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Abstract. Automatic classification of major depression disorders
(MDD) is an arduous task. When constructing the brain network
automatic classification model based on functional magnetic
resonance imaging (fMRI), the selection of global signal regression
(GSR) and brain atlas are two key factors. However, their impact
on the classification has not reached a consensus so far. The main
reasons include the following two points: first, the sample size of
previous studies is small, and different studies lead to inconsistent
results; second, there are too many parameters in their models,
which could not clearly reveal the effects of the above two factors.
Therefore, we believe that only by using the data of multi-center
and large samples, it is possible to find out the influence of these
two factors on the classification results. To test our hypothesis,
data sets (The REST-meta-MDD project) from 17 centers were
used in this study. The set was divided into two parts, training
set and independent validation set. The training set used 10-fold
cross-validation to evaluate the classification performance, and the
independent validation set used the features of the first part to
classify directly. Feature selection adopted two sample t-test plus
least absolute shrinkage and selection operator (LASSO), and the
classifier was linear support vector machine (SVM). Finally, the
classification effect of factors was confirmed by statistical analysis.
The results showed that the impact of GSR on the classification
results was related to the selection of brain atlas. In anatomical
automatic labeling (AAL)-based networks, GSR would reduce the
classification accuracy. But for Dosenbach networks, GSR would
improve the classification performance. The classification ability of
networks constructed by different brain templates was different, and
the AAL was the best. In conclusion, the choice of brain atlas was a
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key factor affecting classification performance in MDD classification.
c© 2022 Society for Imaging Science and Technology.
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1. INTRODUCTION
Depression is a highly prevalent mental illness and more
than 264 million people are affected worldwide [1]. Its main
pathophysiological mechanism is still unclear. Depression
not only affects the normal life of patients but may also
lead to suicide. According to WHO statistics, depression
is the second leading cause of death among young people
aged 15–29. At present, the diagnosis of depression mainly
relies on neuropsychological scores, the most commonly
used are the diagnostic and statistical manual of mental
disorders (DSM-5) and Hamilton Rating Scale for Depres-
sion (HRSD). However, a study showed that the consistency
of the diagnosis of major depression disease(MDD) by
clinicians through DSM-5 was only 0.25 [2], which might
weaken the effectiveness of MDD diagnosis. Because of
unclear classification and confusion of subjective clinical
impressions, objective diagnostic tools are urgently needed
to assess depression.

In recent years, many scholars hoped to use the state
of the art machine learning technology to extract imaging
markers to establish MDD diagnosis and efficacy evalua-
tion [3]. The latest research results showed that functional
connectivity (FC) based on graph theory could sensitively
detect changes in the brain network of patients with
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depression [4–7], and these changes could be transformed
into biomarkers to identify MDD and its subtypes [8, 9],
and even distinguished other diseases with similar clinical
symptoms (such as bipolar disorder [10]). An impressive
study showed that four different neurophysiological biotypes
of MDD could be defined according to FC between the
limbic and frontostriatal networks. These subtypes exceeded
current diagnostic boundaries and may help determine who
was most likely to receive neurostimulation therapy help [9].
In short, FC based on Pearson’s correlation (PC) has great
potential as a biological marker for effectively distinguishing
MDD from normal controls.

Building an automatic classification system based on FC
remains a challenging task, in which global signal regression
(GSR) and brain template selection were two key steps.
Although some studies attempted to find out the impact
of the two factors on classification [11, 12], no convincing
conclusion has been drawn so far. A very important factor
for this lack of consensus was that the influence of imaging
conditions in the signal processing was often ignored.
Functional magnetic resonance imaging (fMRI) signal was
based on blood oxygen level dependence (BOLD) contrast.
BOLD signal was the result of the complex interaction
of metabolism, blood flow and blood volume. Any factor
affecting the balance between these three parameters will
lead to BOLD signal change, leading to low signal-to-noise
ratio of BOLD signal. Therefore, we believe that using
multi-center data could better understand the impact of these
two factors on classification.

To test our hypothesis, this study used 1160 subjects’
data from 17 research centers in China (REST-meta-MDD
project). The data set was divided into two parts, training set
and independent validation set. The training set evaluated
the classification performance through the cross-validation
method. The independent validation set used the features
selected from the training set to classify directly, which
further strengthens our conclusion. The rest of this paper
was organized as follows. The second section reviews
the effects of GSR and brain template selection in MDD
classification. The third section describes our proposed
algorithm. The fourth part reports the implementation
process, experimental results and analysis of the model
design. The fifth section summarizes our work.

2. RELATEDWORK
Although FC has made good achievements in the classifica-
tion of MDD, there were great disputes on two key factors
affecting the classification performance.One is based onGSR
used in data preprocessing. Two studies in 2009 gave opposite
suggestions on whether GSR should be used in the prepro-
cessing of resting-state FC [13, 14]. Some scholars thought
that GSR will introduce ‘‘pseudo-anticorrelation’’ [14]. Li’s
research showed that GSR can improve FC correlation
with behavior [15], but Dadi’s research showed that the
use of GSR did not improve classification accuracy [16],
such contradictory results required us to carefully verify the
effectiveness of GSR in classification.

Another key factor is the choice of brain atlas, which
is usually ignored. An important step of FC-based pattern
recognition is to extract time-series information based on
ROI (region of interest) in order to calculate FC. Dadi’s study
compared the effects of three different brain region definition
methods (anatomy based, function based and independent
component analysis) on the classification results in detail,
and their results showed that the function-based brain
template has better classification performance than the
anatomy-based brain template [16]. Wang used resting-state
fMRI (rsfMRI) to study the influence of different brain
maps on the topology of brain function network. The results
showed that no matter which template is chosen, the brain
function network has strong small world characteristics
and truncated power-law degree distribution. However,
significant intergroup differences were observed in the local
and global characteristics of the network. These results
provided quantitative evidence of topological parameters in
brain functional networks for the first time [11].

3. PROPOSEDMODEL
Generally speaking, the framework of the brain network-
based classification model includes four parts: data prepro-
cessing, brain network definition, feature extraction, and
classifier selection. There are many choices for each part,
among which the most controversial are the choice of
GSR and brain template. In order to highlight the impact
of these two factors on classification, we used the most
common method with the least parameters to construct
the classification model. Data preprocessing included slice
timing, realignment and spatial normalization. The classifier
adopted linear support vector machine (SVM). The whole
experimental process is shown in Figure 1.

3.1 Data Preprocessing
Each subject’s data was preprocessed by Data Processing
Assistant for Resting-State fMRI (DPARSF). The details were
divided into the following four steps [17]:

step 1 Discarded the first 10 volumes, and then used slice
timing to reduce the impact of the difference in
acquisition time between image layers at the same time
point;

step 2 Adopted a rigid body linear transformation to realign
the time series of images for each subject. After
realignment, individual T1-weighted images were co-
registered to the mean functional image using a 6
degrees-of-freedom linear transformation without re-
sampling and then segmented into gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF);

step 3 Space standardization, and images were registered to
MNI space;

step 4 Applied Friston-24 parameter model to regress the
effect of head movement [18]. As GSR was still a
controversial practice in the rsfMRI field, therewere two
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Figure 1. Flow chart of the study.

types data in this study. One did not perform GSR and
the other included analyses with GSR. WM and CSF
signals were also removed from the data through linear
regression to reduce respiratory and cardiac effects.
Additionally, the linear trendwas included as a regressor
to account for drifts in the BOLD signal. Finally, we
applied bandpass filtering to all time series (0.01–0.1
Hz) [17].

After the data preprocessing, the time series were
extracted from different brain atlases, and then the average
time series of each brain area were calculated. The detailed
data preprocessing please refer to literature [17].

The method of slice timing of different layers in step 1
was as follows: assuming the time series y of the number
of layers n obtained at the time point t(n), the linear
interpolation of the layer time of the reference layer t(r) can
be formally expressed as:

y(r)n =
(t(r)− t(n− 1))yn− (t(n)− t(r))yn−1

t(n)− t(n− 1)
. (1)

The effective implementation of sinc interpolation (see
Eq. (1)) requires the application of phase shift (i.e., adding
a constant value) in the frequency domain of the signal
obtained by fast Fourier transform. Phase shift is used to
compensate interpolation and surround effect. The specific
calculation is as follow:

y(r)n =
∞∑

i=−∞
yi sin c

( π
TR
(r − iTR)

)
, (2)

where TR is the pulse repetition time.

3.2 Global Signal Regression
The specific algorithmofGSR is as follows. Suppose that each
yi(t) is a column vector representing the time series of the
ith voxel (i= 1, . . . ,N ). Since the average value of the time
series of each voxel can be removed in the regression process,
it is assumed that the average value of each voxel was zero.
The corresponding time series after global signal regression is
expressed as column vector xi(t). The regression is showed in
Eq. (3) and the global signal is calculated according to Eq. (4).

yi(t)= g (t)βi+ xi(t) (3)

g (t)=
1
N

N∑
j=1

yj(t). (4)

Where j is same as i, denotes jth voxel. The estimation of
regression coefficient βi in Eq. (3) is obtained from Eq. (5).

βi = (g (t)′g (t))−1g (t)′yi(t), i= 1, 2, . . . ,N . (5)

Thus, the mean value of the coefficients of all voxels is,

1
N

N∑
i=1

βi = (g (t)′g (t))−1g (t)′
1
N

N∑
i=1

yi(t)

= (g (t)′g (t))−1g (t)′g (t). (6)

Have reason,
1
N

N∑
i=1

βi = 1. (7)

Substitute Eq. (4) into Eq. (3), we have,

yi(t)=

 1
N

N∑
j=1

yj(t)

βi+ xi(t). (8)
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Shift the term of Eq. (8) and calculate the sum of time series
after global signal regression:

N∑
i=1

xi(t)=
N∑
i=1

yi(t)−βi
1
N

N∑
j=1

yj(t)


=

N∑
i=1

yi(t)−

 1
N

N∑
j=1

βi

 N∑
j=1

yj(t)

 (9)

replaced by Eq. (7), we can obtain the result of Eq. (10).

N∑
i=1

xi(t)= 0, ∀t . (10)

Let x1 be the time series of seed voxels in correlation analysis.
We apply inner product on Eq. (10):〈 N∑

i=1

xi(t), x1(t)

〉
=

N∑
i=1

〈xi(t), x1(t)〉 = 0. (11)

Thus there:
N∑
i=2

〈xi(t), x1(t)〉 =−〈x1(t), x1(t)〉 ≤ 0. (12)

Equation (12) shows that the sum of inner products is less
than or equal to 0, and the sum of Pearson correlation
coefficients is as follow:

N∑
i=2

c(x1(t), xi(t))=
N∑
i=2

〈(x1(t)−µx1), (xi(t)−µxi)〉

Tσx1σxi
.

(13)
As mentioned earlier, where T is the number of time points,
µxiσxi are the mean and standard deviation of time series
xi(t). Because we have assumed µxi = 0, Eq. (13) can be
simplified to Eq. (14):

N∑
i=2

c(x1(t), xi(t))=
N∑
i=2

〈x1(t), xi(t)〉
Tσx1σxi

. (14)

If we assume that the standard deviation is unbiased for the
positive and negative inner product between time series, we
would obtain the result of Eq. (15) from Eq. (12).

N∑
i=2

c(x1(t), xi(t))≤ 0. (15)

It can be seen fromEq. (15) that the negative correlation does
increase after GSR treatment.

3.3 Network Construction
All networks in this study were generated by the Brain-
NetClass (Brain Network Construction and Classification)
toolbox [19]. We used the Pearson-based FC to construct
network. It was defined as follows: the brain was divided
into N region of interests (ROIs) according to the atlas.

Table I. Subject information.

Number of subjects 1160 Number of sites 10

Male 434 Female 726
MDD 597 Normal Controls 563

The ith ROI was expressed as a column vector xi =
[x1i, x2i, . . . , xTi]′ ∈ RT (’means transpose), the whole brain
signal was represented by the matrix X = [x1, x2, . . . , xN ] ∈
RT×N . Brain network can be expressed as a weighted graph
W ∈ RN×N that each element in the matrix W was the PC
coefficient of the average time series of two different brain
regions. The FC between two ROIs (xi and xj) could be
calculated by the following formula (Eq. (16)):

FCij =

∑T
t=1(xi(t)− xi)(xj(t)− xj)√∑T

t=1(xi(t)− xi)2
√∑T

t=1(xj(t)− xj)2
. (16)

3.4 Features Selection
Too many features with no discriminative power might
adversely affect the classification results. In this study,
FC in the brain network was regarded as the feature
and used a unified two-step method for feature selection.
First, the two-sample t-test was used to initially select the
features. And the features with no significant differences
were discarded (p< 0.01). Second, the features are further
selected through the least absolute shrinkage and selection
operator (LASSO) [19], and only the features with a
coefficient other than 0 were selected as the last features for
model training.

4. EXPERIMENTS
4.1 Dataset
All data came from the REST-meta-MDDproject (http://rfm
ri.org/REST-meta-MDD). By combining 25 research groups
in 17 hospitals in China, the brain imaging data of 1300
patients with depression and 1128 healthy controls were
successfully collected. After screening, the data set contained
1642 subjects from 17 different sites (848 MDD Patients and
794 normal controls) [17]. In order to meet the needs of this
research, we further screened the data, the details were as
follows:

• removed data which time of repetition was not 2.0.
• removed subjects that contain all 0 time series.
• performed gender and age matching tests on the data of
each site, deleted the unmatched sites, and finally a total
of 1160 subject data from 10 sites were included in this
experiment.

Subject information was shown in Table I and please
refer to literature for more details [17]. The data were
randomly divided into two parts. Data set 1 contained 70%
of the samples, and 10-fold cross-validation (CV) was used
to verify the impact of different factors on classification. The
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Table II. Average accuracy based on dataset1 10-fold CV (10 repetitions).

AAL∗ Harvard Oxford∗ Craddock∗ Dosenbach∗ Power

GSR 59.64± 1.40 59.20± 0.88 59.00± 1.33 57.32± 1.58 58.17± 1.15
noGSR 61.12± 0.94 54.69± 0.98 60.18± 1.34 55.37± 1.77 56.66± 2.32

* Indicated that there was a significant difference between GSR and noGSR for a single atlas (p < 0.05).

Table III. Average accuracy based on dataset2 10-fold CV (10 repetitions).

AAL∗ Harvard-Oxford Craddock Dosenbach∗ Power

GSR 54.25± 1.69 55.98± 0.96 56.68± 2.48 56.07± 1.95 55.35± 2.38
noGSR 58.32± 1.23 56.36± 1.23 56.36± 2.80 51.53± 1.25 52.95± 1.27

* Indicated that there was a significant difference between GSR and noGSR for a single atlas (p < 0.05).

remaining data was an independent validation set (called
data set 2) that can be used to evaluate the generalization
performance of the classifier which trained by the most
discriminative features selected from data set 1. The gender
and age of each site in the two datasets were matched.

There were two options for the GSR: GSR and
noGSR(data not processed by GSR). A total of five brain
atlases were selected: Anatomical Automatic Labeling (AAL)
[20], Havard-Oxford [21], Cradock [22], Dosenbach [23],
Powers [24] (the data set contained data from the Schaefer
and Zalesky atlases. These brain atlases with too much ROIs
which would lead to too much calculation, so they were not
included in this study). These two factors will produce a total
of 10 different situations.

4.2 Classification and Effect Analysis
The training model used was linear SVM. We used cross-
validation to evaluate the classification performance for
data set 1. Due to the relatively large sample size, we used
a stratified 10-fold CV method. Briefly, all subjects were
randomly divided into 10 parts at random, and the whole
process was divided into ten rounds. One of which was
taken as the test set in each round, and the remaining parts
were used as the training set. The classification accuracy
was calculated in each round. The final performance index
was the average of the 10 classification results. Since the
parameter λ in LASSO needs to be determined before
feature selection (the range of this study is [0.02,0.08]), the
parameter can be selected by the nested-CV method [25].
In short, nested-CV was to perform a 10-fold CV for each
candidate parameter combination on each round of training
set. The parameter combination with the best classification
performance was the selected parameter, which can ensure
the external CV did not involve parameter selection. In
conclusion, a total of two CVs were performed for data set
1. The internal CV determined the parameter λ and the
external CV determined the classification performance. The
whole process was repeated 10 times.

Data set 2 was an independent validation set and unlike
the situation of data set 1, there was no CV. For feature
selection, we used the features selected in each round in data
set 1 as training features and then trained an SVM classifier
to classify data set 2.

To determine whether a certain factor will affect the
classification effect, we used two sample t-test for statistical
analysis (p< 0.05).

4.3 Results
In general, AAL is a very special brain atlas. The AAL-based
network has the best classification performance, and GSR
would reduce the classification ability.

Different brain atlas might have an impact on classi-
fication. Through statistical analysis, we found that AAL+
noGSR network had the best classification performance
for both dataset 1 and dataset 2. The impact of GSR on
classification depends on the selection of atlases. In the two
data sets, the networks based on AAL and Dosenbach have
statistical differences, reflecting good consistency. The GSR
effect of the remaining brain template networks appeared
only in one data set. For AAL, GSR would reduce the
classification accuracy, which was particularly prominent in
dataset 2. But for the Dosenbach network, the result was the
opposite. The detailed results are shown in Tables II and III.

For data set 1, there are 10 different combinations in total
and 10 λ parameters would be selected for each combination
because of the 10-fold CV. This process was repeated 10
times, and a total of 1000 parameters were selected. And 0.04
is the most selected parameter (73.7%). It showed that the
random effect of the λ parameter on the classification result
was very small. The details are shown in Table IV.

If the data was not processed by GSR, the classification
performance of AAL network was better than the others. The
classification accuracy of PowersROI was lower than that of
Harvard-Oxford and Craddock networks. The classification
performance of Dosenbach network was lower than that of
Craddock network. If the data was processed by GSR, these
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Figure 2. The atlas effect in two datasets. In the above two tables, the upper triangle area represented the comparison results of classification performance
between different templates without GSR, and the hollow circle represented a statistical difference (p < 0.05); The lower triangle represented the comparison
results of classification performance among different templates after processed by GSR, and the solid circle represented the statistical difference (p < 0.05).

Table IV. λ number of times selected (p < 0.01).

0.02 0.04 0.06 0.08

190 (19%) 737 (73.7%) 58 (5.8%) 15 (1.5%)

statistical differences were inconsistent in the two data sets.
The details were shown in Figure 2.

Since the AAL-based network showed the best classifi-
cation performance, we only presented the features selected
from AAL, and the detailed information is shown in Table V
and Figure 3. The most discriminating brain regions are
located in the frontal lobe, occipital lobe, amygdala and
cerebellum. The FC between the amygdala and the frontal-
parietal control system (postcentral, supramarginal) and
temporal lobe are the most distinguishing which indicates
the amygdala play a vital role in the pathological changes
of MDD. The cerebellum is also a very discriminative
brain area. Changes in the cerebellum, occipital lobe, and
frontal lobe could also be used as features to distinguish
MDD from normal people. The FC alteration between the
cerebellum and the occipital lobe was considered to be a
visual compensatory effect [26] which also has an important
impact on classification.

4.4 Analysis
To the best of our knowledge, in the MDD classification
based on brain network, the influence of two important
factors, atlas and GSR has been studied for the first time. The
results show that whether GSR would affect the classification
performance depends on the selection of brain template.
When GSR is not used, the classification ability of AAL
network is higher than GSR network, while the Dosenbach

is the opposite. Apart from other factors, the classification
efficiency of different brain atlas is different and AAL-based
networks have the best classification ability.

Although there are many machine learning methods
used for MDD classification, such as Gaussian process
classifier, linear discriminant analysis, decision tree [3] and
more recently deep learning [27], but SVM is still the most
commonmethod. In order to ensure that our results have the
greatest universality, we used SVM as a classifier (LIBSVM
v3.23 [28]). There are many different kernel functions that
can be chosen to construct the SVM classifier. We used
linear SVM as the classification model instead of the most
commonly used the radial basis function (RBF) kernel
function. The main reason is that the RBF kernel function
needed to determine two parameters, the random effect may
cover the main effect. So, we did not use it as the kernel
function.

The brain atlases used in this study were divided
into three categories. The first category was based on
anatomical structures, including AAL and Harvard-Oxford;
the second category was based on FC, including Cradock
and PowersROI; the third category define brain atlases based
on the previous paper, such as Dosenbach. We can see a
significant difference in the classification between these three
types, the AAL network is slightly better than others. The
possible reason for this result is that the location and size
of ROI in different maps are different, and the information
extracted from them is different, which would lead to the
change of brain network structure [11], and finally affect the
classification.

GSR in rsfMRI data preprocessing is a controversial
issue. Two studies discussed this issue at the same time
but gave opposite suggestions [13, 14]. Fox et al., also
found that several characteristics of anti-correlated networks
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Figure 3. Features selected in each round based on the AAL. The whole brain was divided into six subnets marked with different colors: 1. DMN;
2. attention network; 3. visual network; 4. auditory-motor network; 5. subcortical network; 6. cerebellum. Figure a showed using GSR preprocessing and
then building a network; Figure B showed that the network was built directly without GSR. The brain networks were visualized with the BrainNet Viewer
(http://www.nitrc.org/projects/bnv/) [29].

Table V. Features selected in each round based on the AAL.

AAL

GSR (PreCG.R,MOG.L)(ORBsup.R,MOG.L)(MFG.L,CER9.L)(PHG.L,CUN.L) (AMYG.L,SMG.R) (AMYG.L,STG.R)(SOG.L,CERcr2.L)(MOG.L,CER10.L)
noGSR (AMYG.L, PoCG.R)

PreCG:Precentral gyrus, MOG: middle occipital gyrus; ORBsup: Superior frontal gyrus, orbital part; MFG: Middle frontal gyrus; CER9: Cerebellum_9; PHG: Parahippocampal gyrus;
CUN: Cuneus; AMYG: Amygdala; SMG: Supramarginal gyrus; STG: Superior temporal gyrus; SOG: Superior occipital gyrus; CERcr2: Cerebellum_Crus2; CER10: Cerebellum_10; PoCG:
Postcentral gyrus; L: left; R: right.

were not the product of GSR. They concluded that GSR
can be beneficial because GSR enhanced the detection of
system-specific correlations and improved the correspon-
dence between resting-state correlations and anatomy [13].
Subsequent studies have found that GSR can improve the
specificity of positive correlation [13, 30] and help remove
the effects of breathing [31] and movement [32, 33] in
the global signal. However, Murphy first proved that GSR
would produce anti-correlation in mathematics which may
be the product of processing technology and concluded
that GSR should not be used [14]. Subsequent studies have
found that GSR reduces the test-retest reliability of the brain
network of the elderly [34], but increases the consistency of
FC between different scans within the subject [35]; impairs
the ability to find relationships between connectivity and
behavior in Autism Spectrum Disorder [36], but improves
the relationship between resting-state FC and behavior in
normal people [15]. Although the authors of these two papers
jointly published a paper on Neuroimage in 2017, hoping
to reach a consensus, we still cannot give a definite answer
on whether to use GSR [12]. In short, the effect of GSR on
fMRI signals has always been a controversial issue. Long et al.,
found that GSR has no effect on the classification results [37],
which was consistent with some part of our results. However,
it is worth mentioning that from our results, we can see that

GSRwould affect the classification results when some certain
brain atlases (AAL and Dosenbach) were used. Therefore, in
the study of MDD classification using fMRI-FC, the brain
atlas should be carefully selected and confirmed whether to
use GSR to preprocess the data.

4.5 Limitation
There is no doubt that this study has a few limitations. First,
we chose SVM as the only classifier. With the increasing data
in future, SVM might not be able to do this job very well.
Recently, deep learning has also been used to predict the
efficacy of antidepressants based on fMRI with encouraging
results [27]. Therefore, we have reasons to believe that
in order to improve the accuracy of classification, future
research should apply deep learning to MDD classification.
Second, our search range for λ is [0.02, 0.08]. Because
we found that the value still cannot be selected when λ
exceeds this range. We chose this range in order to decrease
the calculation cost, which the random effect cannot be
completely ignored even if the probability of being selected
with λ= 0.04 exceeds 70%.

5. CONCLUSION
This study systematically analyzes the impact of GSR and
atlas on the classification in MDD based on brain network.
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We found that the selection of brain atlas is the key
factor affecting the classification performance.Whether GSR
affect the classification results depends on the selection
of brain templates; different brain templates have different
classification ability. In this experiment, the AAL network
has the best classification performance.
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