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Abstract. The display in embedded devices is a significant
energy-consuming device, and the display content determines
the degree of energy consumption. In the practice of energy
saving and emission reduction, it is necessary to build an accurate
medical image power prediction model for the display. Current power
consumption prediction models for medical images often focus on
the performance of a single prediction model, ignoring the ability
of multiple single prediction models to improve performance. This
paper proposes an accurate medical power framework (AMPF),
which consists of three steps. In the first step, the strong predictor is
used to compose multiple RGB single channels to obtain the power
model. In the second step, the power between RGB channels is
represented by errors, and the power generated by RGB channel
dependence is obtained by the strong predictor method. The third
step is to compose the power of the first step and the second
step to get accurate medical image power prediction results. The
experimental results show that the accuracy of the AMFP proposed
in this paper reaches 0.9798, which is 6.836% higher than that
of the single power model. The AMPF implemented by AdaBoost
is superior to that implemented by EWM in performance and has
about 1.3 times the time advantage in training. (© 2022 Society for
Imaging Science and Technology.

[DOI: 10.2352/J.ImagingSci.Technol.2022.66.4.040417]

1. INTRODUCTION

The objects of medical image processing are medical images
with different imaging mechanisms. The types of medical
imaging widely used in clinics mainly include X-CT (X-ray
imaging), MRI (magnetic resonance imaging), NMI (nuclear
medical imaging) and UI (ultrasonic imaging). In the current
imaging medical diagnosis, it is mainly to find the diseased
body segment by observing a group of two-dimensional slice
images, which often relies on doctors’ experience. Using
the computer image processing technology to analyze and
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process the two-dimensional slice image can realize the
segmentation, extraction, three-dimensional reconstruction,
and three-dimensional display of human organs, soft tissue,
and diseased body. These can assist doctors in qualitative
or even quantitative analysis of the diseased body segment
and other relevant areas, to greatly improve the accuracy and
reliability of medical diagnosis. It can also play an important
auxiliary role in medical teaching, surgical planning, surgical
simulation, and various medical research [1-4].

On the other hand, with the development of the ICT
industry, we have entered a new industrial era represented by
the intelligent mobile terminal, intelligent wear equipment,
virtual reality, intelligent robot, and the internet of things,
which makes embedded computing gradually become the
mainstream. Taking a typical embedded device smart mobile
terminal as an example, the power consumption of the
display screen usually accounts for 27-50% of the whole
system power [5-8]. Although the power consumption of a
single device is not high (the average power consumption is
0.3w-1W), the global holdings of smartphones have already
exceeded 2.3 billion. Due to the wide variety, wide application
range, and the huge number of embedded devices, the overall
power consumption is crucial, especially for intelligent
mobile terminals, intelligent wearable devices, and virtual
reality devices with limited battery capacity. Reducing
display power, improving device life, and prolonging service
life has become an important issue.

At present, the most representative display technology is
the OLED screen, which uses a thin organic material coating
and glass substrate. When a device is powered on, it drives the
organic material to emit light and produce different colors.
Each pixel of an OLED screen is composed of three kinds of
sub pixels: Red, Green and Blue. Due to the self-luminous
characteristics of OLED, the luminescence of each sub-pixel
can be controlled independently. Therefore, the image power
of an OLED screen is completely determined by the display

July-Aug. 2022


mailto:junker_li@sgmtu.edu.cn

Liu et al.: Accurate power modelling framework for medical images in embedded system

content, more specifically, the pixel values of all pixels in the
content [9, 10].

Since medical instruments and equipment are typically
embedded equipment, the power modeling of their display
images is helpful for medical image task scheduling, medical
image analysis, prolonging the service life of the equipment,
and improving the display effect. Considerable work has been
done to study them [11-24]. Although the current power
model can acquire the medical image’s power, there is the
issue of low accuracy [17, 20, 22, 24]. To solve this problem,
this paper proposes an accurate medical power framework
(AMPF) by using a strong prediction method composed of
multiple single predictors and a regression approach. The
experimental results demonstrate that the AMPF model has
higher accuracy than the single prediction model. Thus, our
contributions of this paper are:

(1) We summarize the current power models of medical im-
ages and analyze the shortcomings of current research.

(2) To overcome the shortcomings, we propose an AMPF
framework, which first obtains the power of RGB
independent channels, then obtains the power of RGB
channel interdependence, and finally combines them to
obtain more accurate power value.

(3) We verify the feasibility and effectiveness of the AMPF
framework, and the results show that the AMPF
framework is effective and has high accuracy.

2. RELATED WORK

Power modeling is the basis of computing power and low
power scheduling, and it is also the main quantitative index
to evaluate the effect of power optimization. At present, the
power modeling of the image on an OLED screen is mainly
divided into two types: the power consumption statistical
model based on hardware sensors and the approximate
estimated power consumption model based on software.
The former mainly measures the power through the power
consumption measuring instrument or counts the power
consumption through the access circuit embedded in the
OLED display component through the hardware sensor. The
latter is to calculate the power by establishing the power
model of an OLED screen. The measurement results based
on hardware are usually more accurate than those based
on software estimation, but special hardware is required
for measurement. The approximate estimation method
based on software calculates the power consumption by
constructing the power consumption model, which is simple
and universal. At present, the power modeling method
based on software approximate estimation has become the
consensus of researchers at home and globally [5-24].

In energy-saving modeling, Hort et al. [11] showed
that the research on OLED power is an important research
direction for embedded systems. Duan et al. [12] presented a
low-energy OLED method on HSV color space by integrating
brightness adjustment and saturation adjustment to decrease
the display power of images. Li et al. [13] extracted the display
content through the visual saliency algorithm, and then
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dynamically adjusted the pixels of each region based on visual
attention to reducing energy. Asnani et al. [14] generated
energy-saving and contrast-enhanced images by using the
image-related power quality of OLED displays, and achieved
the goal of reducing image power consumption by reducing
the RGB intensity level in color images. Dalton et al. [15]
used the webcam installed on the laptop monitor to regularly
capture images, and then determined whether the user
was watching the monitor according to the face detection
algorithm to enhance the power management. Na et al. [16]
believed that the degradation of image quality was caused by
delayed saturation voltage. By reducing OLED charging delay
to eliminate image degradation, they explored a new way
to obtain excellent image quality under ultra-low brightness.
Zhou et al. [17] have shown that the high luminous efficiency
and top-emitting structure of OLEDs can greatly reduce
power consumption.

In the software based power model, the power model is
constructed according to the imaging process. In a typical
intelligent mobile terminal system, the operating system
and application software run on the main processor, and
the graphics processing unit (usually including the graphics
accelerator and display controller) generates the bitmap
of the display content and then stores it in the frame
buffer memory. Then, the bitmap is sent to the display
for showing. According to this process, the software-based
OLED display power model can be divided into code level
power model [15, 19, 21], image-level power model [13, 14,
19], circuit-level power model [16-18, 20] and pixel-level
power model [13, 19, 22-24]. Lim et al. [18] considered that
the existing display power supply model did not take the
impact of I-R voltage drop into consideration. Therefore,
the AMOLED display power model was proposed by using
the method of compensating I-R voltage drop. Dong et al.
[19] pointed out that when the display shows different
colors, it will consume different energy. Then, they provided
power model to estimate power based on pixels, images, and
codes respectively. Park et al. [20] considered the energy
consumption generated by the driving circuit of the display
components and their interdependence and then proposed
a power model. Kim et al. [21] proposed a runtime power
estimation method for OLED displays by monitoring the
kernel activities of applications to capture screen change
events of running applications. Kim et al. [22] used multiple
regression techniques to explain the dependence between
R, G, and B channels and proposed a new high-precision
and fast power model for AMOLED display. Hong et al.
[23] considered the dependence among red, green, and blue
(RGB) channels and proposed a new accurate power model.
Dash et al. [24] pointed out that the previous OLED power
model based on linear regression could not capture the
unique behavior of OLED display with large color space and
presented a segmented power model by considering linear
regression in each small area of huge color space.

Code-level power modeling is usually realized by using
high-level language with the help of the user interface, and
the interface power is estimated by traversing the types and
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Figure 1. The structure of AMPF.

structure of internal controls. Code-level power modeling
depends on the analysis of high-level programming language,
and can not calculate the power consumption of natural
images. Image level power modeling mainly estimates
the current display power by accessing the local bitmap
information of the image. Although its calculation speed
is fast, the accuracy is not enough. Circuit level power
modeling mainly obtains the carrier mobility of thin-film
transistor, OLED luminous efficiency, pixel aspect ratio, and
other parameters for power calculation. The accuracy of
circuit-level power modeling is high, but the generality is
not enough. Pixel-level power modeling mainly calculates
the current display power by traversing all pixel information
of the image. It calculates the display power through
image bitmap information. It has high accuracy and strong
universality. At present, it is the main method of OLED
power modeling. In the pixel-level power model, the model
in Dong et al. [19] is widely used. Eq. (1) is its specific
power model, where, f(-), h(-), and k(-) represent the power
functions of the red, green and blue color components of the
pixel respectively. Ppixel represents the power consumption
of a single pixel, n represents the total number of pixels in
the image, C represents the static power of OLED without
pixel constraints, and Pjmage represents the power of the
whole image. To establish the model, the C parameter can
be obtained by measuring a completely black screen. The
power function of three color components can be obtained
by gradually changing the color intensity when filling the
screen with a single color. Using this method, the power of
the image can be obtained, but it has few errors [20, 22, 23].
This phenomenon was described in Ref. [20], which pointed
out that the reason for the error was that the interdependence
between pixels was not considered, and a circuit level power
consumption model was proposed to solve it. Based on
[20], by further considering the interdependence of R, G,
and B channels, [22, 23] use multiple region algorithm to
estimate the dependency parameters and build the power
model. Summarizing the above references, we believe that
the prediction accuracy can be improved by minimizing
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the difference between the measured results and the results
obtained by multiple prediction models. Therefore, using
the above ideas, we propose an AMFP (accurate medical
power framework) framework to solve the errors caused by
the dependency between pixels and improve the prediction
accuracy. Section 3 discusses the specific ideas about this
method.

Ppixel (R, G, B) =f (R) + h(G) + k(B)

Pumge=C+ 3 {f R)+h Gy +kBy)
i=1

3. OUR PROPOSED AMPF FRAMEWORK

Analyzing the current research studies, considering the
energy consumption caused by the relationship between
pixels can improve the prediction effect. Therefore, the
power model can be expressed by Eq. (2) where, Paccurate
represent the accurate prediction power of the image,
and Pimage represents the independent power of three-
channel, and Prelation(r,G,B) indicates the power generated by
the three channel interdependence (including the pairwise
relationship between channels and the relationship between
three channels). At present, Pinage has conducted a lot of
research studies based on regression methods. According
to Eq. (2), to improve the accuracy, the most important
thing is to improve the accuracy of Prelation(r,G,B)- Therefore,
we use Eq. (2) to obtain a more accurate Prelation(R,G,B)
by subtracting the power obtained from multiple single
regression models from the actual power consumption, and
proposes an AMPF framework. Its structure is shown in
Figure 1.

P accurate — P image +P relation(R,G,B) (2)

In Fig. 1, AMPF consists of three parts: Getting Pimage,
getting Prelation, and getting Paccurate. Among them, getting
Pimages getting Prelation, and getting Paccurate respectively
corresponds to Pimage, Prelation> and Paccurate in Eq. (2).
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1. Indicator(1, :)=ones(1,m)/m;
2. for i=1:k
3. Count(i)=0

4 for j=1l:m

5 if abs(error, ;) > threshold

6. Count(i) = Count(i)+ P _Weight(i, j)

7 P _Weight(i+1, j) = P _Weight(i, j) * number
8 else

9 P_Weight(i+1, j) =P _Weight(i, j)

10. end

11.  end

12. w(i)=0.5/exp(abs(Count(i)))

13. P_Weight(i+1,:)=P _Weight(i+1,:)/ sum(P_Weight(i +1,:))

14. end

15. w(l) =w(l) / sum(w); w(2) = w(2) / sum(w);...; w(k) = w(k) / sum(w);

Figure 2. Procedure of AdaBoost.

In getting Pimage, for overcoming the problem of large
power error caused by a single power model, we use the
method of combining weak predictors to generate strong
predictors. Weak predictors can be non-linear regression
model (NLR), support vector machine method (SVM),
or neural network method (BP, GRNN, RBE etc.). The
strong predictor can be the entropy weight method (EWM),
AdaBoost method, etc. The input of the strong predictor
method can be the output of each weak predictor or the error
of each weak predictor. In this paper, the error is used as the
input of the EWM and AdaBoost strong predictor.

We assume that the number of CT images in training
set is nl and the number of CT images in test set is n2;
{Mi|0 <=k < nl} are the gray level in each CT image,
{my} are the normalized series corresponding M. Using the
AMPF realized by EWM for getting the Pimage, following
steps are used.

Step 1. Establishing the single predictor. We use k
number of single predictor named the NLR, SVR model, BP,
GRN and RBF to train, we can get j;, svr, J8P> JGRNN and
VRBF.

Step 2. Getting error data. We then calculate the
error of predicted model NLR, SVR, BP, GRNN and
RBF as errory}; p, errorg”VR, erroryp, errorgRNN, erroryy;, on
training sample set ;.

Step 3. Calculate the evaluation matrix. After step 2,
we can get the evaluation matrix E = error,y;, where
a represents the number of single prediction model; b
represents the number of CT images. Normalized the
evaluation matrix E by row to get the normalized matrix
NE = NE 1.

Step 4. Calculate the information entropy. Use Eq. (3)
to get the information entropy for each single predictor. In
Eq. (3), b is the number of CT images.

b
1
Hi=—1— ;NEij In NE;; 3)
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Step 5. Calculate the weight of each weak predictors. After
getting the information entropy, we can use Eq. (4) to get the
weight for each predictors. In Eq. (4), k is the number of single
predictors.
1—-H;
k=YL Hi

Then, combined predictor can be expressed as Eq. (5).

(4)

wi

Pcombined — chombined * NLR(m) + chombined * BP(m)

+ - weombined 4 GVR(m) (5)

If using the AMPF realized by AdaBoost method for getting
the Pimage, after step 2, the procedure in Figure 2 can be used
to get the w in Eq. (5).

In Fig. 2, m is the number in nl. P_Weight is used
to indicate the weight of the training sample. When the
prediction error of the training sample is greater than the
threshold, increase its value so that the next round will pay
more attention to it. For example, in line 7, it is multiplied by
number. number is the trend to be concerned with next time,
and its value is greater than 1. Threshold is the artificially set
threshold value. Count is used to accumulating the weights
of the training samples of the current weak predictor. M is
used to indicate the number of training samples. K is used
to indicate the number of weak predictions. At the beginning
of the procedure, the weight of each training sample is the
same, as shown in line 1. error;; represents the jth sample
prediction error of the ith predictor. As a whole, lines 4 to
10 complete the sum of the weights that all training samples
need to pay attention to under the current weak predictor,
and update the weights of the next prediction samples. Line
12 realizes the weight calculation under the current weak
predictor. Linel3 normalizes the next prediction sample
weight. Lines 2-14 calculate their respective weights for K
weak predictors under m training samples. Line 15 is the
calculation of respective weights under K weak predictors.
The result obtained by line 15 is the weight corresponding to
each weak predictor in Eq. (5).
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(a) Fitting results of BP method

(b) Fitting results of NLR

Figure 3. Curve fitting of three single predictors.
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(c) Fitting results of SVR

In Getting Prelation, the errors of multiple power models
are used as the power generated by the three-channel
interdependence. In order to obtain reasonable error, we also
use the method of combining weak predictors to generate
strong predictors. The steps of getting Prelation are as follows:

Step 5. We use the accuracy of each model (including
the strong predictor model) to represent the error of each
model. That is, we use the prediction results multiplied by
(1-accuracy) asan error. The calculation of accuracy is shown
in Eq. (6), where, predicted_value is the output of each weak
predictors, and Actual_value is the real power value for each
image.

Accuracy = (predicted_value / Actual_value) *100% (6)

Step 6. The error of each model was obtained step 5 by
subtracting the error of the strong prediction model to obtain
the error gap. Input the above gap into the methods of step
3 to step 5 or Fig. 2 to obtain a strong predictor output. This
output is the weight for each error obtained by step 5. At this
point, Prelation can be obtained by Eq. (7).

relation

P, relation " ErrOfNLR(m) +wi

elation = W1 * ErrorBP(m)

(7)

In Getting Pyccurate» We use Eq. (2) to calculate power ob-
tained in the steps of Getting image and Getting prediction.
Finally, an accurate medical image power model is obtained.

ati
+...+ W;e ation ErrorSVR(m).

4. EXPERIMENT

4.1 Experimental Platform

For verifying the proposed CT image power model, The
Cancer Imaging Archive (TCIA) [25] is used for testing.
The hardware experimental platform of this paper is
WOLED-32028-P1 AMOLED with a resolution of 320
x 240, 65K color. Hoiki 3334 multifunctional power
measuring instrument is used to measure instantaneous
power consumption and cumulative power consumption,
and Victor 3005 DC power supply provides stable and
controllable voltage. The configuration of the hardware and
software platform is shown in Table I. For better testing the
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effectiveness of the AMPF proposed in this paper, we first
randomly extract the images in ACRIN 6684 and ACRIN
6677 to form a data set, and then divide it into two parts:
training set and test set. Their ratio is 3:1.

4.2 Evaluation Index

Typically, the root mean square error (RMSE), the mean
absolute percentage error (MAPE), (mean absolute error
(MAE), square sum error (SSE) and the R? are mainly
evaluation index. Therefore, we select these indexes to
evaluate each model. Eq. (8) shows the calculation method
for the above indexes.

0404175

RMSE =
1 N L.
MAPE = — > 122 100%
N
1 N _5.\2
RRMSE = —Z<u>
N\ i
| N (8)
MAE = ﬁi;lyi—?il
i=
N 2
SSE = Z(yi_yi)
i=1
N N2
> (=)
R2 _ 1_1:1

M=
s

|
<
e

Il
—-

In Eq. (8), N is the number of predicting medical image; y; is
the actual power of the ith medical image; j; is the predicted
power of the ith medical image.

4.3 Experimental Results

Figure 3 shows the results of curve fitting using the BP
method (shown in figure (a)), NLR method (shown in figure
(b)), and SVR method (shown in figure (c)). From the figure,
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Table I. Hardware experiment platform and data set.

Type Category Configuration
Type: wOLED-32028-P1
Display(AMOLED) Resolution: 320 x 240

Color:65K
Size:2.83 inch

Power meter
Hardware Platform

Type:HOIKI 3332

Accuracy: 0.1 % rdg

Power range:15 mW-30 kW

Sampling frequency: 1 Hz—100 kHz

Cumulative measurement range: 0-=£999999IMWh

Power supply Type: victor 3005
Voltage Accuracy:0.05 %+3mV
Current Accuracy: 0.2 %+5mA
Voltage range:0-30V
Current range: 0-5A
ACRIN 6684 Modalities: CT, MR, PET
Image data set Number of Images: 670,828
Image Size (6B):96.1
ACRIN 6677 Modalities: MR,CT
Number of Images: 717,070
Image Size (GB):86.9
700 | | Measured
T N BP
600 BRI NLR
T E=SVR
500 ([T AMPE-EWM
\3%400—
g 300
£
200
100 %I
0 T | T

1 2 3 4 5 6 7 8

9

10 11 12 13 14 15 16 17 18 19

Instance

Figure 4. Comparison of AMPF with actual measured power and prediction of existing methods.

we can see that all the used methods can fit the curve well, but
the curves fitted by the three methods still have errors. Above
errors to predict the power of medical images will make big
error.

Figure 4 shows the predicted power comparison among
the AMPF realized by EWM and each single predictors of
19 instances selected in the random test set. The abscissa
represents the instance number, the ordinate represents the
power, and the Measured, BP, NLR, SVR, and AMPF-EWM
in the legend respectively indicates measured power, power
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predicted by BP, power predicted by NLR, power predicted
by SVR, and the power predicted by AMPF with EWM. In
the figure, we can see that AMPF realized by EWM shows
good prediction ability. Even in 6, 15, and 19 instances,
AMPEF realized by EWM is not worse among each predictors.
From the figure, the AMPF realized by EWM model has the
advantage compared with the single predictors.

Table II shows the performance comparison among
each prediction model mentioned by Eq. (6) and Eq. (8)
corresponding to Fig. 4. Among each model, the RMSE,
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Figure 5. Comparison between measured and predicted value of AMPF under different weak models.

Table 1. Performance comparison of various methods.

Table II. Performance comparison of AMPF under different weak prediction models.

RMSE ~ MAPE RRMSE  MAE SSE 2 Accuracy
BP 42.3710 0.0828 0.0860 39.9482 21543.6061 0.9549 0.9145
SVR 60.9155 0.1125 0.1134 57.3733 44528.3206 0.9069 0.8874
NLR 32.0704 0.0652 0.0686 30.7208 12342.1153 0.9742 0.9332

AMPF-EWM 17.4545 0.0354 0.0389 16.4367 36559  0.9919 09646

MAPE, RRMSE, MAE, and SSE of the AMPF realized by
EWM model have smaller value than those of BP, SVR, and
NLR models. The R? of AMPF with EWM model has a bigger
value than that of BP, SVR, and NLR models. For accuracy,
AMPF with EWM model also has the biggest among each
predictors. This shows AMPF with EWM model has better
accuracy. This also shows AMPF method proposed in this
paper is effective.

Figure 5 shows the comparison between the measured
power and the predicted value of AMPF realized by EWM
under the different number of weak prediction models. The
abscissa represents the number of the prediction instance, the
ordinate represents the power, and the number in the legend
indicates the number of weak predictors. From the figure,
we can see that the prediction value of any combination
of weak prediction models is better than that of a single
weak predictor. In combining 1, 2, 3 or 4 weak predictors,
they are closer to the measured value. Table IIT shows
the performance comparison between them. The AMPF
combining two weak predictors yields the highest R%. The
performance of AMPF combining two predictors on RMSE,
MAPE, RRMSE, MAE, and SSE is also better than that of
combining one, three, and four predictors. For accuracy,
AMPF having four weak predictors with 0.9798 has the best
accuracy among other models, followed by AMPF having one
weak and two weak predictors with 0.9788 and 0.9786. The
accuracy of AMPF having three weak predictors with 0.9646
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RMSE ~ MAPE RRMSE  MAE SSE R Accwracy
0 predictor - 60.9155 0.1125 0.1134 57.3733 44528.3206 0.9069 0.8958
1 predictor  12.3701 0.0257 0.0306 11.338  1836.26  0.9961 0.9788
2 predictors  6.6560 0.0135 0.021 5.0231 531.6311 0.9988 0.9786
3 predictors 17.4545 0.0354 0.0389 16.4367  3655.9  0.9919 0.9646
4 predictors  8.0996 0.0169 0.0236 6.8398 787.2548 0.9983 0.9798

is the last but one, and the accuracy of AMPF having zero
weak predictors with 0.8958 is the last.

Figure 6 shows the prediction comparison between
AMPF implemented by EWM and AdaBoost of 17 instances
selected in the random test set. In the figure, the abscissa
represents the number of prediction examples, and the
ordinate represents the power, and the AMPF-EWM, AMPF
-AdaBoost in the legend respectively indicates AMPF
realized by EWM and AMPF realized by AdaBoost. It
can be seen from the figure that the predicted value of
AMPEF realized by EWM and AdaBoost approaches the real
measured value, showing good prediction ability. Table IV
shows the performance comparison under three weak
predictors for them. The R? of AMPF implemented by EWM
reaches 0.9919, and that of AMPF implemented by AdaBoost
reaches 0.9989. Numerical results show that both the AMPF
implemented by EWM and the AMPF implemented by
AdaBoost have good goodness of fit, and later is better
than the former in goodness of fit. For RMSE, MAPE,
RRMSE, MAE, SSE, and accuracy, the AMPF implemented
by AdaBoost is also better than that implemented by EWM.

Major portion of time consumed by the proposed
method is in training, and the time consumed for prediction
after training is almost the same. Therefore, this paper
indicates the time consumed by training. Figure 7 shows
the comparison of training time for AMPF implemented
by EWM and AdaBoost methods. The abscissa in the
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Figure 7. Time comparison of AMPF realized by different methods.

Table IV. Performance comparison of AMPF realized by different methods.

RMSE  MAPE RRMSE  MAE SSE R?  Accuray

EWM-AMPF 17.4545 0.0354 0.0389 16.4367 3655.9 0.9919 0.9646
AdaBoost-AMPF  6.6268 0.0170 0.0257 5.9007 526.9884 0.9989 0.9828

figure represents the number of training sets, and the
ordinate represents the training time, and the AMPF-EWM,
AMPEF-AdaBoost in the legend respectively indicates AMPF
realized by EWM and AMPF realized by AdaBoost. It can
be seen from the figure that as the number of training
instances increases, the time of AMPF implemented by
EWM and AdaBoost methods consumed also increases. The
training time of AMPF implemented by EWM is more than
that of AMPF implemented by AdaBoost under the same
training set. For the consumed time, when the number
of training sets is less than 100, the time consumed by
AMPF implemented by EWM is twice that of the AMPF
implemented by AdaBoost. However, when the training set is
greater than 100, the time consumed by AMPF implemented

J. Imaging Sci. Technol.
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(1) The medical image power model based on the AMPF
model can improve the prediction accuracy.

(2) The performance of each combined weak predictor
method used to realize AMPF is not very different, but
the time used in the training has some differences.

(3) As an approach tool, the AMPF method also has broad
application prospects in the fields requiring accurate
prediction, such as disease prediction, power load
prediction, and so forth.
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