrete domain:

diag(C)E ≈D, (16)

where diag() takes a n-vector and places its components
along an n× n diagonal matrix.

Supposing that we have a set of the spectra of
N daylights, 9 = [D1,D2, . . . ,DN ], having (correlated
color) temperatures, [T1,T2, . . . ,TN ], respectively. For the
same temperatures, we calculate Wien-Planckian lights
�= [E1,E2, . . . ,EN ] (where the scaling term in Eq. (4) is
assumed to be equal to 1). For this set of corresponding
(matched temperature to correlated color temperature)
Wien-Planckians to daylights we, simplistically, might think
of finding a filter such that:

diag(C)�≈9. (17)

However, by the different natures of the equations
that define Wien-Planckians and daylights, we admit a per
temperature scaling factor k that can be applied. Let us denote
the N scaling factors as the vector k. The approximation is
now written as:

diag(C)�diag(k)≈9. (18)

We observe that Eq. (16) can be written as:

(C kt )��≈9, (19)

where the symbol � denotes the component-wise multipli-
cation of twomatrices and t—here and henceforth—denotes
a matrix/vector transpose.

Considering the individual components, we would like:

Cikj�ij ≈9ij, (20)

where i∈[1, 2, . . ., n] and j∈[1, 2, . . .,N ]. Expressing this
approximation in log units, we use the superscript ′ to denote
log-values. Then, recalling that multiplication becomes
addition in log space, we can write:

C ′i + k′j+�
′

ij ≈9
′

ij. (21)

Rewriting Eq. (21) in matrix form:

C ′(uN )
t
+ un(k

′)t +�′ ≈9 ′, (22)

where each component of the respective N and n dimen-
sional vectors uN and un is equal to 1. Now, let Ci denote a
n×N matrix that has 1s in the ith rowbut is zero, everywhere
else. Similarly, letKj denote a n×N matrix that has 1s in the
jth columns but is zero everywhere else. Then:

C ′(uN )
t
=

n∑
i=1

C iC′i, (23)

and:

un(k
′)t =

N∑
j=1

Kjk′j. (24)

Equivalently, we can write Eqs. (23) and (24) as:

vec

( n∑
i=1

CiC ′i

)
=MCC ′, (25)

and:

vec

 N∑
j=1

Kjk′i

=MKk ′. (26)

Here vec() is the operator that turns matrices into
vectors (where columns are stacked on top of each other).
Respectively, the ith and jth columns of the nN × n and
nN ×N matricesMC andMK are vec(Ci) and vec(Kj).

We are now in a position to write an optimization
statement that we would like to minimise:

min
C ′,k ′
‖C ′(uN )

t
+ un(k

′)t +�′−9 ′‖F , (27)

where ‖.‖F denotes the Frobenius norm [16]. Substituting
(9 ′−�′) with B:

min
C ′,k ′
‖C ′(uN )

t
+ un(k

′)t −B‖F . (28)

Now we use the vec() function again and write:

min
C ′,k ′
‖vec(C ′(uN )

t )+ vec(un(k
′)t )− vec(B)‖F . (29)

Notice that the vec operator does not change the
meaning of the equation. Rather, tables are transcribed to
vectors but the same components are in correspondence.
Substituting Eqs. (23) to (26) into (29):

min
C ′,k ′
‖MFC ′+MCk ′− vec(B)‖F . (30)

Denoting b= vec(B)we would, equivalently, like to find
C ′ and k ′ that minimizes

[MCMK
]

[
C ′

k ′

]
≈ b. (31)

Let us define the nN × (n+ N ) matrix A = [MCMK
]

and then+N coefficient vector x = [C ′; k] (where ‘‘;’’ means
stacking the vectors on top of each other). Effectively, we
have written ourminimisation in the formAx ≈ bwhich can
be solved in closed form using the Moore-Penrose inverse
(x = [AtA]−1Atb) [17]. The solution x simultaneously
solves for the filter and the scaling components. Since this
minimisation is carried out in log space, the final correction
filter C is equal to exp(C ′).

The reader will note that we have carried out the
minimization in log units. Of course, we did this to arrive
at a closed-form solution. To our knowledge, there does not
exist a closed form solution to Eq. (19). Root Mean Squared
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Log Error minimization is commonly used and, in effect,
minimizes relative error, e.g. [18].

3.2 Applying a Locus Filter to Daylight Illumination
Returning to Eq. (15) a daylight spectrum DC(λ,T ),
corrected from a Wien-Planckian light with the same
temperature T can be written as:

DC(λ,T )= C(λ)E(λ,T ). (32)

This is opposed to (no superscript) the standard daylight
calculated according to Eq. (10)—(14), denoted D(λ,T ).

Now, suppose we have a locus filter FLocus(λ,Tf ) such
that aWien-Planckian with temperatureT1 is mapped toT2:

FLocus(λ,Tf )E(λ,T1)= E(λ,T2). (33)

Applying the same locus filter to a daylight with a
correlated color temperature T1 gives:

FLocus(λ,Tf )DC(λ,T1)= C(λ)FLocus(λ,Tf )E(λ,T1).

(34)
Substituting Eq. (33) into Eq. (34) gives:

FLocus(λ,Tf )DC(λ,T1)= C(λ)E(λ,T2) (35)

and from Eq. (32) it follows that:

FLocus(λ,Tf )DC(λ,T1)=DC(λ,T2). (36)

Therefore, we can conclude that when a locus filter is applied
to a daylight it will introduce the same shift in correlated
color temperature as if it was applied on a Wien-Planckian
illuminant with the same temperature.

4. EXPERIMENTS
4.1 Finding the Correction Filter
To find the daylight filter C(λ) that brings any Wien-
Planckian light to a daylightwith the same color temperature,
we start with a set of 21 Wien-Planckian lights that are
equally distanced in terms of their mired color temperatures.
Themired color temperature [19] (micro-reciprocal-degree),
is often used to measure how similar one light color is to
another. It is measured in mired units and can be calculated
from a color temperature T as follows:

TMired
=

106

T
. (37)

For our set of 21 Wien-Planckian lights, the mired
color temperatures range from 50 to 250 with 10 mired step
corresponding to color temperatures from4000K to 20,000K
with a non-uniform step. For each of these lights, we obtain
an equivalent standard daylight with the same correlated
color temperature (see start of Section 3 for equations on how
this is done). Given these two sets of lights—Wien Planckians
and standard daylights—we find a correction filter C(λ)
as set out in Section 3.1. The correction filter—which, we
interpret here as a transmittance filter—is shown in Fig. 4.

Figure 4. Transmission spectrum of the correction filter.

In order to validate the accuracy of the performed
optimization, we calculate the difference between each
original daylight and its reconstructed counterpart given
the correction filter C(λ). For convenience, we represent
the spectral functions of these two lights as vectors of
measurements at a discrete number of sample points
across the visible spectrum, which we denote D and DC

(for respectively the standard and corrected form of our
daylights). Here we sample spectra at 10 nanometre samples
from 400 to 700 nanometers (for the visible spectrum).
We are most interested in how similar the shape of these
daylights spectra are to one another. So, we use the angular
error as an error metric:

AngularError(D,DC)= acos
(

D.DC

‖D‖∗‖DC
‖

)
, (38)

where ‘‘.’’ denotes the vector dot-product, ‖.‖ is the vector
magnitude and acos is the inverse cosine. We also calculate
a percentage root mean square error measure. As there is a
brightness difference between the spectra we normalise the
actual daylight and the one predicted using the correction
filter approach by their norm (respectively D

‖D‖ and
Dc

‖Dc‖ ).We
calculate the magnitude of the vector distance between these
normalised vectors. As the vectors being compared have unit
length they can be visualise as vectors whose tips lie on a
unit (hyper sphere). In this visualization the largest distance
between the tips of any two vectors has to be 2. Thus, we
divide by 2 to return a percentage error.

%RMS(D,Dc)=

∥∥∥∥ D
‖D‖
−

Dc

‖Dc
‖

∥∥∥∥/ 2, (39)

where ‖.‖ is the L2-norm.
We found that the average angular error between the

ground-truth daylights and the reconstructed ones using
the daylight filter for the 21 lights used in the optimization
is 1.1◦, and this corresponds to a 1%RMS. The maximum
angular error was just 2.3◦ (2%RMS). These values indicate
that the daylight filter gives very close spectra to the original
daylights.
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Figure 5. Comparison of spectral power distributions of an original daylight and a reconstructed one using the daylight filter; (a) The error between the
two spectra is equal to the average value (1.1◦ angular error or 1%RMS) found after optimization. (b) The error between the two spectra is equal to the
maximum value (2.3◦ angular error or 2%RMS) found after optimization.

In Figure 5, we show two examples of spectral power
distributions of original daylights and their reconstructed
ones using the daylight filter. The first example corresponds
to the case where the error between the two lights is equal
to the mean error found after the optimization (1.1◦ angular
error or 1%RMS). The second example corresponds to the
maximum error found after optimization (2.3◦ angular error
or 2%RMS). One can observe that in the case of maximum
error the two spectra are still quite similar.

4.2 Extending the Daylight Locus
The method for calculating standard daylights was not
designed to be used for creating daylights with a correlated
color temperature less than 4000 K. Although lower values
CCTs are possible at sunrise and sunset (and are found in
measured daylights [20]). Creating daylights for correlated
color temperatures lower than 4000 K is made possible with
our method. For any CCT, we simply calculate our daylight
spectrum using Eq. (15).

In the Granada set of daylights [20] there is a daylight
spectrum that has a CCT of 3888 K (with respect to
which we cannot calculate a standard daylight spectrum).
In Figure 6 we plot the spectral power distribution of
this measured daylight and the SPD calculated with our
correction filter using Eq. (15) (both lights are normalized
so their maximum relative power is equal to 1). The angular
error and %RMS between these two SPDs are equal to 7.5◦
and 6.5%, respectively.

Additionally, using our new formula for daylights
(Eq. (15)), we can calculate the chromaticities for a range of
CCTs and make a new daylight locus. In Figure 7, we plot,
in the u, v chromaticity space, both the standard daylight
locus and our new correction-filter-based locus. Notice how
similar the two loci are to one another (unsurprising given
the closeness of the spectral fits). As our approach allows us
to obtain daylights for color temperatures less than 4000 K,
the dotted line in Fig. 7 shows the extended daylight locus for
color temperatures between 2000 K and 4000 K (for which
the conventional daylight locus is not defined).

Figure 6. Comparison of spectral power distribution between a measured
daylight in Granada set whose CCT is equal to 3888 and its reconstructed
counterpart (with the same CCT) using our daylight filter.

Figure 7. Ground truth daylight locus (blue solid line) and our
reconstructed (red, dashed) plotted in the u, v chromaticity diagram.
The dotted red line shows the extension of the daylight locus for color
temperatures less than 4000 K.

4.3 Locus Filter Applied to Daylights
Wehave shown in our previous work [9] that the shift of CCT
introduced by a locus filter when applied to real lights follows
very closely the shift seen by an equivalent Wien-Planckian
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illuminant (by equivalent we mean its color temperature is
equal to the correlated color temperature of the real light)
after applying the same locus filter. In the Section 3.2, we
have, in effect, shown that we expect the shift in CCTs of
daylights to follow the temperature shift in the corresponding
Wien-Planckians when a locus filter is applied.

Let us now consider how the CCTs for the 99 (complete
set of) measured daylights in Granada [20]—which do not
lie on the daylight locus—shift when they are filtered by a
locus filter. First, let us measure how far these lights are from
the daylight locus built using our new daylight Eq. (15). For
the ith daylight, DG

i (λ) in the Granada set (superscript G for
Granada), we obtain its CCT, Ti, using the method [21]. We
calculate the 99 CCTs: {T1,T2, . . . ,T99} for the 99 Granada
daylights. Eq. (4) is then used to obtain a Wien-Planckian
light Ei(λ,Ti) (where we interpret the CCT for the ith
Granada daylight as a temperature for the Wien-Planckian
equation). Applying our correction filter C(λ) to this light
will give a daylight with the same CCT: DC(λ,Ti).

Let us denote the u′v ′ 2-component vectors for the
Granada daylight and its closest locus counterpart as ui
and uCTi respectively. The average, median, maximum and
95th percentile of 1u′v ′ over the 99 Granada daylights are
reported in the first column of Table II. The just noticeable
difference (JND) of this chromaticity distance has been
found to be 0.004 [22, 23]. So, on average, the Granada
daylights are so close to their daylight counterparts that their
differences in color are close to being imperceptible. Though,
there are lights up to 5 JNDs from the daylight locus.

Now we consider how the Granada daylights change
when they are filtered by a locus filter. Clearly, by construc-
tion, a daylight that is on the daylight locus will shift as
predicted by Eqs. (8) and (35). That is, given the correlated
color temperature of a locus daylight and the LFT of the filter
we can predict, in closed form, the CCT of the filtered light.
How do we quantify what happens when off-daylight-locus
illuminants are filtered by a locus filter?

As remarked earlier (after Eq. (8)) a single-color
temperature and the set of locus filters generated by the set
of all LFTs exactly generates all Wien-Planckian lights. The
same is true for our corrected daylight formalism. A single
daylight DC(λ,T ) is mapped to all other daylights through
the appropriate choice of LFT and locus filter. That is every
Wien-Planckian or every corrected daylight itself seeds the
whole (Planckian or daylight locus).

Similarly, an arbitrary daylight drawn from the Granada
set will also induce its own locus of filtered lights (when
all locus filters are applied). Intuitively, we would like these
per Granada loci to be ‘like’ either the Planckian locus or,
equivalently, the corrected daylight locus. Let us denote the
chromaticity coordinates of the filteredGranada daylight and
the corrected daylight (with the same CCTs) respectively as
ufi and uC,fTi (where f denotes dependence on a locus filter).

We can calculate 1i = ‖uCTi − ui‖ and 1
f
i = ‖u

C,f
Ti −

ufi ‖. By our intuition of parallel locii, we’d like 1i ≈1
f
i . If

this distance is constant for each LFT then eachGranada light

Table II. The mean, median, max and 95th percentile of chromaticity difference
1u ′v ′ between a locus filtered Granada daylight and a daylight filtered Wien-Planckian
with a colour temperature obtained after applying the locus filter.

LFT Unfiltered 5000 8000 12,000 −12,000

Mean1u ′v ′ 0.004 0.004 0.004 0.004 0.005
Median1u ′v ′ 0.003 0.002 0.002 0.002 0.004
Max1u ′v ′ 0.019 0.030 0.024 0.021 0.021
95th%1u ′v ′ 0.010 0.019 0.014 0.013 0.013

would induce a locus parallel to the Planckian or corrected
daylight locus and the distribution of temperatures across
the locus would be the same. We additionally report in
Table II the mean, median, max and 95th percentile of 1f

i
after applying locus filters with locus-filter-temperature of
5000, 8000, 12,000 and −12,000. We find that the average
chromaticity distance for locus filtered daylights is broadly
equal to the unfiltered case except for the case of a negative
LFT. But it is still, on average, within the range of just
noticeable distance (JND= 0.004).

Figure 8 shows Granada daylights and filtered ones
with two different locus filter temperatures in the u,
v chromaticity diagram. As expected (predicted by the
previous experiment), the Granada daylights shift along the
locus. Left, a positive LFT shifts theu, v chromaticities for the
Granada Daylights (blue stars) toward warmer colors (green
circles). A negative LFT, see panel b, makes all the Granada
daylights cooler (higher CCT).

4.4 Wratten Filters versus Locus Filters on Measured Lights
In this section, we will consider the extent to which some
Wratten filters filter light like locus filters. There is a large
number of Wratten filters—which filter light in a variety
of ways—and they are used in photographic, scientific
and technical research and applications. These filters are
organized into categories depending on the effects they have
on the acquired image, and they are characterized by a coding
system where each filter is referred to by a unique code.

Here, we consider four of the KodakWratten filters from
two different categories: the 81 and the 82 which belongs to
the light balancing category, and the 80A and the 85 from
the color conversion category. Light balancing filters cause
minor adjustments in the color temperature of an illuminant
giving a cooler (the case of 82) or a warmer (the case of
81) light. Whereas color correction ones enable significant
adjustments in the color temperature of an illuminant leading
to a cooler one (the case of 80A) or a warmer one (the case
of 85).

We would like to consider the extent that these filters
change lights like locus filters. To do so, we need first
to find the equivalent locus filter for each of the real
filters. In Refs. [24, 25] the CCTs of initial lights and their
filtered counterparts are given, see Table III for the filters
in use. Then, the equivalent locus filters giving the same
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Figure 8. In u, v chromaticity coordinates we show the Planckian locus (black solid), our daylight locus (red dashed line) and its extension (red dotted
line) to color temperatures less than 4000 K (red); (a) Granada lights and locus filtered ones with a locus filter temperature of 5000. (b) Granada lights
and locus filtered ones with a locus filter temperature of −12,000.

Figure 9. Spectral transmittance of Kodak Wratten filters in the study compared to their locus filter counterparts.

Table III. Initial and filtered colour temperatures for Kodak filters as specified by
Kodak, and equivalent locus filter temperatures.

Filter Initial CCT Filtered CCT LTF of equivalent locus filter

80A 3200 K 5500 K −7652
85 5500 K 3400 K 8905
81 3510 K 3400 K 108,491
82 3290 K 3400 K −101,691

temperature change as the Wratten filters can be found by
Eq. (6).

In Figure 9, we show the spectral transmittance of the
four Wratten filters compared with their equivalent locus
counterparts. The locus filters are normalized so that the
maximum transmittance of each is equal to the maximum
transmittance of the corresponding Wratten filter. We can
see that locus filters have similar transmittance behavior
compared to the Wrattens, but they tend to be smoother
in shape. This is particularly apparent for the case of color
balancing filters (Figs. 9a and 9b). In the case of light
balancing filters, the difference between the Wratten ones
and their locus counterparts is less apparent (Figs. 9c and 9d).
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Let us now consider how the 4 Wratten filters and their
companion 4 equivalent locus filters behave when they are
used to filter lights. We will consider the filtering behavior
for 3 sets of lights: the Granada daylights, the 102 illuminants
compiled byBarnard et al. [26]which includesmany artificial
lights, and the set of 81 Wien-Planckian lights (from 2000 K
to 10,000 K in 100 K steps). For the color conversion filters
80A and 85 (and their locus filter equivalents) we subdivide
each illuminant set into two subsets. Filter 80A is designed
only to make warm colors cooler so we consider how it
changes the CCT of a light when it is applied only on
illuminants that have an initial CCT that is less than 5000 K.
Conversely, filter 85 is designed to make cool colors warmer.
For this filter we will consider only the lights that have a CCT
higher than 5000 K. All lights are considered for the light
balancing filters 81 and 82 since they are designed only to
make small alterations in the CCT.

In order to compare the behavior of Wratten filters to
their equivalent locus ones we use three metrics: the change
of CCT after applying the filters, the distance in u, v space
to the Planckian locus, Duv, and the color rendering index
(CRI Ra) of the filtered light. For the latter, we adopt the
CIE 1995 method for its calculation, which is based on the
color difference between standard samples rendered with the
light source and the same samples rendered using an ideal
light source with the same color temperature as the first one.
Tables IV—VII report the mean CCT shift, the mean Duv
and themean CRIRa when applying theWratten filters, 80A,
85, 82, and 81, respectively, and their equivalent locus filters
for the 3 sets of light. As expected, the shifts in CCT are
small for the light balancing filters 81 and 82. In addition,
the magnitude of the mean shift is consistent for these two
Wratten filters and their equivalent locus ones. Higher mean
CCT shifts are reported in the color conversion filters: 80A
and 85. Here we see that the filter 85 (which makes light
warmer in appearance), on average, performs like a locus
filter regarding CCT shifts. However, the filter 80A, which
makes lights cooler, on average, does not perform like a locus
filter.

In terms ofDuv, one can observe that these distances are
relatively small and coherent between Kodak and locus cases
for light balancing filters (81 and 82). However, in the case of
color conversion filters, 80A performs slightly better than the
locus filter in maintaining the distance between the filtered
light and the locus when applied on Granada daylights. But
it works less well for the Planckians and the Barnard set. The
locus filter performs better than filter 85 for the 3 sets of
illuminants.

Regarding color rendering indices, the light balancing
filters 81 and 82, unsurprisingly given their small CCT
change, make lights with similar indices as the unfiltered
lights and this is also true for the equivalent locus filters.
However, for the larger CCT changes induced by filters 80A
and 85 the means values of color rendering indices change
markedly and are generally significantly worse and yet for
the equivalent locus filters the—on average high—color
rendering indices are maintained.

Table IV. Average CCT shift, Duv and CRI Ra changes after applying the Kodak Wratten
filter 80A and its equivalent locus filter.

CCT shift Duv CRI Ra
80A Locus Unfiltered 80A Locus Unfiltered 80A Locus

Planckians
(ct< 5000)

6101 3650 0 0.006 0 99.8 90.7 98.7

Granada
(ct< 5000)

15,198 7410 0.003 0.003 0.004 94.9 87.7 96.4

Barnard
(ct< 5000)

5855 3694 0.005 0.009 0.005 81.8 85.2 83.9

Table V. Average CCT shift, Duv and CRI Ra changes after applying the Kodak Wratten
filter 85 and its equivalent locus filter.

CCT shift Duv CRI Ra
85 Locus Unfiltered 85 Locus Unfiltered 85 Locus

Planckians
(ct≥ 5000)

3756 3686 0.001 0.010 0 98.1 92.3 99.9

Granada
(ct≥ 5000)

3010 2898 0.002 0.010 0.002 95.7 89.3 95.4

Barnard
(ct≥ 5000)

3609 3552 0.005 0.007 0.004 95.9 92.0 95.6

Table VI. Average CCT shift, Duv and CRI Ra changes after applying the Kodak Wratten
filter 81 and its equivalent locus filter.

CCT shift Duv CRI Ra
81 Locus Unfiltered 81 Locus Unfiltered 81 Locus

Planckians 349 407 0 0.001 0 98.7 98.8 98.8
Granada 334 408 0.002 0.002 0.002 95.6 95.5 95.6
Barnard 316 373 0.005 0.005 0.005 90.0 89.9 89.9

Table VII. Average CCT shift, Duv and CRI Ra changes after applying the Kodak
Wratten filter 82 and its equivalent locus filter.

CCT shift Duv CRI Ra
82 Locus Unfiltered 82 Locus Unfiltered 82 Locus

Planckians 450 525 0 0 0 98.7 98.7 98.6
Granada 361 408 0.002 0.002 0.002 95.6 95.9 95.7
Barnard 424 491 0.005 0.005 0.005 90.0 89.9 90.0

To conclude, we have found that the light balancing
filters, in terms of their filtering behavior when applied to
Wien-Planckian, filter lights like locus filters. However, color
conversion filters filter lights somewhat differently from
locus filters. Indeed, when conversion filters are applied to
both Wien-Planckian and real lights they do not maintain,
as well as locus filters, the distance to the Planckian locus.

Of course, looking at Fig. 9 we see that the light-
balancing filters are quite neutral in color, very smooth and

J. Imaging Sci. Technol. 10 Sept.-Oct. 2023



Deeb, Finlayson, and Daneshvar: Locus filters: theory and application

very close, spectrally, to their locus filter counterparts. So, we
expect them to filter lights like locus filters. In contrast, the
color conversion filters are designed to make larger changes
in correlated color temperatures and are designed to be used
under specific lighting conditions.Moreover, that they do not
filter lights like a locus filter must be related to their relative
non-smoothness, again see Fig. 9.

5. CONCLUSION
The locus filters have the property—unique over all and
any other formulations of transmissive filter—that they
map any Wien-Planckian to another Wien-Planckian with
a different color temperature. In this work, it has been
shown that a locus filtered daylight is another daylight
spectrum and the shift in its correlated color temperature
is similar to that induced in the equivalent Wien-Planckian
light. A key result that follows from our analysis is that we
are able to solve for daylight spectra using a simple and
elegant formula (that is much simpler than the standard
daylight spectrum calculation). In detail, our corrected
daylight, for a given correlated color temperature, is simply
a filteredWien-Planckian having the same temperature. The
optimal correction filter—that best maps Wien Planckians
to corresponding standard daylights—is determined by
optimization.

Significantly, our new corrected-filter formula for day-
lights has an additional advantage that it also works for
daylights with a CCT less than 4000 K. The set of corrected
daylights induces a newdaylight locus in theu,v chromaticity
diagram. Our new locus is very similar to the existing
daylight locus but it extends to warmer colors.

Empirically, we also showed that the CCTs of real
daylights (not on the daylight locus) filtered by locus filters
shift as predicted by our locus filter formulae. Moreover,
when a daylight is not on the daylight locus the set
of chromaticities generated for a range of locus filters
(making lights cooler and warmer) effectively generates a
per illuminant locus which on average runs parallel to the
daylight (and Planckian) locus.

Finally, we examined the extent to which 4 Kodak
Wratten filters filtered lights like equivalent locus filters. The
equivalent locus filters for theWrattens inducing a significant
CCT changewere found to filter real and artificial lightsmore
consistently. That is, the locus filtered lights maintained their
color rendering indices (Whereas the Wratten filtered ones
did not) and the locus filtered lights better maintained their
relative positions with respect to the Planckian locus.
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