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Abstract. Recent advances in convolutional neural networks and
vision transformers have brought about a revolution in the area of
computer vision. Studies have shown that the performance of deep
learning-based models is sensitive to image quality. The human
visual system is trained to infer semantic information from poor
quality images, but deep learning algorithms may find it challenging
to perform this task. In this paper, we study the effect of image
quality and color parameters on deep learning models trained for
the task of semantic segmentation. One of the major challenges
in benchmarking robust deep learning-based computer vision
models is lack of challenging data covering different quality and
colour parameters. In this paper, we have generated data using the
subset of the standard benchmark semantic segmentation dataset
(ADE20K) with the goal of studying the effect of different quality
and colour parameters for the semantic segmentation task. To the
best of our knowledge, this is one of the first attempts to benchmark
semantic segmentation algorithms under different colour and quality
parameters, and this study will motivate further research in this
direction. c© 2022 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.5.050401]

1. INTRODUCTION
After the success of AlexNet [1] in ImageNet [2] Challenge
2012, deep convolutional neural networks have become
an indispensable tool in computer vision. From the early
successes in image classification, these networks have been
used in different computer vision tasks such as object
detection, object tracking [3, 4] and image segmentation [5–
8]. Image classification is the task of assigning a class label
to a particular image, but merely assigning a class label does
not provide information on the understanding of the entire
scene. Human visual systems are naturally trained to develop
a deeper understanding simply by looking at the image.
Semantic segmentation is the task of assigning a class label
to a particular pixel and grouping together similar pixels.
Semantic segmentation provides a deeper understanding of
the context of the entire image. Several architectures based
on convolutional neural networks have been developed for
image classification over the last decade. An example of
semantic segmentation is shown in Figure 1 (Ref. [9]). Some
of the most popular ones are ResNet [10], DenseNet [11],
VGGNets [12], GoogleNet [13], EfficientNets [14] among
others. Recently, next-generation ConvNeXts [15] have
been proposed to take on transformers, where ResNet
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architectures have made some design changes to mimic
patchifying. In these architectures, depth-wise convolutions
and inverted bottlenecks, larger kernel sizes permit global
receptive power andmicro-designs like fewer activations and
normalization layers.

Transformers have been popular in the field of natural
language processing. Recently, computer vision researchers
have achieved state-of-the-art results on the task of image
classification outperforming most CNN based architec-
tures. Popular architectures include the vision transformer
(VIT) [16] and the shifted window transformer (SWIN) [17].
The core idea of VIT is to split the input image into patches
followed by vectorization. The vectors are then followed
by dense layers with shared parameters. The next step is
positional encoding, which is used to represent structural
information. The vectors along with a token for classification
are passed through a series of multihead self-attention layers
followed by dense layers, which constitute the transformer
encoder network. The SWIN transformer also transforms
the image into patches that are passed through a linear
transform. The SWIN transformer uses small patches in
the first transformer layer and merges into larger patches
in the deeper transformer layers. Then the concept of
shifted window-based self-attention is applied followed by
a series of transformers with limited attention and merging
layers followed by a linear dimensionality reducers. One of
the recent advances is the data-efficient image transformer
(DEIT), which uses the concept of distillation and the
attention mechanism [18].

Generally, deep learning-based models are
data-dependent and need a large amount of data to develop
robust models, and as a result, the quality of data is an
important parameter when training these models. One of
the most critical challenges in the deployment of machine
learning-based systems in the real world is that during
testing time, if there is a shift in distribution of the data, the
system is vulnerable to failures. Recent work [19–21] has
demonstrated that image quality is a very important attribute
in developing a machine learning-based system involving
images. Multiple studies by Hendrycks et al. [22–24] in the
ImageNet database have demonstrated that perturbations
and distribution shifts in images have a significant impact
on the performance of deep learning-based computer vision
models.

One of the lesser explored areas in deep learning, in
computer vision systems is the impact of colour on the per-
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Figure 1. Example from ADE20K dataset [9] with segmentation map.

formance of these networks. Deep learning networks such as
CNNs [25] and generative adversarial networks (GANs) [26,
27] have shown promising results in converting grayscale
images into colour images, and also some approaches have
been proposed in the area of demosaicing [28, 29]. Recent
studies [30–32] have shown that colour information has
a significant impact on image classification tasks. Colour
parameters such as the hue angle shift [33] have shown
a significant impact on the performance of state-of-the-
art deep neural networks trained on pristine ImageNet
data. Colour information has been exploited successfully
in the past by image segmentation algorithms [34–36].
Kantipudi [37] et al. have shown that colour channels can be
exploited to attack deep learning systems. Previous studies
have shown that CNNs trained on ImageNet are biased
towards texture [38]. Much current research is focused on
the robustness [39–43] of deep learning research; therefore,it
is important to investigate the effect of colour and image
quality on the robustness of these deep learning methods.
To the best of our knowledge, there has been very little work
exploring the impact of colour information on modern deep
learning-based semantic segmentation networks.

In this paper, we try to study the robustness of deep
learning-based semantic segmentation models [44]. One
of the first challenges is to identify and inspect quality
and colour based parameters which are likely to have an
impact on the performance of deep learning based semantic
segmentation models and generate a dataset to bench-mark
the performance. The parameters used for our study include
color space information, ISONoise, gamut, hue angle shift,
saturation, contrast, brightness, etc. to name a few. The
proposed dataset is built using the standard ADE20K [9,
45]. We tested some of the CNN- and transformer-based
methods for semantic segmentation to gain insight on how
these models respond to inputs which have been perturbed
from the distribution on which they are trained. With more
and more real-life tasks being deployed based on deep
learning trained computer vision models, understanding
the robustness parameters of these models is of paramount
importance. The rest of the paper is organized as follows: we

briefly describe the methods and architectures used in this
study, and then we describe in detail the dataset generation
and investigations conducted.

2. ARCHITECTURES ANDMETHODS
For this work, we have studied a few state-of-the-art
semantic segmentation networks and their backbones. We
have includedCNN- and transformer-basedmethods for this
study. For our analysis, we have used models pre-trained in
ADE20K from the MMSegementation [46] model zoo.

• Fully convolutional networks (FCN) [47] were one
of the first techniques to explore the use of convo-
lutional networks to perform semantic segmentation.
They transformed the classification network by adding
upsampling into a segmentation network. For this
particular study, we have included an FCN with
a ResNet-based backbone, namely ResNet-50 and
ResNet-101 backbones.

• Pyramid Scene Parsing networks (PSPNets) [48] is the
next image segmentationmethod included in our study.
PSPNets were designed to extract context information
and improve the quality of segmentation. Like FCN
we tested our augmented data for PSPNets and also
the backbones used are ResNet-50 and ResNet-101
backbones for a fair comparison.

• Unified perceptual parsing networks (UPerNet) [49]
are networks designed based on unified perceptual
parsing,which involves learningmultiple possible visual
concepts from a given image. We have conducted
extensive experiments using UPerNets and also we
have performed experiments on models which are
combination of UPerNets with the latest backbones
namely ConvNeXt, VIT, DEIT, and SWIN transformers
in addition to the ResNet-50 andResNet-101 backbones
and found some interesting results, which give us an
idea about robustness of these models.

• With current advances in the applications of transform-
ers in computer vision tasks, Strude et al. [50] proposed
a semantic segmentation method using transformers,
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where the authors have extended the VIT architecture
for the task of segmentation. The method uses the
output embeddings corresponding to the patches of
the images, and these embeddings yield the class labels
using a mask transformer decoder or a pointwise linear
decoder.

3. PIXEL ACCURACY
In this section, we describe the performance measure
used for our analysis. Common problems in semantic
segmentation includemismatched class labels, getting incon-
spicuous classes, mismatched relationships, among others
to name a few. For semantic segmentation, each and every
pixel in the image is assigned a class label. To measure
performance, we calculate the ratio of the number of pixel
labels identified by the semantic segmentation algorithm to
the pixel annotations from the ground truth. Let GT and
Pred be the ground truth and the predicted segmentedmaps,
respectively. Let TN be the total number of pixels in the
ground truth andTmatched be the total number of pixelswhere
the ground truth and the predicted segmentation map labels
are in a pair. Pixel accuracy (PA) is the ratio between Tmatched
and TN . For this analysis, we report the mean pixel accuracy
for 2000 images considered the dataset and the values are
reported as a percentage.

4. DATASET GENERATION AND ANALYSIS
One of the key challenges, to our knowledge, is that there
are no data to support the study of how image quality
and colour affect the process of semantic segmentation in
images. ADE20K is one of the most challenging benchmarks
in semantic segmentation, so we decided to build our
image quality and colour dataset on the classes of the
ADE20K dataset by using 2000 of their labeled validation
datasets, and we only just modified those colour and quality
parameters so that the boundaries of segmentation are not
altered. We have used the pixel-level accuracy between
the predicted and ground-truth maps to evaluate different
semantic segmentation techniques. Table I shows the average
pixel classification accuracy for all 2000 pristine images
in the dataset. The main observation is that transformer-
based models have better accuracy than CNN models,
but the UPerNet-ConvNeXt combination has competitive
performance. For all the methods, as expected, ResNet-101
performs better than the ResNet-50 backbones.

4.1 Colour Space based Distortions
Colour information from an image can be modeled using
different colour spaces. During the pre-deep learning era,
colour space information was used for segmentation [51].
Some of the popular colour spaces are red-green-blue (RGB),
hue saturation value (HSV), luminescence chrominance
(YCbCr), and CIE-Lab colour space. Generally, deep neural
networks are trained on the RGB colour space. To study the
impact of colour information encoded in color spaces, we
modified (setting to zero) the hue, saturation, Cb, Cr and

Table I. Average Pixel Classification Accuracy (PA) for the pristine images in the dataset.

Pristine
Method Backbone PA

FCN
ResNet-50 78.2
ResNet-101 80.1

PSP
ResNet-50 81.0
ResNet-101 81.8

UPerNet

ResNet-50 80.8
ResNet-101 81.5

Next 83.4
VIT-B 83.1
DEIT 82.9
SWIN-B 83.0

Segmenter VIT-B 83.8

Table II. Average Pixel Classification Accuracy (PA) for the colour space-modified
images in the dataset.

Hue Sat Cb Cr A B
Method Backbone PA PA PA PA PA PA

FCN
ResNet-50 73.5 70.1 65.9 62.1 77.0 75.1
ResNet-101 77.5 73.6 72.6 65.2 79.1 78.1

PSP
ResNet-50 78.9 75.8 74.0 66.1 80.3 79.4
ResNet-101 79.5 76.7 76.2 68.0 80.1 80.4

UPerNet

ResNet-50 78.3 75.4 73.0 50.8 79.9 78.7
ResNet-101 79.3 76.9 75.7 65.5 80.9 80.1
Next 81.5 80.7 79.4 77.3 82.3 81.8
VIT-B 80.9 80.7 79.4 74.9 81.8 81.3
DEIT 80.7 79.2 79.0 77.3 81.4 80.7
Swin-B 80.5 79.1 78.1 76.1 81.5 81.2

Segmenter VIT-B 82.1 82.0 82.0 79.8 82.7 82.7

A, B components of the HSV, YCbCr, and CIE-Lab spaces,
respectively, and created six subsets of images as shown in
Figure 2. The images were generated by converting the RGB
image into HSV [52], YCbCr [53] and CIE-Lab spaces and
then the hue (H), saturation (S), Cb, Cr, a and b channelswere
set to 0 to generate the images. All the colour space based
distortions were implemented using Matlab 2021a.

One of the key observations from Table II is that
in the YCbCr space, the Cb and Cr components have a
significant effect on the performance of deep learning-
based models. The methods with CNN backbones perform
significantly worse than those with transformer backbones.
The perturbation of the Cb and Cr components in the
image has created a maximum reduction in performance in
comparison to any other component in other colour spaces.
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Figure 2. Example from the generated dataset the component not seen is mentioned in the labels.

4.2 Hue Angle Shift
For image classification, studies have shown [33] that chang-
ing the hue angle to red or blue has a significant impact on the
performance of deep convolutional networks. Similarly to the
previous study, here we shift the hue angle by 60 degrees to
create a subset of five classes of images (60,120,180,240,300)
as depicted in Figure 3. The aim is to study the effect of hue
shift on semantic segmentation models trained on pristine
images with a few augmentations. The main observation
from Table III is that when we change the hue angle,
there is a change in the distribution and there is a drop
in performance. The networks with transformer backbones
perform better than the earlier methods with ResNet-50
or ResNet-101 backbones. In addition, the performance of
UPerNet with the next-generation ConvNeXt backbone is
also very competitive. The networks perform the worst when
the hue-angle shift is around 180 degrees. Fully convolutional
networks (FCN) are seen to be more sensitive to hue-angle
shifts compared to the competitors PSPNets and UPerNets.
The UPerNets that are combined with transformers are
found to be more robust compared to the ones with CNN
backbones.

4.3 Saturation
We have varied the saturation levels in the images into four
levels in order of distortion (refer to Figure 4 reduction in
this case) to study the impact of saturation on the semantic
segmentation task performed by deep learning models. The
four levels were created by scaling the values of the S
channel in the HSV colour space. For the experiments in
this paper, the scaling factors used were 0.8, 0.6, 0.4, 0.2,
respectively. which are termed Levels 1 to 4, respectively.
The modification was performed using MATLAB 2021a
where the saturation channel was scaled using these scaling
factors. The observation from Table IV is that, as expected,

Table III. Average Pixel Classification Accuracy (PA) for different hue-angle shifts (in
degrees) for images in the dataset.

60 120 180 240 300
Method Backbone PA PA PA PA PA

FCN
ResNet-50 76.8 72.9 69.1 70.7 76.4
ResNet-101 79.1 76.2 74.3 75.8 79.1

PSP
ResNet-50 80.0 76.1 76.1 77.4 80.2
ResNet-101 80.9 78.5 76.8 78.1 81.1

UPerNet

ResNet-50 79.5 76.7 74.8 76.6 79.7
ResNet-101 80.6 78.1 76.1 77.8 80.7
Next 82.7 80.9 79.7 80.9 82.8
VIT-B 82.6 80.3 79.3 80.1 82.5
DEIT 82.4 80.0 79.6 79.9 82.5
Swin-B 82.3 80.0 78.9 79.7 82.4

Segmenter VIT-B 83.4 81.8 81.1 81.6 83.4

the transformer models tend to perform better than the
CNN based models. There is a drop in performance
when the saturation is reduced in the images, but the
transformer-based models show better resistance to these
changes.

4.4 Brightness and Contrast
Brightness and contrast are two fundamental parameters
of image quality. The goal is to study how the semantic
segmentation of images works when the input image has
poor contrast or it is too dark or too bright. In real-life
applications, sometimes brightness and contrast may get
affected due to uncontrollable situations, and thus a deep
learning-based model must be robust to brightness and
contrast variations. For this study, we used four levels of
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Figure 3. Example from the generated dataset with the hue shift mentioned in the labels.

Figure 4. Example from the generated dataset with different saturation levels mentioned in the labels.

contrast and brightness and implemented them using the
Augly library [54] which is used for adversarial robustness.
Examples of brightness modification are shown in Figure 5.
Four levels were chosen for the final analysis that have
poor visual contrast for the final reporting of the results to
demonstrate their effect on semantic segmentation. Images
with poor visual quality showed poorer performance for se-
mantic segmentation. Table V shows that darker images(B1)
degrade the performance ofmethods with ResNet backbones

compared to methods based on transformers. A similar
behavior is observed for too bright images (B4).

Contrast is an important parameter of image quality, and
it is very important to study its effects. We have generated
four levels of contrast (examples shown in Figure 6) and their
corresponding average pixel accuracy for each of the models
is reported in Table VI. For poorer images (C1), CNN-based
methods show a performance drop compared to pristine
images in Table I and the transformer based models appear
to be more robust.
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Figure 5. Example from the generated dataset with different brightness levels.

Figure 6. Example from the generated dataset with the different contrast mentioned in the labels.

4.5 Colour Gamut
Colour gamut [55] comprises the total subset of colors
that the display device can represent and is one of the
key considerations in imaging and display technologies. We
conducted a set of experiments on different synthetically
generated images using ICC profiles (www.color.org) which
are generally used for printing, and ran semantic segmen-
tation models on these images. An example of a newsprint

gamut is shown in Figure 7. Table VII shows that the
newspaper gamut has a reducing effect on the performance of
semantic segmentation networks. This modification shows
that there is a distribution shift between the training and
testing data. The ResNet-50 FCN network has the greatest
performance drop, and even transformer-based models have
shown a performance drop. Similar trends were observed in
experiments carried out on other print gamuts.
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Figure 7. Example from the generated dataset with the different gamut mentioned in the labels.

Table IV. Average Pixel Classification Accuracy (PA) for different saturation levels for
images in the dataset.

Level 1 Level 2 Level 3 Level 4
Method Backbone PA PA PA PA

FCN
ResNet-50 78.1 77.9 77.2 75.0
ResNet-101 80.1 80.0 79.4 77.8

PSP
ResNet-50 81.0 80.8 80.4 79.1
ResNet-101 81.8 81.7 81.2 79.9

UPerNet

ResNet-50 80.7 80.5 79.9 78.5
ResNet-101 81.5 81.4 81.0 79.8
Next 83.4 83.2 83.1 82.6
VIT-B 83.1 83.0 82.8 82.2
DEIT 82.9 82.8 82.5 82.0
Swin-B 83.0 82.8 82.7 82.0

Segmenter VIT-B 83.7 83.7 83.6 83.3

4.6 ISO Noise
To study the sensitivity of semantic segmentation to image
sensor noise, we have created two subsets with two levels
of noise where level 2 indicates the presence of more
noise than level 1 as shown in Figure 8. The ISO noise
model is based on the Poisson distribution implemented
in the Albumentations [56] library (https://albumentation
s.ai/docs/api_reference/augmentations/transforms/.) From
Table VIII we can infer that, as expected, there is a difference
in the performance of semantic segmentation when the
level of noise increases. Transformer-based methods are
more immune to noise compared to competitors with
ResNet-50 and ResNet-101 backbones. The accuracy of the
ConvNeXt architecture backbone-based UPerNet is on par
with transformer-based architectures. The level 2 images
are visibly more distorted than level 1 images and the

Table V. Average Pixel Classification Accuracy (PA) for different brightness levels for
images in the dataset.

B1 B2 B3 B4
Method Backbone PA PA PA PA

FCN
ResNet-50 76.2 77.9 77.8 76.2
ResNet-101 78.8 79.9 79.8 78.6

PSP
ResNet-50 79.7 80.9 80.7 79.5
ResNet-101 80.6 81.6 81.5 80.5

UPerNet

ResNet-50 79.2 80.5 80.4 79.2
ReNets-101 80.2 81.4 81.2 80.1
Next 82.2 83.2 83.1 82.0
VIT-B 82.1 82.9 82.8 81.8
DEIT 81.8 82.7 82.7 81.8
SWIN-B 82.0 82.7 82.7 81.7

Segmenter VIT-B 83.2 83.7 83.5 82.9

experimental results also show that the models perform
worse on noisier images.

4.7 Colour Modification
We included two colour modifications that converted the
colour image to grayscale and sepia (refer Figure 9) using
the Albumentations. The main aim was to check how these
semantic segmentation methods behave in the absence of
colour information.

Table IX shows that colour information plays a signif-
icant information in computer vision tasks. There is a sig-
nificant decrease in accuracy for CNN-based networks, and
transformer-based methods have also shown a performance
dip. The patch-based nature of transformers most likely have
enabled them to perform better in comparison with CNN
based models.
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Figure 8. Example from the generated dataset with two levels of ISO Noise (Level 2 more noisier than Level 1).

Figure 9. Example from the generated dataset with grayscale and sepia mentioned in the labels.

5. RESULTS ANDDISCUSSION
In this paper, we have created synthetic data based on the
popular ADE20K dataset to understand the impact of colour
information and quality parameters on the performance of
semantic segmentation networks. We have performed com-
parative studies ranging from basic FCNs to the most recent
state-of-the-art transformer-based methods and attempted
to get an estimate of robustness of these methods under
different colour and image quality-based modifications.
The general observation is that transformer-based methods
show more robustness to poor-quality data compared to
their CNN-based counterparts. However, transformer-based
methods can be difficult to train and may require significant
computing resources. There has to be a trade-off between
robustness and model complexity. One consistent obser-
vation is that pyramid scene parsing networks (PSPNets)
and unified perceptual parsing networks (UPerNets) with

ResNet-50 and ResNet-101 backbone perform significantly
better than FCN on these backbones, with ResNet-101
outperforming ResNet-50. Colour channel information is
not widely studied in the context of deep neural networks
and the current era is based on deep learning, and one of the
main objectives of this study is to find ways in which these
modern techniques match to quality and colour parameters
andmotivate researchers to incorporate colour channels into
the architecture engineering process. Real-time computer
vision systems have been deployed in critical areas such as
surgery, autonomous driving, etc. to name a few, errors in
scene understanding can lead to catastrophe. To the best of
our knowledge, we have listed some of the key quality and
colour parameters which need to be investigated in detail by
both the colour imaging and deep learning community to
build safer systems.
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Table VI. Average Pixel Classification Accuracy (PA) for different contrast levels for
images in the dataset.

C1 C2 C3 C4
Method Backbone PA PA PA PA

FCN
ResNet-50 73.6 77.8 77.8 76.9
ResNet-101 76.8 79.8 79.8 79.0

PSP
ResNet-50 77.9 80.8 80.8 80.0
ResNet-101 79.1 81.5 81.5 80.8

UPerNet

ResNet-50 77.1 80.4 80.5 79.7
ResNet-101 78.5 81.3 81.3 80.5
Next 81.8 83.1 83.2 82.6
VIT-B 81.7 82.9 82.9 82.3
DEIT 81.7 82.7 82.8 82.3
SWIN-B 81.3 82.6 82.9 82.3

Segmenter VIT-B 83.0 83.6 83.7 83.2

Table VII. Average Pixel Classification Accuracy (PA) for images with reduced
(newspaper) gamut.

Gamut
Method Backbone PA

FCN
ResNet-50 72.6
ResNet-101 76.2

PSP
ResNet-50 77.6
ResNet-101 78.4

UPerNet

ResNet-50 76.9
ResNet-101 78.3
Next 81.3
VIT-B 81.6
DEIT 81.3
SWIN-B 80.2

Segmenter VIT-B 82.8
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