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Abstract. Fundus blood vessel segmentation is important to obtain
the early diagnosis of ophthalmic- related diseases. A great number
of approaches have been published, yet micro-vessel segmentation
is still not able to deliver the desired results. In this paper, an
improved retinal segmentation algorithm incorporating an effective
channel attention (ECA) module is presented. Firstly, the ECA
module is imported into the downsampling stage of a U-shape neural
network (U-Net) to capture the cross-channel interaction information.
Secondly, a dilated convolutional module is added to expand the
receptive field of the retina, so that more micro-vessel features can
be extracted. Experiments were performed on two publicly available
datasets, namely DRIVE and CHASE_DB1. Finally, the improved
U-Net was used to validate the results. The proposed method
achieves high accuracy in terms of the dice coefficient, mean pixel
accuracy (mPA) metric and the mean intersection over union (mIoU)
metric. The advantages of the algorithm include low complexity
and having to use fewer parameters. c© 2022 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.4.040408]

1. INTRODUCTION
Retinal vascular images play an important role in attempting
to diagnose fundus diseases [1]. Consequently, these images
are used in computer-assisted diagnoses and artificial
intelligence in the medical field [2–4]. Fundus image
segmentation assists with primary filtering of patients
with retinopathy, hypertension, diabetes, and other related
diseases [5]. However, various problems still exist, including
diverse morphology of fundus blood vessels, the existence
of bleeding point exudates, insufficient fundus image reso-
lution, and low micro-vascular endothelium. Thus, the topic
of improving the accuracy of fundus image segmentation has
attracted a great number of scholars. Retinal blood vessel
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segmentation methods include tracking detection based on
blood vessel orientation, segmentation techniques based on
mathematical morphology methods and matched filtering,
segmentation techniques using deformation models, and
machine learning [6–9]. With deep learning rapidly advanc-
ing in the medical field, retinal blood vessel segmentation
has also achieved remarkable results [10–13]. The residual
network model combined with the DenseNet can assist in
learning more robust morphological structure information.
However, the excessive use of DenseNet may take up too
much computing resources and lead to an overly complex
network [14]. A fundus image segmentation based on an
improved U-Net model has been proposed algorithms [15]
to replace the convolutional layer serial connection mode
of the U-Net model with the superposition method of
residual mapping. This replacement improves the efficiency
of feature use by reducing the dimension and strengthening
the information fusion of high-dimensional features and
low-dimensional features. A study by Li [16] introduced
the attention mechanism in the decoding structure, and
took advantage of this combination to decouple the features
and map them to the low-dimension space to restore
and extract small blood vessels of the fundus retinal
image. Detailed features will improve the accuracy of
segmentation, but the process of feature dimension reduction
will negatively impact the channel attention prediction and
destroy the direct correspondence between module channels
and their weights. Some scholars, from the perspective of the
receptive field, integrate the hollow convolutional network
and DenseNet into the U-Net structure. This increases the
overall perception of the network and improves the network’s
ability to repeatedly use features while providing play to
the dense connection ratio between layers [17]. Traditional
networks have the advantage of producing fewer output
dimensions and avoiding to learn redundant target feature
information. However, all aforementioned methods involve
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the reduction of dimension, less channel information in the
network structure, and lack of interaction between local
cross-channel information.

To resolve the problem of the complexity of the structure
of fundus images and meet the need to improve the accuracy
of fine segmentation, this study integrates the Efficient
Channel Attention (ECA) module based on the traditional
U-Net, and proposes an improved U-Net. The improved
U-Net has two main features. Firstly, the ECA module
is imported in the down sampling stage so that feature
mapping can be quickly and effectively realized through one-
dimensional convolution. Once the ECA module is added, it
can avoid dimension reduction, appropriately capture cross-
channel interactive information, improve the performance
of the network, and make the features of the retinal blood
vessels more apparent. Secondly, the U-Net contraction path
is capable of extracting the features of the region of interest.
However, it is likely to lose the detailed feature information
of the image with frequent contraction. Moreover, it is
difficult to restore the loss in the expansion path. To
extract more detailed vessel features, a dilated convolution
module is added to the network in the contraction and
the expansion path to expand the receptive field of the
convolution operation without providing additional network
parameters. The accuracy of segmentation was improved
and more features of microvascular vessels were retained
by combining the ECA with dilated convolution, which was
verified on public datasets.

2. MATERIALS ANDMETHODS
2.1 Materials
For this study, two established open-access retinal image
datasets were available, namely the Digital Retinal Images
for Vessel Extraction (DRIVE) and Child Heart and Health
Study in EnglandDatabases (CHASE_DB1). These databases
were used in the experiment to verify the effectiveness
of the algorithm. The DRIVE dataset was established and
published in 2004 by Niemeijer et al. [18] for the screening of
diabetic retinopathy in the Netherlands. The original images
were from 453 subjects aged 31–86 years, including seven
pathologic images of exudate, hemorrhage, and pigment
epithelial cells. The entire dataset consists of 40 colored
fundus images and their corresponding labeled images. Each
colored fundus image is 565× 584 pixels in size, and each
image contains labeled results manually segmented by two
expert groups.

The CHASE_DB1 dataset includes 28 retinal images
of the left and right eyes of 14 school-aged multi-ethnic
children with an image resolution of 999× 960 pixels. Each
image also contains the labeled results of two experts’ manual
segmentations [19]. The images from this dataset have an
uneven background light, low vascular contrast, a wide artery
and a bright vascular reflection stripe in the center.

In this study, the improved U-Net (after adding an effi-
cient channel module, named ECA-Unet), can optimize the
network and gain accuracy from inter-channel information.
Python 3.6 was used as the development integrated environ-

Table I. Experimental environment configuration.

Experimental Environment Configuration

The operating system Ubuntu 18
Linux Graphics card RTX 2080 Ti

Processor Interl c© CoreTM i7-5500H CPU (16GB)
Learning framework Pytorch

IDE Pycharm

ment. The specific experimental environment configuration
is shown in Table I. To solve the problem of an insufficient
sample size, the available fundus images were enhanced.
This was achieved by random up and down rotation, left
and right rotation, noise addition and other operations
to prevent overfitting. The learning rate of experimental
iteration training was set at 0.001. The loss function was
cross-entropy, with the epoch and batch_size set as 200 and 4,
respectively. To fit the data more easily, the Kaiming method
was adopted for weight initialization [20].

2.2 Methods
The overall framework of the algorithm based on U-
Net [21] is shown in Figure 1. The improved ECA-Unet
is composed of a contraction path (left) and an expansion
path (right). The left and right sides each contain four
mutually symmetric structural blocks. The blue bar box
in each structural block corresponds to the multi-channel
feature map, which represents 3× 3 convolution. The pink,
red, orange, and green bar boxes correspond to 3 × 3
dilated convolution, downsampling operations, upsampling
operations, and deconvolution, respectively.

The left-hand contraction path follows the typical
architecture of the convolutional network and consists of
two 3× 3 convolutions. The second convolution is a dilated
convolution with an expansion rate of 2. After integrating the
ECA module with the Rectified Linear Unit (ReLU) as the
activation function, a 2× 2maximumpooling operationwas
used in step 2 for the subsampling, as shown in Figure 2.

Each step in the expansion path of the right half includes
the upsampling operation of the feature map, the 2 × 2
convolution operation and the dilated convolution with an
expansion rate of 2. The contraction path feature mapping
doubles the number of feature channels and vice versa for the
expanding path. At the last level of output, the mapping class
of eigenvectors for each component uses a 1× 1 convolution,
as shown in Figure 3.

2.2.1 Efficient Channel Attention Module
Traditional attention modules [22–24] have been used to
improve the segmentation accuracy at the expense of model
computational complexity or to control the complexity of the
model through dimension reduction. However, increasing
the complexity will inevitably lead to a greater computational
burden. Dimension reduction will adversely affect channel
attention prediction, and it is inefficient and unnecessary to
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Figure 1. Improved ECA-Unet structural framework.

Figure 2. The contraction path structure diagram.

Figure 3. The expansion path structure diagram.

capture the dependencies between all channels. For example,
the traditional Squeeze-and-Excitation (SE) module [22] is
mainly composed a Global Average Pooling layer (GAP),
two Fully Connected layers (FC) and a Sigmoid function.
The first FC layer is mainly used for dimension reduction
to control the complexity of the model. To solve the
contradiction between model performance and complexity,
an ECA can use only a few parameters in the calculation
process, and bring about significant performance gains [25].
The ECA modules are shown in Figure 4, ψεRW*H*C

where W , H , C represent the width, height and channel
dimension (number of filters), respectively. The variable k
is the size of the convolution, representing the coverage of

local cross-channel interaction. The variable ψ is the result
processed by the ECA, and is the product of elements.

As shown in Fig. 4, and compared to the traditional
SE module, the ECA removes the FC layer and learns
directly through a 1D convolution that can share weight
on the features after GAP. This change reduces the number
of parameters of the ECA module from k × C to C
in our framework. This effectively reduces the algorithm
complexity while avoiding dimension reduction.

2.2.2 Dilated Convolution Module
The receptive field size of the convolutional kernel is
determined by its size. To achieve the purpose of fewer
parameters, the convolution with a smaller size is generally
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Figure 4. ECA module structure diagram.

chosen, and the range of the receptive field of the feature
mapping is increased by subsampling or adding the void
convolution [26]. However, the sampling operation includes
processing a lot of detailed feature information. Repeated
subsampling will lose the resolution of the feature map,
resulting in the loss of information, which cannot be re-
covered by the upsampling operation. Therefore, the dilated
convolution was added into the inter-frame convolution.
Additionally, the number of downsampling layers was
reduced so that the network could have a larger receptive
field when extracting intra-frame features. For the dilated
convolution of two-dimensional images, the relationship
between input x and output y is as follows:

y =
∑
m

x[p+ r ∗m]w[m], (1)

where, p represents each pixel point on the feature map, w
is the void convolution kernel, m is the size of the dilated
convolution kernel, and the distance between adjacent
elements in the convolution kernel is represented by the
expansion rate r . Following the expansion, the dilated
convolution kernel is

m′ =m+ (m− 1)(r − 1). (2)

As shown in Figure 5, the convolution kernel is selected for
3× 3 dilated convolution, which is still a 3× 3 convolution
kernel at a dilated rate r = 1, When the dilated rate r = 2,
it is a dilated convolution kernel of r = 5. When the dilated
rate is r = 4, it is a 9 × 9 dilated convolution kernel.
Thus, as the convolution kernel r increases, the interval of
adjacent elements in the convolution kernel also increases by
a corresponding multiple, which expands the receptive field
without significantly increasing the number of parameters.
For example, the 3× 3 convolution kernel with a dilated rate
of 2 has the same receptive field of 5× 5 as the convolution
kernel, but only uses nine parameters.

In this proved algorithm, the dilated convolution is
applied to the convolution layer near the bottom of U-
Net network. The appropriate receiver field is obtained
by adjusting the expansion rate to reduce the number
of downsampling layers and avoid the irreversible loss

of detailed features caused by too many downsampling
operations.

3. RESULTS
3.1 Evaluation Indicators
The Dice coefficient (Dice Score), Mean Pixel Accuracy
(mPA) metric and Mean Intersection Over Union (mIoU)
metric are the quantitative evaluation indexes for this study,
which are also three commonly used indicators in the field of
image segmentation [27, 28].

The Dice score is a measurement function to measure
the similarity of pixel sets between two samples. The formula
is as follows:

Dice score=
2|X ∩Y |
|X | + |Y |

, (3)

where X is the real value, Y is the predicted value. The
Dice score is limited in the range of [0,1]. The mPA can
be calculated as the proportion of the correct classification
pixels of each category to all pixels of this category, from
which the mean value is then obtained:

mPA=
1

k+ 1

k∑
i=0

pii∑k
j=0 pij

. (4)

The mIoU is the intersection and union ratio of the mean
values, which is used to calculate the intersection and union
ratio of the real value and the predicted value. After this
calculation, the IoU of each kind is accumulated. The average
is then determined to obtain the global evaluation:

mIoU =
1

k+ 1

k∑
i=0

pii∑k
j=0 pij+

∑k
j=0 pji− pii

, (5)

where, i is the true value, j is the predicted value. pii represents
that i is predicted to be i. pij represents that i is predicted to
be j. pji represents that j is predicted to be i.

3.2 Experimental Results
The two datasets, DRIVE and CHASE_DB1, were applied
to the experiments to prove the feasibility of the proposed
method. Figure 6 shows the changing process of the
segmentation effect of the algorithmon twodifferent datasets
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Figure 5. Schematic diagram of dilated convolution with size 3×3.

Figure 6. The segmentation effect on two datasets using the improved algorithm. (a) Loss changes along with the increase of epoch in the DRIVE dataset.
(b) Three indicators changed along with the increased epoch in the DRIVE dataset. (c) Loss changes along with epoch in CHASE_DB1 dataset. (d) Three
indexes changed along with an increased epoch in the CHASE_DB1 dataset.

with the increase of epoch. Fig. 6(a) and (b) show the training
and testing process of 50 iterations on the DRIVE dataset,
respectively. The pixel error rate was minimized through
cross-validation. The loss value decreased gradually and
converged to a fixed value. In Fig. 6(b), with the increase
of epoch, the three segmentation index values (Dice score,
mPA, mIoU) of the test set gradually increased and became
stable, indicating that the algorithm design is feasible and
effective. The experimental process of the CHASE_DB1
dataset also verifies the feasibility of the algorithm, as shown
in Fig. 6(c) and (d).

To further verify the superiority of the network model,
the average segmentation coefficient of the trained model
was taken after a single sheet test on the test set, the

segmentation results obtained are consistent with the ver-
ification results in the training process. Contrary to the
traditional U-Net, the effectiveness of this method was
proven using experiments. To show the superiority of
the proposed algorithm intuitively, the segmentation tests
were carried out on vessels in two different datasets,
and a comparison experiment of the segmentation results
between the traditional U-Net and the ECA-Unet was given.
The verified effect of adding the ECA model onto the
segmentation results. As shown in Figure 7, the ECA-Unet
was able to segment smaller blood vessels in the images
selected from the DRIVE dataset compared with expert
markers. In the images selected from the CHASE_DB1
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Figure 7. Comparison of the segmentation effect on the test pictures using ECA-Net and U-Net algorithms. Among them, Col. 1: the two original images
from the data set; Col. 2: the same images labeled by the first expert; Col. 3: the same images using U-Net algorithm; Col. 4: the same images using
ECA-Net algorithm. Lin. 1: the image randomly extracted from the DRIVE data set; Lin. 2: the image randomly extracted from the CHASE_DB1 dataset.

Table II. Comparison of segmentation results using different approaches in the DRIVE
dataset.

Evaluation Index
Methods

U-Net Ref. [29] Ref. [30] CBAM-Unet ECA-Unet

Dice score 0.808 0.813 0.829 0.867 0.892
mPA 0.768 0.755 0.798 0.848 0.897
mIoU 0.715 0.720 0.731 0.793 0.818

dataset, the ECA-Unet was clearer than the coarse blood
vessels extracted from the traditional U-Net.

Tables II and III provide the three indexes of Dice score,
mPA and mIoU corresponding to vascular segmentation on
theDRIVE andCHASE_DB1 datasets, respectively. Based on
the gold standard of retinal vascular segmentation in each
fundus image by the second ophthalmologist, the ECA-Unet
index results were statistically analyzed by comparing it
to the traditional U-Net [21], reference [29, 30], and the
CBAM-Unet [31]. In Table II, the segmentation effect of the
algorithm-added modules is significantly higher than that of
the classic U-Net, indicating the necessity of adding modules
to improve the segmentation performance. Compared to the
attention mechanism CBAM of the convolutional module,
the segmentation effect of the ECA module is significantly
improved.

Since the CHASE_DB1 dataset had more interference
than the DRIVE dataset with uneven background light and
low contrast of blood vessels, the value of the three indexes
were reduced. However, Table III shows that all indicators
of the ECA-Unet are improved compared to those of the
traditional U-Net. Additionally, the introduction of the ECA
module is more effective than the attention modules from
previous studies [14–16].

Table III. Comparison of segmentation results using different approaches in
CHASE_DB1 dataset.

Evaluation Index
Methods

U-Net Ref. [29] Ref. [30] CBAM-Unet ECA-Unet

Dice score 0.786 0.806 0.817 0.851 0.883
mPA 0.724 0.765 0.762 0.816 0.857
mIoU 0.690 0.714 0.725 0.765 0.807

4. DISCUSSION
Fig. 6 implies that the loss of the proposed segmentation
algorithm was convergent with the increase of epoch in
two public fundus datasets, DRIVE and CHASE_DB1.
This indicates that the U-shaped network designed in
this study is effective and feasible. Fig. 7 illustrated that
the ECA-Unet can obtain more imperceptible blood vessel
characteristics compared to the traditional U-Net. The
Dice score, mPA and mIoU metrices, three commonly
used quantitative evaluation indexes in the field of image
segmentation, were applied in the contrast experiment. The
results showed that the ECA-Unet improved the retinal blood
vessel segmentation’s accuracy for both the DRIVE and
CHASE_DB1 dataset. This approach achieved an average
Dice score of 0.892 and 0.883, an mPA of 0.897 and 0.857,
and an mIoU of 0.818 and 0.807, respectively for the
DRIVE and CHASE_DB1 dataset. The results show that
this approach is highly effective for retinal images and can
improve the efficiency and effectiveness of retinal vessel
segmentation. This is mainly due to the ability of an ECA
module, imported during the downsampling stage. This
approach can capture the local cross-channel information so
that feature mapping can be quickly and effectively realized
through one-dimensional convolution. Dilated convolution
in the process of feature mapping application expands the

J. Imaging Sci. Technol. 040408-6 July-Aug. 2022



Liang et al.: Improved U-net fundus image segmentation algorithm integrating effective channel attention

receptive field of retinal blood vessels, which balances the
algorithm complexity and segmentation accuracy. It should
be noted that the traditional U-Net, reference [29, 30],
CBAM-Unet [31] and the ECA-Unet tends to produce false
vessel detection around the optic disk and pathological
regions such as dark and bright lesions. This decreases the
overall accuracy in the CHASE_DB1 dataset compared to
that of in DRIVE dataset. In the future work, we may further
verify the robustness of the algorithm against a complex
background.

5. CONCLUSION
The aim of this study was to minimize the difficulty of
the segmentation of small blood vessels in the colored
fundus images. An improved U-shape neural network
method was proposed in this paper. Firstly, the ECA
module was introduced into the network, which strengthens
the cross-channel information of the feature map and
greatly reduces the number of network parameters. The
U-shaped symmetric structure makes the network easier to
optimize. The combination of these two modules further
improves the performance of the network. Secondly, the
dilated convolution was introduced into the encoder and
decoder structure network to accurately extract the blood
vessel image while preserving more small blood vessels.
Compared to other traditionalmethods, the algorithm in this
paper achieved high accuracy in terms of the Dice score,
mPA and mIoU. In addition to greatly reducing network
parameters and improving computational efficiency, the
proposed algorithm also retained more intact small vessels
and shows improved segmentation performance.
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