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Abstract. MA (Material Appearance) is a perceptual phenomenon
that our brain deciphers from the retinal image. What features
of retinal image are most closely related to the stimulus inside the
visual cortex of V1∼ V5? The function of V1 is the most well-studied.
V1 has the function of seeing fine in the fovea and rough in the
periphery, and is mathematically described by LPT (Log-Polar
Transform). Since LPT samples the retinal image at a higher rate in
the fovea but at lower rate peripherally, the color information tends
to gather in center of V1. Paying attention to this LPT features in
V1, we reported a novel method to transfer MA from one to another
scenes. After LPT, PCM (Principal Component Matching) is applied
to match the color distribution between source and target scenes.
By just showing the target scene as an example, our previously
reported LPT-PCM model can transfer the MA of target to that
of source without any a priori information. However, this model
had drawbacks such as changes in appearance depending on
the background margins and unpredictable results for the scenes
consisting of multiple color clusters. This article explores measures
to overcome such drawbacks and discusses the applicability of
proposed LPT-PCM. Finally we propose a new numerical index to
evaluate the similarity between the target and the transferred with
the examined samples. c© 2022 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.5.050406]

1. BACKGROUND
Human observers can recognizematerial property at a glance
through sensory organs. Without touching materials, we can
tell whether they would feel hard or soft, cool or warm, rough
or smooth,wet or dry. Furthermore, it is possible to define the
material such as metal or wood, leather or cloth.

The material appearance is a perceptual phenomenon
of feeling or sensation that our brain perceives from optical
image projected onto retina. Though, it is hard to untangle
what information of the retinal image stimulates the visual
cortex of V1∼ V5 and how it induces the material feeling in
our brain. Themechanism of INNERVISION in brain is still
a black box at present [1].

As a framework for material perception, N. Tsumura
initiated the skin color appearance and proposed the concept
of appearance delivering system [2].
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In Brain Information Science research on SHITSUKAN
(material perception) [3] by MEXT (Ministry of Education,
Culture, Sports, Science and Technology) in Japan, the first
stage (2010–2014 led by Dr. H. Komatsu) has concluded and
the second stage (2015–2019 led by Dr. S. Nishida) stepped
forward into ‘‘multi-dimensional’’ material perception and
currently, further research on ‘‘deep texture’’ is progressing.
The results so far are being put onto practical use.

Despite the complexity of MA mechanism, human
sensations such as ‘‘gloss/matte’’, ‘‘transparent/translucent’’,
‘‘metal/cloth’’ are controllable by an intuitive, but a smart
technique.

For instance, Motoyoshi, Nishida, et al. [4] noticed the
‘‘gloss’’ perception appears when the luminance histogram is
skewed. If it’s stretched smoothly to the higher luminance, the
object looks ‘‘glossy’’ but looks ‘‘matte’’ if compressed to the
lower. Sawayama and Nishida [5] developed ‘‘wet’’ filter by a
combination of exponent-shaped TRC (Tone Reproduction
Curve) and boosted color saturation. It is very interesting
that any ‘‘skew’’ in the image features induces a sensational
material perception. However, the mechanism why and how
such sensations as ‘‘gloss’’ or ‘‘wet’’ are activated by the ‘‘skew’’
effect in our cerebral visual cortex is not untangled yet.

Meanwhile, R &Ds for practical applications aremaking
steady progress in private enterprises. BRDF (Bidirectional
Reflectance Distribution Function) describes the specular
and diffusion components of optical surface reflection, which
carry ‘‘gloss’’ or ‘‘texture’’ appearance and used to adjust
MA. As a successful example, a specular reflection control
algorithm based on BRDF is implemented in LSI chip used
for a commercial 4K HDTV set [6].

Motivated by that LPT mimics the structure of visual
cortex V1, we intended to apply it to MR transfer from a
different perspective.

2. SCENE COLOR TRANSFERMODELS
Since the material perceptions such as gloss or clarity are
related to a variety of factors [7], it is hard to specify the
cause of perceptual feeling to a single factor. Nevertheless,
trials on material or textual appearances transfer between
CG images [8] or 3D objects [9] are reported. Especially,
color appearance plays an important role in the MA.
Historically, Reinhard’s color transfer model [10] was epoch-
making, where the color atmosphere of source scene A was
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transferred into that of target scene B. The clustered color
distribution of A is roughly matched with that of B. There,
the use of vision-based lαβ color space by Ruderman [11]
attracted interest.

So far, various example-based models have been re-
ported, but they needed troublesome segmentation processes
prior to define the target color area.

Most recently, Chunzhi Gu et al. [12] improved this
drawback by an extended Gaussian Mixed Model (GMM)
instead of segmentation. But, it incurs high computation
costs to optimize GMM by iterative EM (Expectation
Maxmization) algorithm.

The author developed a novel joint LPT-PCM model
by combining LPT and PCM to transfer scene colors
between different materials [13]. The LPT -PCM is also an
example-based model, but the principle is fundamentally
different from the conventional methods. This is because
we do not see the object with our eyes but with the visual
cortex, that is, LPT -PCM is a cortex-based model, where
LPT reflects the variable resolution sampling characteristics
of visual cortex V1.

The LPT -PCM model worked well between the objects
that form relatively simple color clusters, but had the
problems such as the changes in appearance depending on
the background margin size or unpredictable/unintended
results for the targets with complex mixed color clusters.

At the last CIC29, we announced how to emphasizeMA.
This time, we discuss how to transfer MA between scenes,
focusing on the visual cortex V1, which is deeply related to
MA.

2.1 lαβ Color Transfer Model
The lαβ is known as an orthogonal luminance-chrominance
color space simply transformed from RGB by the following
Step 1 and Step 2 and the color distribution of source image
is changed to match the target (reference) image by the
scaling process in Step 3 and the color atmosphere of target is
transferred to the source via the inverse transform in Step 4
as follows

Step 1: RGB to LMS cone response transform L
M
S

=
0.381 0.578 0.040

0.197 0.724 0.078
0.024 0.129 0.844


R
G
B

 . (1)

Step 2: LMS to lαβ transform with orthogonal lumi-
nance l and chrominance αβ l

α

β

 =
1/
√

3 0 0
0 1/

√
6 0

0 0 1/
√

2


1 1 1

1 1 −2
1 −1 0


×

 log L
logM
log S

 . (2)

Step 3: Scaling of lαβ around the mean values {l, α, β}
by the ratio of standard deviation to make match the color
distributions between source and target images.

l ′ = (σ l
DST/σ

l
ORG)(l − l)

α′ = (σαDST/σ
α
ORG)(α−α)

β ′ = (σ
β
DST/σ

β
ORG)(β −β),

(3)

where, σ l
ORG and σαDST denote the standard deviation of

luminance l for the source image and that of chrominance
α for the target image, and so on.

Step 4: Inverse transform [l ′α′β ′] ⇒ [L′M ′S′] ⇒
[R′G′B′].

Finally, the scaled l ′α′β ′ source image with color
distribution matched to the target image is displayed on
sRGB monitor.

2.2 PCM Color Transfer Model
Prior to lαβ model, the author et al. developed PCM (Princi-
pal ComponentMatching)model [14, 15] for transferring the
color atmosphere from one scene to another as illustrated in
Figure 1. The lαβ model works well between the scenes with
color similarity but not for the scenes with color dissimilarity
and often fails. While, PCM model works almost stable
between the scenes with color dissimilarities and advanced
toward automatic scene color interchange [16–18].

In our basic object-to-object PCM model a vector X in
a color cluster is projected onto a vector Y in PC space by
Hotelling Transform as

Y=A(X −µ). (4)

Where, µ denotes the mean vector and the matrix A is
formed by the set of eigenvectors {e1 e2 e3} of covariance
matrix 6X as

A= [e1 e2 e3]. (5)

The covariance matrix 6Y of {Y} is diagonalized in
terms of A and 6X with the elements composed of the
eigenvalues {λ1 λ2 λ3} of 6X as

6Y =A(6X )At
=

λ1 0 0
0 λ2 0
0 0 λ3

 . (6)

Thus the color vectors in source and target images are
mapped to the same PC space and the following equations
are formed to make match a source vector YORG to a target
vector YDST through the scaling matrix S as follows.

YDST =ADST(XDST−µDST) and
YORG =AORG(XORG−µORG), (7)

where,

YDST = S ·YORG (8)
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Figure 1. Scene Color Transfer Model based on PCM.

Figure 2. Successful example between images with color similarity.

S=


√
λ1DST/λ1ORG 0 0

0
√
λ2DST/λ2ORG 0

0 0
√
λ3DST/λ3ORG


(9)

Solving Eqs. (7) and (8), we get the following relation
between a source color XORG and a target color XDST to be
transferred and matched.

XDST−µDST =MPCM(XORG−µORG). (10)

The matching matrixMPCM is given by

MPCM = (A−1
DST)(S)(AORG), (11)

where, AORG and ADST denote the eigen matrices for the
source color cluster and the target color cluster. In the scaling
matrix S, λ1ORG means the 1st eigenvalue of the source and

J. Imaging Sci. Technol. 050406-3 Sept.-Oct. 2022



Kotera and Tsumura: Visual cortex based material appearance transfer model

Figure 3. Comparison in lαβ versus PCM for images with color dissimilarity.

λ2DST the 2nd eigenvalue of the target, etc. These are obtained
from each covariance matrix.

In general, the PCM model works better than lαβ even
for the scenes with color dissimilarities, because of using the
statistical characteristics of covariance matrix.

Figure 2 shows a successful example in both lαβ and
PCM models for the images with color similarity. While, in
case of Figure 3, lαβ fails to change the color atmosphere of
A into that of B due to their color dissimilarities, but works
well in PCM.

2.3 Spectral Decomposition Color Transfer Models
Following the lαβ model, a variety of improved or alternative
color transfer models have been reported. As a basic
drawback in lαβ model, Pitie et al. [18] pointed out that
it’s not based on the statistical covariance but only on the
mean values and variances in the major lαβ axes. Hence
PCMmodel is better than lαβ because of using the statistical
covariance matrix6X with the Hotelling transform onto the
PC space. At the same time, Pitie [19] suggested to make use
of orthogonal spectral decomposition paying the attention to
the Hermitian (Self adjoint) property of symmetric matrix
6X with real eigenvalues.

In general, the covariance matrix 6 in a clustered color
distribution of image is a real symmetric matrix. The square
root of 6 for source and target images is decomposed by
eigenvalues as

6
1/2
ORG =A−1

ORGD
1/2
ORGAORG and 6

1/2
DST =A−1

DSTD
1/2
DSTADST.

(12)
AORG and ADST denote the eigen matrices for source and
target images. DORG and DDST are given by the diagonal

matrices with the entries of their eigenvalues respectively.

DORG =

λ1ORG 0 0
0 λ2ORG 0
0 0 λ3ORG

 ,

DDST =

λ1DST 0 0
0 λ2DST 0
0 0 λ3DST

 . (13)

Now, the color matching matrix MEigen corresponding to
Eq. (11) is given by

MEigen =6
1/2
DST 6

−1/2
ORG

= (A−1
DSTD

1/2
DSTADST)(A−1

ORGD
1/2
ORGAORG)

−1

= (A−1
DSTD

1/2
DSTADST)(A−1

ORGD
−1/2
ORGAORG). (14)

2.4 Singular Value Decomposition (SVD)
A m× n matrix 6 is decomposed by SVD as the product of
matrices U , V , andW

6 =UWV . (15)

Where, U and V are m × m and n × n orthogonal
matrices. If6 is am× n rectangular matrix of rank-r, matrix
W is composed of r × r diagonal matrix with the singular
values as its entries and the remaining small null matrices.

Since the covariance6 is a 3× 3 real symmetric matrix,
the singular values equal to the eigenvalues and SVD equals
EVD.
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Figure 4. Outline of spatially-variant mapping to visual cortex from retina.

2.5 Cholesky Decomposition
Cholesky, a compact spectral decomposition method, de-
composes the covariance 6 as a simple product of lower
triangular matrix and its transpose as follows.

6ORG = LORGLTORG for LORG =Chol [6ORG]Chol[6ORG]
T

6DST = LDSTLTDST for LDST =Chol [6DST]Chol[6DST]
T

(16)

2.6 Eigenvalue Decomposition (EVD)
Where, Chol[∗] denotes the Cholesky decomposition. The
lower triangular matrix L is obtained by the iteration just like
as Gaussian elimination method (details omitted).

The color matching matrix MChol to transfer the color
atmosphere of target image into the source is given by

MChol = LDST(LORG)−1. (17)

3. VISUAL CORTEX BASED LPT -PCM COLOR
TRANSFER

3.1 Retina to Visual Cortex Log Polar Transform
The PCM model works well to transfer the color atmosphere
between the images even with color dissimilarities. However,
any human visual characteristic has not been taken into
account. In this paper, a striking feature in the spatial color
distributions in our visual cortex image is introduced to
improve the performance in PCM.

The mapping to visual cortex from retina is mathemat-
ically described by Schwartz’s complex Logarithmic Polar
Transform [20].

The complex vector z pointing a pixel located at (x, y)
in the retina is transformed to a new vector log(z) by LPT as
follows.

z= x + jy = ρejθ ; ρ = |z| and θ = tan−1(y/x)
log(z)= u+ jv = log(ρ)+ jθ; j=

√
−1.

(18)

The retinal image is sampled at spatially-variant resolution
on the polar coordinate (ρ, θ), that is, in the radial direction,
fine in the fovea but coarser towards peripheral according to
the logarithm of ρ, while in the angle direction, at a constant
pitch 1θ and stored to the coordinate (u, v) in the striate
cortex of V1.

Figure 4 illustrates a sketch how the retinal image is
sampled, stored in the striate cortex, and played back to
retina.

In the discrete LPT system, (ρ, θ) is digitized to R
number of rings and S number of sectors. The striate cortex
image is stored in the new Cartesian coordinates (u, v) as

(u, v)1{ρ(u), θ(v)}
ρ(u)= ρ0au for ρ ≥ ρ0, u= 1, 2, . . . ,R

a= exp[log(ρmax/ρ0)/R]
θ(v)= v1θ = (2π/S)v for v = 1, 2, . . . , S.

(19)

ρ0 denotes the radius of blind spot and ρ ≥ ρ0 prevents
the points near origin not to be mapped to the negative
infinite-point. This regulation is called CBS (Central Blind
Spot) model. Figure 5 illustrates how the image ‘‘sunflower’’
is sampled in LPT lattice and transformed to striate cortex
image, and then stored in the coordinates (u, v).

The height h(u) and width w(u) of an unit cell between
u+ 1 and u are given by the following equations. Hence the
area α(u) of unit cell increases exponentially with u.
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Figure 5. ‘‘sunflower’’ sampled in LPT lattice, and stored in Striate Cortex.

Figure 6. Spatially-variant color concentration effect in Striate Cortex by LPT.

h(u)= ρ(u+ 1)− ρ(u)= ρ0 (a− 1) au

w(u)= 1
2 (2π/S) {ρ(u+ 1)+ ρ(u)} = (π/S) (1+ a) auρ0

α(u)= h(u)w(u)= πρ0
2(a2
− 1)a2uS−1.

(20)
As sensed in Fig. 5, the color is sampled finer in the center
but coarser towards peripheral. The pixels in the yellowpetals
occupy a larger area than peripheral. This color distribution
in striate cortex reflects that V1 has the spatial processing
function that collects color information in the center of the
viewpoint.

Figure 6 is another example for a pink rose named
‘‘cherry shell’’. It shows how the color distribution is
concentrated on the pinkish petal area around at the central
viewpoint in the striate cortex image. Hence it’ll be better for
applying PCM not on the original, but on the striate cortex
image after LPT to perform the colormatchingmore effective
for the object of attention.

Now the basic PCM matrixMPCM in Eq. (11) is applied
to the covariance after LPT and we get the novel color
transfer matrix as

MLPTPCM = ( LPTA−1
DST)( LPTS)( LPTAORG)

LPTS=


√
LPT ′1DST/LPT ′1ORG 0 0

0
√
LPT ′2DST/LPT ′2ORG 0

0 0
√
LPT ′3DST/LPT ′3ORG

 . (21)

Figure 7 illustrates the color transfer process in LPT -
PCM model. In this sample, both the source image A and
target image B are first transformed to the visual cortex
images by LPT, then the clustered color distribution in cortex
image A is transformed to match the cortex image by PCM.
As a result, the MA of greenish transparent wine glass B
appears to be transferred to that of gold mask image A.

Since the original images A and B have color dissimilar-
ity, it’s a hard to make the color matching only by the single
use of basic PCM. While, by just placing LPT before PCM,
the feeling of greenish wine glass B is well conveyed to that of
gold mask A.

4. RESULTS IN COMPARISONWITHOTHER
METHODS

The performance of proposed LPT -PCM model is compared
with the other methods mentioned in Section 3. Figure 8
shows the results for the same images used in Fig. 7. The
lαβ model fails for such images with color dissimilarity. The
source colors remain almost unchanged. SVD and Cholesky
decomposition reflect the greenish target colors a little bit,
but look unnatural.

In the basic PCM model, the black in eyes and the green
in mask face seem to have replaced the unnatural look. Mis-
matches in the directions of PC axes may occur. Meanwhile,
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Figure 7. Improved LPT-PCM color transfer model.

Figure 8. Performance of LPT/PCM in comparison with other methods.

LPT -PCM model worked successfully for transferring the
color atmosphere of greenish wine glass to that of gold mask.

Figure 9 shows another example for color transfer
between three glass vases with different textures. lαβ had a
minimal effect leaving the source colors almost unchanged.
Though SVD and Cholesky decomposition showed certain
effects, a partial color mixing happened between the source
B and target A as shown in B to A color matching. PCM and
LPT -PCM looks like a neck and neck. But looking carefully,
LPT-PCM gives a little bit better impression than PCM due
to conveying the clean textures in the target.

Figure 10 is another result for the images with hetero-
geneous color & texture. The color atmosphere of ‘‘greenish
wine glass’’ is attempted to transfer to that of ‘‘reddish
Porsche’’, where only LPT -PCM seems to be successful.

5. PROBLEMS ANDDISCUSSION ON
COUNTERMEASURE

Since our LPT -PCM model utilizes the characteristics of
visual cortex V1 that concentrates color information in the
center of viewpoint, it has higher MA transfer performance
than others.

However, it is not all-round, as occasionally we often
encounter unexpected or unnatural results depending on the
target. Below are some typical problems and examples of
countermeasures.

5.1 Dependency on Background Margins and Cropping
Since the color transfer model is based on the color
distribution of the source and the target, the background
margin also affects the color distribution and has a simple
problem of changing results.

Figure 11 shows an example of the resulting color change
due to the background margins of the source image. One of
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Figure 9. Performance of LPT/PCM for images with different textures.

Figure 10. A result for the images with heterogeneous color & textures.

the measures to prevent unintended MA caused by a large
background margin is to crop in advance. The figure is such
an example. LPT -PCM looks insensitive to the margins and
robust than PCM.

5.2 How LPT-PCMWorks for Multi-Cluster Target?
For the sake of simplicity, the basic PCM is designed
assuming a single-cluster image. In the case of multi-cluster

images, if segmentation is needed for separating the colored
objects to each cluster then the object-to-object PCM is
performed. however, it is hard to find the corresponding
pair of objects particularly in the case of dissimilar color
images [14–16]. Hence, the proposed model may be limited
to a single cluster image rather than universal.

Figure 12 shows a difficult example of multi-cluster
image. However, LPT -PCM resulted in a color transfer
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Figure 11. Problem of color change due to background margin.

Figure 12. Performance of LPT/PCM for Multi-Cluster Target.

function that matches the light green glass placed in the
center of the three colored wine glasses. This is because light
green occupies the largest area in the striate cortex image
mapped to V1 as shown in the dotted circle.

If the target B is rearranged so that the pink glass is in
the center as target C, a pinkish Porsche is obtained as shown
in the 3rd. line.

Why LPT ? Because LPT mimics the spatial transform
function of retina to/from visual cortex called foveation.

6. SIMILARITY INDEX
Since MA involves many factors as a perceptual phe-
nomenon, it is difficult to quantitatively evaluate the
similarity between the transferred result and the target.

As a simple way, the following similarity index ρ is
tested.

ρ =Cor[F latten{Cov[trnLab]},F latten{Cov[dstLab]}].
(22)

Where, trnLab and dstLab denote CIELAB color distribu-
tions of Transferred result and that of Target to be matched.
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Figure 13. Evaluated Similarity Index and Comparison with Other Methods.

Cor [X ,Y ] means Correlation Operator between the
vectors X and Y and Cov [Z] denotes Covariance of Z .

Here, F latten works to convert 2-D matrix to 1-D array
vector.

Figure 13 shows the examples of estimated similarity
index ρ.

Index values generally seem to reflect similarities, but do
not always correspond to human visual senses. Verification
by more cases and the search for more reliable indicators are
future tasks.

7. CONCLUSIONS
This paper discussed the applicability of LPT /PCM MA
transfer model. It’s a model that combines LPT and PCM
algorithms. Prior to PCM, the retinal images are transformed
to striate cortex images by LPT. The key is to make use of
color concentration features on the central viewpoint areas
by LPT. The performance of basic PCM is significantly
enhanced when combined with LPT. This innovative model
worked better than others without any a priori information
or optical measurement for the material properties. The
question is how to evaluate the transformed image to be
perceptually acceptable or not. A new similarity index ρ
is proposed and showed some reasonable results. Towards
future MA research, it’ll be an eternal goal to answer the
question ‘‘how the brain feels beauty?’’ asked repeatedly by
Semir Zeki in his book, INNER VISION [1].
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