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Abstract. We investigate the relationship between goodness
measures of spectral sensitivities to actual 1E performance in the
presence of signal dependent noise. We show that the Vora value
does not perform as well as Sharma’s figure of merit (FOM). In
addition, we show that Sharma’s FOM has issues when the spectral
samples include lower luminance data. We introduce an FOM that
accounts for signal dependent noise and has a linear relationship
to 1E performance. The improvement introduced by including
signal dependent noise in the FOM results in closer relationships
of the FOM to colorimetric accuracy in all cases but is especially
important when the ensemble under investigation has a wide range
of luminance values. c© 2022 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.5.050402]

1. INTRODUCTION
Creating a robust design of the spectral sensitivity of a color
measuring device such as a camera, scanner, or colorimeter
requires several considerations. These include accounting
for existing optical elements in the design such as lenses,
IR filters, and sensor quantum efficiency; realizability of
color filters; recording illumination; variability of spectral
characteristics in manufacturing; and system noise. In the
design and evaluation of these devices, it is efficient to use
a figure of merit (FOM) or goodness measure that is closely
correlated with perceived color accuracy [1–9]. The FOMs
are usually developed to obtain high correlation with various
1E averages in the CIELAB color space. The advantage of
using an FOM is that its computation is considerably less
than simulating the average1E over an ensemble of spectra
under realistic noise conditions. Of course, as we show, the
development of effective FOMs requires such simulations.
Once the FOM is developed, it is easy to use it to compare
different devices or even optimize them.

Typically in formulating a camera design problem, a
mathematical model is used for the device imaging process
such as the following

c =HTOr + n, (1)

where the visible spectrumhas beenmathematically sampled
at N wavelengths [10]. The N ×M dimension matrix H
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contains the M spectral sensitivities of the device that
we wish to design; the diagonal matrix O contains the
concatenated spectral sensitivities of the other elements
of the device (e.g., lens, IR filter, sensor efficiency); the
N -element vector r represents the radiant spectrum that
is measured by the device; the M-element vector n is zero
mean, additive noise; and theM-element vector c is the value
measured by the device. To simplify things, we will combine
the matrix H and the matrix O into an N ×M matrix G,
giving us

c =GT r + n. (2)

Note that the radiant spectrum r entering the camera can be
broken down into an illuminant and a reflectance compo-
nent. The illuminant is of importance when considering the
mapping to CIE values.

To facilitate the design process, we wish to quantify
the goodness of the overall system spectral sensitivity
given by the matrix G. Such a goodness measure, can be
used to determine a matrix H that provides the ‘‘best’’
color measuring results. Depending upon the approach,
the matrix H is analytically determined with constraints
on realizability (e.g., nonnegativity, smoothness) [11–15],
parametric models (e.g. Gaussian shapes) [2, 4, 16, 17],
or selected from a set of readily available filters [8, 18,
19]. Regardless of the approach used, the use of a measure
to quantify how well a filter set performs relative to the
goodness measure is of use.

Here we compare how well different FOMs correlate
to 1E performance for a number of cameras. For each
camera, simulated raw camera values of spectral samples are
transformed to CIEXYZ values using the linear minimum
mean square error estimator. The camera model includes
signal dependent noise. In computing the 1E value on each
spectral sample, we average over a large number of signal
dependent noise realizations. The resulting 1E values from
the spectral samples are averaged. The correlations are then
computed between averaged1E and FOMs for the collection
of cameras.

2. FIGURES OFMERIT
There are several measures that have been proposed to
quantify the goodness of the spectral sensitivity of a
color measuring device. These measures were developed to
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measure how well the device performs in providing accurate
CIE color measurements obtained by the linear minimum
mean square error (LMMSE)method. Using notation similar
to above, the CIEXYZ vector for the radiant spectrum r can
be expressed as

t(r)=AT r, (3)

where the N × 3 matrix A contains the sample CIEXYZ
color matching functions, and the three element vector t(r)
is the CIEXYZ value of the radiant spectrum r . Again this
radiant spectrum can be decomposed into an illuminant
and reflection component, and the illuminant will define
the white point to which we would map to CIELAB. In
this work, we assume a spectrally uniform illuminant. There
are measures that consider multiple illuminants [3] as well
as work that considers the problem of capturing data for
multiple illuminants [12]. Here we are focused on comparing
measures of goodness for a single illuminant.

The earliest measure for quantifying the goodness
of a single color filter m is Neugebauer’s q-factor [20].
Mathematically, this measure is given by

q(m)=
‖PAm‖2

‖m‖2
, (4)

where PA is the orthogonal projection operator onto the
subspace defined by the matrix A. The projection operator
can be determined from

PA =A(ATA)−1AT . (5)

The q-factor is bounded between 0.0 and 1.0, with a value
of 0.0 indicating that the filter m lies totally outside (is
orthogonal to) the subspace defined by the CIE color
matching functions and 1.0 indicating that the filter lies
completely inside the subspace. Note that the q-factor only
provides the measure of a single filter. This single filter
constraint is a shortcoming of the q-factor, as we require a
measure that quantifies the entire system response that is
defined by the matrix G in Eq. (2). For example, we could
select three filters that are each contained in the subspace
defined by matrix A giving optimal q-factor values of 1.0
for each filter. However, when the filters are combined, it
is possible that they do not span the full three-dimensional
subspace defined by the matrix A.

The Vora value [21] solves this issue and is given by

ν(A,G)=
Trace [PAPG]

3
, (6)

where PG is the orthogonal projection operator onto the
subspace defined by the system response that we wish to
quantify, and can be computed in the samemanner as Eq. (5).
Similar to the q-factor, the Vora value ranges from 0.0 to 1.0
with 0.0 indicating that the subspaces defined by the matrix
A and G do not overlap (are orthogonal) and 1.0 indicating
that the subspaces are the same. The Vora value does not
consider the spectral data that is being measured, nor does
it account for system noise. Sharma proposed several FOMs

that account for these parameters [5]. Sharma assumes the
use of a LMMSE estimator in his FOMs.

The most complex FOM proposed by Sharma is given
by

qF (A,G)=
τ(A,G)
α(A)

, (7)

where the denominator is given by

α(A)= vec(AT )TSrvec(AT ), (8)

and Sr is mathematically defined below and is an autocorre-
lationmatrix related to the reflectance or radiant spectra, but
in the perspective CIELAB color space.

The numerator is given by

τ(A,G)= vec(AT )TSr (G⊗ I3)

× [(GT
⊗ I3)Sr (G⊗ I3)+ Sn]−1

× (GT
⊗ I3)Srvec(AT ), (9)

where Sn is mathematically defined below and is a weighted
version of the noise autocorrelation matrix. The symbol ⊗
represents the Kronecker product.

To complete the definition of the FOM, the autocorrela-
tion matrix terms are given by

Sr = E{(rrT )⊗ (JTF ( t(r))JF (t(r))}, (10)
Sn =Kn⊗E{JTF (t(r))JF (t(r))}, (11)

Kn = E{nnT }, (12)

where JF (t(r)) is the Jacobian matrix of the transformation
to CIELAB space for the CIEXYZ value t(r).

Note that the above FOM requires the statistical char-
acterization of the ensemble of spectra {r}, assumes signal
independent noise, and also assumes that a minimum linear
least squares estimator is used for mapping the measured
value to CIEXYZ values. In this FOM, through the use of the
Jacobian matrix, a first order Taylor approximation is made
at each reflectance value to account for the transformation to
CIELAB from CIEXYZ, which provides a perceptually more
meaningfulmeasure. Such an approximationwas introduced
by Wolski for the design of color filters [14]. See Appendix
C of Sharma [5] or Eq. (4) of Wolski [14] for details on
computing the Jacobian.

In practice, the noise model for a color measuring
instrument is not signal independent but is signal dependent.
While the noise is signal dependent, it is uncorrelated
with the signal. The recorded measurement value can be
well modeled with a Poisson distribution [8, 16, 22]. A
characteristic of a Poisson distribution is that its mean is
equal to its variance. In our case, due to the large number
of photons that arrive at the sensor, we can model the
mean value as the noise-free measurement, and the noise
as a Gaussian distribution that has a zero mean with a
variance that is a scaled factor of the measured value. The
scaling occurs due to the existence of gain in the system.
A system gain of γ on a measured component will scale
the noise-free value by γ but scale the variance by γ 2,
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Figure 1. Signal mean versus signal variance for Nikon D750. Slope of
fitted line is γ = 0.4.

introducing a scale factor of γ between the Poissonmean and
variance. It is straight-forward to determine the scale factor
for a particular device through the measurement of known
reflectance samples [22]. Figure 1 provides an example case,
where a Nikon D750 camera was used to measure samples of
spatially constant reflectance. Here we plot the mean value of
the sample versus the variance within the sample. The slope
of the linear fit to the data (shown as a red line) indicates
the scaling factor (γ value) that should be used for the noise
model for a channel of the camera, which is approximately
γ = 0.4 as shown by the fitted line in the figure. It is common
to see scale factors of γ = 0.4 to 0.8 in cameras that we have
investigated.

It is possible to adjust the FOM given in Eq. (7) to
account for a signal dependent noise model. The adjustment
involves performing a modification of Eq. (11). Instead, we
use

Ssd = E{(n(r)n(r)T )⊗ JTF (t(r))JF (t(r))}, (13)

where n(r) represents the realization of a signal dependent
noise value when measuring the radiant spectrum r . Note
that the variance of the noise is dependent upon the value
of r . The value Ssd is used in place of Sn in the computation
of the value for τ given in Eq. (9).

In practice, the values of Ssd , Sr , and Sn are estimated
from an ensemble of selected spectra. Assuming that we have
a collection of P spectra, estimates for each of these terms are
given by

S̃r =
1
P

P∑
i=i
(rirTi )⊗ (J

T
F (t(ri))JF (t(ri))), (14)

S̃n =
1
P
Kn⊗

P∑
i=i

JTF (t(ri))JF (t(ri)), (15)

and

S̃sd =
1
P

P∑
i=i
(Kn(ri))⊗ JTF (t(ri))JF (t(ri)), (16)

where Kn(ri) is the autocorrelation matrix of the noise when
measuring the radiance spectrum ri. When computing the
value of S̃sd , the autocorrelationmatrixKn(ri) is known from
the cameramodel. For example, if theM channel noise slopes
due to the system gain are given by γ = [γ1, . . . , γM ]

T and

di =GT ri (17)

is the noise-free measurement, then

Kn(ri)= diag(di� γ ), (18)

where� represents the Hadamard product, and diag(.) is an
operator that creates a diagonal matrix from a vector.

In addition to accounting for signal dependent noise, it
is useful if an FOM is linearly related to the1E performance
of the device. Sharma noted that the FOM he developed
has a

√
1− FOM relationship to 1E, which is clearly

nonlinear [5]. To achieve a measure that linearly relates to
1E performance, we can apply a correction factor to the
FOMmeasure that is given by

1−
√

1− FOM. (19)

This correction ensures that the measure remains between
0.0 and 1.0 with a value of 0.0 indicating a poor measure
and a measure of 1.0 indicating a perfect measure. This same
adjustment was suggested by Quan et al. where they altered
Sharma’s FOM measures to account for cross illumination
mappings [3].

3. COMPARISONOFMEASURES
Given the above measures, our focus is to compare their
ability to quantify the color accuracy of a camera. To
investigate this, we used two data bases of camera spectral
sensitivities, and four spectral reflectance/radiance data sets.
The sensitivity data bases consisted of a database from
RIT [23] that contained 28 cameras and a database of
20 phone cameras [24]. The spectral databases include
reflectivities of a textile database [25] (4827 samples), an
X-Rite SG chart (140 samples), a Digieye DT chart (240
samples), and a set of radiant spectra measured in situ (2262
samples) [26]. We computed 1E values that resulted from
the LMMSE method for each data set with each camera
for a level of signal dependent noise that was given by a
scale factor of 0.8 in each of the color channels. In this
computation, we used the LMMSE estimator that was based
upon the known components of the device model. The signal
dependent noise model was handled in the same manner as
was used in Trussell and Shamey [27]. It was not necessary to
performa regression data fit, since themodel components are
known exactly. Note that we used1E and not1E2000 as the
error metric. The reason is that the Jacobian matrix JF (t(r))
used in Sharma’s original measure does not account for the
weighting that is used in the computation of the 1E2000
error metric. At this point, we want to use Sharma’s original
calculation, which assumes a uniform error weighting in the
CIELAB components.
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Figure 2. Vora value versus 1E at a noise slope of γ = 0.8.

These average1E values for each camera are compared
to the previously discussed FOMs. To do this, we computed
the Vora value for each camera. In addition, we computed
the FOM value given by Eq. (7) for each camera and data set
combination assuming signal independent noise given at a
level that was the average of the signal dependent noise across
the data set. Finally, we computed the new FOM measure
that accounted for signal dependent noise (using Eq. (16))
and included the nonlinear adjustment. For completeness,
and to enable the ability to determine the usefulness of
accounting for signal dependent noise, we also computed the
original FOM value given by Eq. (7) but with the nonlinear
adjustment applied to it, to provide a linear relationship to
1E. To compute the 1E performance of each camera, it is
necessary to run a large number of noise simulations. We
used 1000 noise realizations for every spectral sample across
all the cameras.

We present the results in several different plots. Figure 2
shows how the Vora values of the cameras relate to the
simulated1E performance for each of the spectral data sets.
The dashed line is the least squares linear fit to the data. From
these plots, we see that the Vora value struggles in providing
a clear relationship to1E. While there is one outlier camera
that clearly has poor performance in terms of 1E and the
Vora value, the remaining cameras show limited correlation
between1E and the Vora value. Many cameras result in the

same Vora value but have significantly different average 1E
performance numbers. While useful for cases where there is
no spectral information about the data being measured, it
may not be as useful for cases that employ such information.
For our remaining comparisons, we will remove the outlier
camera, since all the FOMs also identified the camera as
producing very poor colorimetric accuracy.

Figure 3 shows the results of using Sharma’s FOM as
it was originally defined for the four spectral data sets.
The FOM and 1E axes have the same scaling to indicate
dependency of the FOM on the data sets. Figure 4 show the
same results but with the nonlinear adjustment applied to
the FOM values. As before, we show the least squares linear
fit to the data. In addition, the correlation coefficient for
each fit is provided. The FOM values show an improvement
compared to the Vora values in terms of having a correlation
with1E. Comparison of the correlation coefficients between
Figs. 3 and 4 show only a slight improvement obtained by the
application of the nonlinear adjustment. Comparison of the
four data sets show that the in situ data set [26] FOM results
(both adjusted andnon-adjusted) are quite different in nature
from the other three data sets. In addition, the correlation
coefficient is lower for the in situ data set, implying the
discrimination of cameras with different 1E performance
numbers is not very good in Fig. 4(d).
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Figure 3. Sharma’s FOM versus 1E at a noise slope of γ = 0.8.

Figure 4. Sharma’s FOM with nonlinear adjustment versus 1E at a noise slope of γ = 0.8.
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Figure 5. Signal dependent noise FOM versus 1E at a noise slope of γ = 0.8.

Figure 5 shows the results when using the FOM that
accounts for signal dependent noise, which involves the use
of Eq. (16). The results are quite good for all four spectral data
sets in that the slope of the relationship between the FOM
and 1E are similar, and all have high levels of correlation.
Fig. 4(a)–4(c) are similar to Fig. 5(a)–5(c) in terms of their
correlation numbers. A clear difference exists though for the
in situ data set. The in situ data looks good when we account
for the signal dependent noise (Fig. 5d) compared to the case
that assumes a signal independent noise model (Fig. 4d).

The difference between Fig. 4(d) and Fig. 5(d) prompted
an investigation into the source of the difference. It was
found that the in situ data set includes samples that contain
relatively dark luminance values, which are not present in
the other data sets. Figure 6 displays CIELAB gamut cross
sections of the four data sets. From this figure, we can see that
the in situ set of Fig. 6(d) contains a number of spectra with
L∗ values below 15 (approximately 5% of the spectra). These
are dark compared to the black values in the color targets
and textiles. Examination of these spectra showed they could
have relatively high values in the UV and IR ends of the
spectrum, but little in the visible range covered by the CIE
color matching functions.

Investigation of the difference between S̃sd and S̃n for
the in situ data set showed that Sharma’s FOM estimates a
significantly lower SNR for the dark samples compared to the

measure that accounts for the signal dependent noise. The
signal independent average noise produces a very low SNR
for the dark samples that affects the estimation process and
degrades the overall FOM. As such, it ends up relating poorly
to the 1E values that occur with the signal dependent noise
model. To demonstrate the issue, we removed dark samples
(those with L∗< 15) from the in situ data set and computed
the original FOM (with the nonlinear adjustment) with the
version that uses S̃sd . The results are shown in Figure 7
which show similar levels of correlation. We also verified the
dark sample effect by adding 5% dark spectra to the textiles
database, which resulted in the standard FOM measure to
perform poorly.

4. CONCLUSION
This work investigated how well goodness measures for
the spectral sensitivity of color measuring devices relate
to color performance. The approach considered a realistic
camera model that included signal dependent noise, which
is dominant in virtually all cameras. It was shown that the
Vora value does a poor job in relating to 1E. It was also
shown that Sharma’s FOM has issues if the spectral data
set includes samples that have low luminance levels. Use
of an FOM that accounts for signal dependent noise was
shown to help improve the correlationwith1E performance,
in particular if the device is to be used for a wide range
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Figure 6. L∗ a∗ gamut cross sections of spectra.

Figure 7. In situ results with dark spectra removed.

of luminance values. This signal dependent noise FOM
should prove useful in the determination of optimal spectral
responses for color measuring devices and in comparing the
colormetric performance of different devices.
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