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Abstract. The continuing development of remote sensing has
resulted in a rapidly increasing number of remote sensing
applications. High-resolution remote sensing images are used
in various fields in the military. We propose methods for object
detection based on remote sensing images. We develop a signal
processing method for normalizing remote sensing images to
eliminate noise such as fog, haze, and poor lighting. This method
further improves detection accuracy and reduces error rates. We
develop YOLOv4-faster, an accelerated neural network model
based on the YOLO (You-Only-Look-Once) object detection method.
YOLOv4-faster outperforms existing networks in terms of execution
time and detection performance. We conduct a series of experiments
on two public datasets (TGRS-HRRSD and NWPU VHR-10) as well
as a dataset containing six military target classes provided by
IMINT & Analysis and collected from Google Earth. YOLOv4-faster
improves efficiency by utilizing multi-scale operations for the
accurate detection of objects of various sizes, especially small
objects. The experimental results show improved mAP (mean
average precision) performance of the proposed method for object
detection in remote sensing images. We thus propose a novel
system for automatic object detection for high-resolution remote
sensing images. (© 2022 Society for Imaging Science and
Technology.

[DOI: 10.2352/J.ImagingSci. Technol.2022.66.4.040405]

1. INTRODUCTION

Remote sensing technology is a modern detection technol-
ogy that emerged in the 1960s. Over the years, it has provided
stable and detailed data for land use analysis, agricultural
pest monitoring, urban planning, and other civil fields.
It is important for military applications such as military
target detection, battlefield environment simulation, and
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so on. Currently, remote sensing technology is capable of
high spectral, high spatial resolution, and all-weather earth
observation. As these three resolutions continue to improve,
remote sensing data has witnessed explosive growth. There-
fore, automatic information extraction of high-resolution
remote sensing images has become a research focus in every
country.

Since the success of deep learning in pattern recognition,
we have witnessed huge advances in the field of computer
vision. Object recognition is crucial for autonomous cars,
security, surveillance, and industrial applications which
use deep learning methods such as region-based convolu-
tional neural networks (R-CNN) [1], single-shot MultiBox
detectors (SSD) [2], You-Only-Look-Once (YOLO) [3],
and deep residual networks (ResNet) [4]. In recent years,
deep learning technology has been widely used to extract
features from high-resolution remote sensing images, and
significant achievements have been made in remote sensing
scene classification, remote sensing target detection, remote
sensing image description, segmentation, and other tasks.
However, these methods still suffer from poor performance
and heavy CPU requirements. In this paper, we explore
remote sensing target detection. The research work and
contributions of this paper mainly include the following
aspects:

(1) We propose a new dehazing algorithm for remote
sensing images that processes the image to facilitate
either visualization or further analysis.

(2) As too much or too little feature extraction do not
benefit remote sensing target detection, we propose a
novel neural network architecture to replace the existing
YOLO-based method.
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(3) To improve multi-scale target detection, we reduce the
original layers of YOLOv4 [5] and modify the original
two output layers of YOLOv4-tiny [6] to three output
layers.

(4) The proposed neural networks can adjust the network
structure dynamically based on the remote sensing target
type.

(5) Compared with classical deep learning networks, the
proposed algorithms reduce the network layers and
weights to decrease the computing cost without lowering
the target detection performance.

Rest of the paper is organized as follows. Section 2
briefly introduces related work. A detailed description
of the proposed strategy for object detection and image
processing are given in Section 3. The experimental results
and comparisons with other object detection methods are
discussed in Section 4, and Section 5 concludes and proposes
future work.

2. RELATED WORK

The development of remote sensing target detection fol-
lows that of general object detection. Traditionally, object
detection methods include two steps: region of interest
(ROI) selection and independent feature extraction from
each region for classification. Although it is a viable
method, ROI generation with a sliding window strategy
is redundant and inaccurate. In 2012, Alex Krizhevsky
et al. [7] won the ILSVRC competition by using an AlexNet
model with a 7-layer convolutional neural network (CNN),
which resulted in an increased general interest in deep
learning. In the past two years, deep learning based target
detection on high-resolution remote sensing images has
become a popular method. Compared with traditional target
detection algorithms such as the Viola-Jones detector [8],
histogram of oriented gradients-support vector machine
(HOG-SVM) [9], and the famous deformable parts model
(DPM) algorithm [10], CNN-based target detection algo-
rithms have shown great success, especially in terms of speed
and accuracy. Deep learning is now widely applied in fields
such as speech recognition [11] and many object detection
and recognition tasks [12, 13], where they outperform
traditional methods.

Generally speaking, deep learning methods for object
detection are dominated by CNN-based algorithms, which
can be divided into two-stage models and one-stage models.
Two-stage models such as faster R-CNN (region-based
convolutional neural networks) [14] or mask R-CNN [15]
are similar to traditional methods. They use a region
proposal network (RPN) to generate ROIs in the first stage
from which the detected objects are selected and CNN
features extracted for object recognition. Two-stage models
attain higher accuracy rates, but are typically slower when
making predictions as compared to alternate models such as
one-stage models that may be less accurate but are designed
for real-time prediction. Based on global regression and
classification, a one-stage model locates objects, directly
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mapping from image pixels to bounding box coordinates
and class probabilities. One-stage architectures thus reduce
computing costs and can be used in real-time applications.
In addition, experimental results for one-stage models based
on YOLO (You-Only-Look-Once) models [3] demonstrate
optimal speed and accuracy, which facilitate the processing
of streaming video in real time. After the YOLO model
was developed, YOLO object detection models (YOLOv2
and YOLOv3) were proposed successively by Redmon
et al. [16]. Note that YOLOv3 [17] uses darknet-53, a deeper
architecture for the feature extractor, and it detects at three
different scales to correct the main shortcomings of YOLO
and YOLOV2. Detection at different scales makes it easier
to detect small objects, especially in remote sensing images.
Moreover, YOLOv3 improves accuracy using algorithms
such as feature pyramid networks (FPNs), path aggregation
network (PANets), and spatial pyramid pooling (SPP),
making it more accurate than YOLO and YOLOvV2, but
slower.

In 2020, Bochkovskiy et al. proposed the YOLOv4
model, an improvement to YOLOv3 with improved accu-
racy [5]. They effectively integrated deep learning algorithms
to create an efficient neural network for object detection. For
better accuracy, they proposed CSPDarknet-53, which uses
CSP (cross stage partial) connections along with darknet-53
from YOLOV3. It is also easier to train this neural network
on a single GPU. After YOLOV4, a series of methods were
proposed, including YOLOvV5 [18], YOLOv4-tiny [6], and
scales-YOLOv4 [19]. YOLO-based object detection is thus
becoming a dominant trend, and YOLOV4 yields excellent
results in object detection of natural images. However,
previous methods such as SSD [2], YOLT [20], and YOLOv3
models are still used for target detection in remote sensing
images. To the best of our knowledge, there is no study
that uses the YOLOv4 model for target detection of remote
sensing images.

The YOLOvV4 methods claim to offer an optimal neural
network architecture for object detection. For the 80 classes
in the MS COCO dataset, YOLOv4-based object detectors
are clearly faster and more accurate than other detectors.
However, in practical applications it is not necessary to
simultaneously detect 80 object categories. In the real world,
the demand for specific target detection often includes only
one or a few objects. Perhaps, then, using a YOLOv4 model
to detect a few specific targets constitutes overengineering.
Therefore, we seek to evaluate the feasibility and effectiveness
of the proposed method to reduce and modify the YOLOv4
neural network. We propose a new YOLOv4-based neural
network model for object detection. This model provides
automatic target detection with high-resolution remote
sensing images, especially for small targets.

3. PROPOSED METHOD

Since the size of each remote sensing image is at least 12,000
x 12,000 pixels, the target detection computation time for
large images is important. Targets must be detected in real
time and with performance equal to the YOLOv4 model. This
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(a)

Figure 1. (a) Hazy remote sensing image; histogram of (b) yellow line and of [c] red line; [d) f; pc obtained using low-pass filter; (€] f; ac obtained using

Eq. (1).

section describes the proposed framework for military target
detection using high-resolution remote sensing images. The
solutions and steps are described in detail below.

3.1 Image Preprocessing

Image quality affects target detection results. Generally
speaking, remote sensing images are characterized by
atmospheric conditions such as fog, haze, and inconsistent
lighting, which results in low image quality. Therefore, image
dehazing is an important issue for this task. Before detecting
targets in a remote sensing image, we must dehaze the
image. Many methods use enhancement and conventional
image processing techniques to remove haze from a single
image, such as histogram-based [21] and contrast-based
dehazing methods [22]. However, little information is
available for single images, limiting the effects of dehazing.
Miyazaki et al. [23] propose polarization-based methods to
improve dehazing performance with multiple images, and He
et al. [24] propose an empirical statistics-based dark channel
prior (DCP) which uses statistics of haze-free images for
single image dehazing. In addition to the DCP, many other
prior-based methods have been proposed [25, 26]. Although
these approaches are efficient and often produce superior
dehazing effects, they do not perform well in all cases. In
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recent years, convolutional neural networks (CNNs) have
shown great success in computer vision. Many CNN-based
methods have also been developed for image dehazing. Gu
et al. [27] proposed the dense attentive dehazing network
(DADN) for remote sensing image dehazing. Although
some methods have achieved great breakthroughs in image
dehazing, some dehazing methods fail to remote sensing
images since remote sensing images are different from
normal images. We address this problem with a new method
for remote sensing image dehazing using signal processing
techniques.

Figure 1(a) is a reduced-size remote sensing image with
haze. The clear area in the middle of Fig. 1(a) is caused by
the “spotlight effect” and shows how haze affects the image
quality. In Fig. 1(a), the yellow dotted line passes through
the spotlight area and the red line passes through the hazy
area. Using signal processing techniques, we use the changes
in pixel values to observe variation between haze and no
haze (the histograms in Fig. 1(b) and Fig. 1(c) correspond
to the yellow and red lines, respectively). The B band is most
affected by haze, as shown in Fig. 1(b). Hazy images show
significant increases in the R and G bands; change in the B
band is significantly reduced in clear images. Note that there
is little change in the gray value for the hazy image, but the
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Figure 2. Remote sensing images before and affer dehazing.

level does shift upward. That for the clear image, in contrast,
changes greatly.
With signal processing, each band can be written as

fi=fipc+fiac. (1)

where i = R, G, B. Fig. 1(d) applies a low-pass filter to
Fig. 1(c) to yield fi pc; the small signal of the zero level is
fi.ac. However, in Fig. 1(b), the gray value in the spotlight
area is lower than that in the other areas, allowing us to define
how haze affects the image. We find the minimum value
min(f; pc) in Fig. 1(d). Equation (2) reveals the amount of
haze in each pixel: Himpact = 0 describes a pixel without haze,
and Himpact 7 0 indicates the amount of haze in each pixel:

Himpact = fi,pc — min(f; pc). (2)

In Fig. 1(e), fi.ac, to dehaze and enhance the image, we
amplify hazy pixels and leave clear pixels alone. Therefore, we
set a compensation factor K; to

Himpact

K= . 3
i= s (3)

Therefore, f; ac and (1 + K;) are multiplied to produce
gi> which can be written as

gi=1+K)-fiac 4)

Here, g; dehazes and enhances the original image f;.
In Eq. (4), 1 is the original signal of f; ac. However, the
equation does not include smooth areas in the image (f; pc),
so we add the original f; pc as

Dehaze; = (1 +K;) - fi ac + fipC- (5)

Figure 2 is the result of remote sensing image dehazing
(Dehaze;) using Eq. (5), which is proposed to adjust the
image to facilitate visualization or further analysis.
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3.2 Architecture of Proposed Method

Given the large size of each remote sensing image, the
computational time for target detection is important because
we require real-time target detection with YOLOv4-level per-
formance. This section describes the proposed framework
for military target detection with high-resolution remote
sensing images. For the network structure we use the existing
CNN architecture based on YOLO; YOLOv4-tiny is a simple
network structure with CSPdarknet53-tiny as a backbone
and which detects objects at two different scales to capture
both big and medium objects. As remote sensing images
consists mostly of small targets, YOLOv4-tiny cannot be used
for target detection with remote sensing images; thus, we
propose the use of YOLOv4-faster in this paper.

At the first level, YOLOv4-tiny downsamples to reduce
computational costs, resulting in the initial loss of half the
information. Despite the strengths of YOLOv4-tiny, it still
does not extract the proper features for target detection,
especially for small targets. YOLOv4-faster, by contrast,
retains more information without downsampling at the first
level, as shown in Figure 3. Next, the backbone of the
proposed model uses the three residual networks (ResNet)
and CSPdarknet53-tiny to extract more information. Finally,
for cases in which most of the remote sensing images
contain small targets, YOLOv4-faster uses three different
scales to detect large, medium, and small targets, respectively,
compared to YOLOv4-tinys two scales for detection of large
and medium targets. Note that this modification is important
for remote sensing images. YOLOv4, YOLOv4-tiny, and
YOLOv4-faster have 245 MB, 23 MB, and 26 MB weights,
respectively. The corresponding computational costs are 60.1
BFlops, 6.9 BFlops, and 9.26 BFlops.

Table I describes each layer of the neural network
framework for military target detection. A 55-layer con-
volutional architecture is the basis of YOLOv4-faster. The
feature extractor starts with a standard convolutional layer
with 32 filters of size 3 x 3. To improve the accuracy of
small target detection, YOLOv4-faster adds 7 layers (layers
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Figure 3. YOLOv44aster structure.

49-55) to detect small targets. In addition, if only big targets
are to be detected, such as bridges, storage tanks, and
tennis courts, YOLOv4-faster can just use the first 41 layers.
This increases the accuracy of big target detection and also
reduces the computational costs. Therefore, for big targets
we use a 41-layer network architecture instead of the entire
YOLOvV4-faster network.

4. EXPERIMENT RESULTS AND ANALYSIS

In this section, we evaluate YOLOv4-faster on two public
remote sensing datasets and our collected military target
dataset (described in Section 4.1). All experiments were
implemented using the CUDA C++ AP], on an i9 Intel CPU
with 32GB RAM and a GTX 2080Ti GPU with 11GB on-chip
memory. As performance metrics, we used average precision
(AP) with an intersection over union (IOU) threshold of
0.5 and the average detection time per image. To verify the
validity of our approach for remote sensing target detection,
we compared YOLOv4-faster with the original YOLOV4,
YOLOv4-tiny, and other state-of-the-art CNN algorithms
on the three datasets. We implemented 100,000 training
steps in this experiment. The learning rate of the model was
decreased from 0.001 to 0.0001 after 80,000 steps and to
0.00001 after 90,000 steps. We used the same parameters for
other comparison algorithms.

4.1 Dataset

Although publicly available remote sensing and aerial image
datasets such as UC Merced Land Use [28], COWC [29],
DOTA [30], and DIOR [31] have been proposed in the
earth observation community, some are not available for
download on the Internet, others contain only one or
two categories, and others do not satisfy specific military
requirements. Therefore, we used IMINT & Analysis [32]
and Google Earth to collect military targets. Compiled in
2009, IMINT & Analysis provides the longitude and latitude
of military bases in some countries. We also used Google
Earths historical imagery to collect more military target
images. We collected 12,148 military target images with
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a spatial resolution from 0.4 m to 1 m, and an image
resolution of 800 x 800. The dataset contains a total of 95,740
military targets instances in 6 categories: fighter planes,
helicopters, missile positions, military radar, battleships, and
submarines. Most are small-scale targets. We partitioned the
dataset into a training set (80%) and a testing set (20%). In
addition, to ascertain the feasibility of our proposed method
for non-military target detection of remote sensing images,
we used two popular multi-class remote sensing image
datasets: NWPU VHR-10 [33] and TGRS-HRRSD [34]. We
summarize the two datasets as follows.

The TGRS-HRRSD dataset contains 21,761 images
acquired from Google Earth and Baidu Map with spatial
resolutions from 0.15 m to 1.20 m. The dataset contains a
total of 55,740 target object instances in 13 categories, and
is divided into three subsets: a training set, a validation set,
and a test set. The train-val set (training+validation) and test
set each account for 50% of the total dataset. The second
dataset is NWPU VHR-10, which consists of 800 very high
resolution (VHR) optical remote sensing images that include
10 object categories for research purposes only. The dataset
contains two folders: one is a positive image set that includes
650 images, and the other is a negative image set that includes
150 images. Of these, 715 images were cropped from Google
Earth with a spatial resolution from 0.5 m to 2.0 m, and 85
pan-sharpened color infrared images were acquired from the
Vaihingen dataset with a spatial resolution of 0.08 m. All
images in the positive image set were manually annotated by
experts. To evaluate the proposed algorithm, we randomly
split the NWPU VHR-10 dataset into training and testing
sets. In this paper, we used an 80:20 ratio for the training and
test data, and used five-fold cross validation.

4.2 Validation of Proposed Method

To properly evaluate the effect of the proposed method,
we conducted an experiment on the original and enhanced
(dehazed) datasets. For the six military target categories, we
also verified the target detection performance. In our dataset,
fighter planes, helicopters, military radars, submarines
and some battleships are regarded as small targets, other
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Table I. YOLOv4-faster network architecture.

Layer Operation type Input Filter Size/stride Output
0 Convolution 416 x 416 x 3 32 Ix /1 416 x 416 x 32
1 Convolution 416 x 416 x 32 64 Ix3/2 208 x 208 x 64
24 Residual network 208 x 208 x 64 - - 208 x 208 x 64
5 Convolution 208 x 208 x 64 128 3Ix3/2 104 x 104 x 128
6-8 Residual network 104 x 104 x 128 - - 104 x 104 x 128
9-11 Residual network 104 x 104 x 128 - - 104 x 104 x 128
12 Max pooling 104 x 104 x 128 - 2x12/1 52 x52x128
13-19 (SPNet 52 x 52 x 128 - - 52 x 52 x 256
20 Max pooling 52 x 52 x 256 - 2x12/2 26 x 26 x 256
21-27 (SPNet 26 x 26 x 256 - 1 26 x 26 x 512
28 Max pooling 26 x 26 x 512 - 2x12/2 13 x 13 x 512
29-35 (SPNet 13 x 13 x 512 - 1 13x 13 x 1024
36 Convolution 13 x 13 x 1024 512 1x1/1 13 x 13 x 512
37 Convolution 13 x 13 x 512 512 3x3/1 13 x 13 x 512
38 Convolution 13 x 13 x 512 256 1x1/1 13 x 13 x 256
39 Convolution 13 x 13 x 256 512 Ix /1 13 x 13 x 512
40 Convolution 13 x 13 x 512 255 1x1/1 13 x 13 x 255
1 Large object detection
Lyl Route 38 - -
43 Convolution 13 x 13 x 256 128 1x1/1 13x 13 x 128
m 2 x Upsampling 2 x 26 x 128 - - 26 x 26 x 128
45 Concatenation 26, 44 - - 26 x 26 x 384
46 Convolution 26 x 26 x 384 256 3x3/1 26 x 26 x 256
4 Convolution 26 x 26 x 255 255 1x1/1 26 x 26 x 255
48 Medium object defection
49 Route 46 26 x 26 x 256
50 Convolution 26 x 26 x 256 64 1x1/1 26 x 26 x 64
51 2 x Upsampling 26 x 26 x 64 - - 52 x 52 x 64
52 Concatenation 18, 46 - - 52 x 52 x 192
53 Convolution 52 x 52 x 192 128 3x3/1 52x 52 x 128
54 Convolution 52 x 52 x 128 255 1x1/1 52 x 52 x 255
55 Small object detection

battleships (aircraft carriers) regarded as medium targets,
and missile positions are regarded as big targets, as shown
in Figure 4.

In this work, these images were resized into squares of
three different sizes: 416 x 416, 608 x 608, and 800 x 800.
Table II shows the detection results on our collected dataset
for various image resolutions as well as the mean average
precision (mAP). Using the 800 x 800 images for target
detection yields the best performance, and 416 x 416
images are too small for effective detection; using the
larger images improves detection performance. The results
also show better performance for missile position detection
on the enhanced dataset. For instance, after enhancing
and dehazing the remote sensing images, our proposed
method achieves better performance than the original
dataset without enhancement, improving the mAP from
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97.08 to 98.08%. In our experiments, we found that most
missile positions and military radars were successfully
detected by the proposed method. Most errors occurred
with small fighter planes, battleships, and submarines, which
are difficult to distinguish from similar ground objects.
As fighter planes have different structures, they often lead
to false detection because of unclear images or because
ground objects can be similar in structure to fighter planes.
In addition, submarines and battleships have lower mAPs
because most battleships and submarines are docked side
by side and are thus regarded as a single target. These are
the causes of most detection errors. In Table II, we also
break out the results by category to demonstrate the strong
performance for small object detection.
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Figure 4. Military target classes for collected dataset.

Table II. Results of proposed method on military target datoset. Target types: FP=fighter planes, H=helicopters, MP=nmissile positions, MR=nmilitary radars, B=hattleships, and

S=submarines.

Target fypes
Dataset Resolution Fp H MP MR B S mAP
Original dataset 416*416 92.13 93.55 98.57 94.65 83.41 85.12 91.24
608*608 98.76 99.23 99.83 98.93 92.66 96.44 97.64
800%800 97.7 97.46 99.93 98.53 93.92 94.85 97.06
Enhanced dataset 416416 93.48 95.37 99.69 95.41 88.67 88.61 93.54
608*608 97.18 97.10 99.84 98.08 92.87 92.87 96.24
800%800 98.11 97.61 100 99.92 94.93 97.92 98.08
J. Imaging Sci. Technol. 040405-7 July-Aug. 2022
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Figure 5. Multipletarget results using YOLOv4-faster.

Table IlI. Result of three datasets with different methods.

Table IV. Results with different methods.

Dataset YOLOv5 YOLOv4  YOLOvA-iny  Scaled-YOLOv4  Proposed Method mAP (%) Precision Recall F1 score FPS
TGRS-HRRSD ~ 95.5%  88.7% 65.4% 96.9% 96.3% YOLOvS 96.5 0.97 091 0.93 38
NWPUVHR-10  90.3%  90.0% 79.2% 91.3% 91.2% YOLOv4 95.6 0.98 0.97 0.97 18
Our dataset 96.5%  95.6% 71.3% 97.1% 98.1% YOLOv4-finy 713 0.99 0.56 0.7 7
Scaled-YOLOv4 97.1 0.86 0.94 0.89 7
Proposed method 98.1 0.97 0.98 0.97 65

4.3 Comparison with Other Methods
In this section, to evaluate the performance of the proposed
method for remote sensing target detection in terms of
both accuracy and efficiency, we compare it with state-
of-the-art models: YOLOv5, YOLOv4, YOLOv4-tiny, and
scaled-YOLOv4. YOLOv4 and YOLOV5 use deeper layers
of CSPDarknet53 to replace darknet53 of YOLOv3 [17]
to obtain more features for the 80 object types. However,
YOLOv4-tiny and scaled-YOLOv4 are compatible subset
implementations of YOLOv4. All detection methods use the
same training and test sets, and the evaluation of detection
results was performed using the same standard. Table III
shows that our collected dataset yields higher accuracy
than the TGRS-HRRSD and NWPU VHR-10 datasets.
Additionally, the proposed method outperforms YOLOVS5,
YOLOv4, and YOLOv4-tiny, and is similar to scaled-
YOLOv4. Because YOLOv4-tiny is less sensitive to small
objects, it has lower performance. The three datasets show
similar results for target detection of optical remote sensing
images. Furthermore, the superiority of YOLOv4-faster over
YOLOV5, YOLOV4, and YOLOv4-tiny demonstrates that the
proposed network architecture yields better performance.
The experimental results for our collected dataset at
800 x 800 resolution are shown in Table IV in comparison
with existing deep learning algorithms. YOLOv4-faster yields
a precision of 97%, a recall of 98%, and an mAP of 98%.
In addition to performance, speed is also important for
neural network architectures. YOLOv4-tiny is clearly the
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fastest with a detection speed significantly higher than that
of the other algorithms, but performs poorly. However, the
execution speed of our algorithm is 65 FPS, which meets
the requirements of real-time detection. Table IV further
illustrates the excellent performance of the proposed method
for military target detection.

Figure 5 shows the multiple-target detection results
in our collected datasets, with three categories of objects:
tighter planes (purple border), helicopters (red border), and
military radars (green border). The results demonstrate
that the proposed framework enables relatively fine-grained,
accurate detection of multiple objects in complex, high-
resolution scenes, and is strongly robust against interference
such as illumination, shadows, and occlusion, and yields
reasonable detection performance for small objects such as
fighter planes, helicopters, battleships, military radars, and
submarines. In summary, YOLOv4-faster achieves higher
and more stable detection accuracy than state-of-the-art
algorithms. For small training sets (NWPU VHR-10),
YOLOv4-faster also exhibits faster convergence speeds.
Future studies will continue to extend the dataset, host more
challenges, and integrate more algorithms for military target
detection.
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5. CONCLUSION

We introduce a framework composed of a series of solutions
and steps for military target detection in remote sensing
imagery. The YOLOv4-faster model is proposed, which uses
a modified YOLOv4-tiny module as the feature extraction
network and uses three different scales for detection of large,
medium, and small targets, respectively. The experimental
results indicate that YOLOv4-faster outperforms several
state-of-the-art architectures on three remote sensing scene
datasets. Moreover, we propose a new dehazing algorithm for
remote sensing images that produces images, which are more
suitable for further target detection and increases the target
detection accuracy. The proposed model achieves the best
detection performance among the five methods evaluated: an
mAP of 98.08% and 65 FPS on our collected dataset—note
that the mAP value exceeds that of the suboptimal method
(scaled-YOLOV4) by 0.95%. In addition, the proposed model
also yields mAPs of 96.3% and 91.2% on the TGRS-HRRSD
and NWPU VHR-10 datasets. In future work, we will
improve our method by conducting further research on
the detection of blurred, dense small objects and obscured
objects.

REFERENCES

1 R, Girshick, J. T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” IEEE Conf. on
Computer Vision and Pattern Recognition (IEEE, Piscataway, NJ, 2014),
pp. 580-587.

2'W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: single shot MultiBox detector,” in Computer Vision - ECCV
2016, edited by B. Leibe, . Matas, N. Sebe, and M. Welling, Lecture Notes
in Computer Science (Springer, Cham, 2016), Vol. 9905.

3 J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
unified, real-time object detection,” Proc. IEEE Conf. on Computer Vision
and Pattern Recognition CVPR (IEEE, Piscataway, NJ, 2016), pp. 779-788.

4K M. He X. Y. Zhang, S. Q. Ren, and J. Sun, “Deep residual learning
for image recognition,” IEEE Conf. on Computer Vision and Pattern
Recognition (IEEE, Piscataway, NJ, 2016), pp. 27-30.

5 A. Bochkovskiy, C. Y. Wang, and H. Y. Mark Liao, “YOLOv4: optimal
speed and accuracy of object detection,” Proc. Conf. on Computer Vision
and Pattern Recognition (IEEE, Piscataway, NJ, 2020), pp. 14-19.

6 A. Bochkovskiy, Darknet: Open Source Neural Networks in Python (2020),
Available online: https://github.com/AlexeyAB/darknet.

7 A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with
deep convolutional neural networks,” Neural Inf. Process. Syst. 25,
1097-1105 (2012).

8 P Viola and M. Jones, “Robust real-time object detection,” Intl. J.
Comput. Vis. 4, 34-47 (2001).

9 N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” IEEE Computer Society Conf. on Computer Vision and Pattern
Recognition (IEEE, Piscataway, NJ, 2005), pp. 886-893.

10 p E Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Ob-
ject detection with discriminatively trained part-based models,” IEEE
Trans. Pattern Anal. Mach. Intell. 32, 1627-1645 (2010).

J. Imaging Sci. Technol.

040405-9

M. Yousefi and ). H. L. Hansen, “Block-based high-performance CNN
architectures for frame-level overlapping speech detection,” IEEE/ACM
Trans. Audio Speech Lang. Process. 29, 28-40 (2021).

12 H, Park, S. Park, and Y. Joo, “Detection of abandoned and stolen objects
based on dual background model and mask R-CNN;” IEEE Access 8,
80010-80019 (2020).

By, Song, B. He, and P. Liu, “Real-time object detection for AUVs using
self-cascaded convolutional neural networks,” IEEE J. Ocean. Eng. 46,
56-67 (2021).

14 g Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: towards real-time
object detection with region proposal networks,” IEEE Trans. Pattern
Anal. Mach. Intell. 39, 1137-1149 (2016).

15 K. He, G. Gkioxari, P. Dollér, and R. Girshick, “Mask R-CNN;” Proc. IEEE
Int’l. Conf. on Computer Vision (IEEE, Piscataway, NJ, 2017), pp. 22-29.

16 1 Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” IEEE
Conf. on Computer Vision and Pattern Recognition (IEEE, Piscataway, NJ,
2017), pp. 21-26.

177, Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
IEEE Conf. on Computer Vision and Pattern Recognition (IEEE,
Piscataway, NJ, 2018), pp. 2311-2314.

18 J Nelson and J. Solawetz, Roboflow team, “YOLOVS5 is Here: State-of-the-
Art Object Detection at 140 FPS,” 2020. Available online: https://github.
com/ultralytics/yolov5.

19°C.-Y. Wang, A. Bochkovskiy, and H.-Y. Mark Liao, “Scaled-YOLOv4:
Scaling cross stage partial network,” Proc. IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR) (IEEE, Piscataway, NJ, 2021),
pp. 13029-13038.

20y E. Adam, “You only look twice: Rapid multi-scale object detection in
521 satellite imagery,” arXiv:1805.09512 (2018).

21 7. Xu, X. Liu, and N. Ji, “Fog removal from color images using contrast
limited adaptive histogram equalization,” Image and Signal Processing
(IEEE, Piscataway, NJ, 2009), pp. 1-5.

225, G. Narasimhan and S.K.Nayar, “Contrast restoration of weather
degraded images,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 713-724
(2003).

23 D. Miyazaki, D. Akiyama, M. Baba, R. Furukawa, S. Hiura, and N. Asada,
“Polarization-based dehazing using two reference objects,” Proc. IEEE
Int’l. Conf. on Computer Vision Workshops (IEEE, Piscataway, NJ, 2013),
Pp. 852-859.

24 X, He, . Sun, and X. Tang, “Single image haze removal using dark channel
prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2341-2353 (2011).

25 Q. Zhu, J. Mai, and L. Shao, “A fast single image haze removal algorithm
using color attenuation prior,” IEEE Trans. Image Process 24, 3522-3533
(2015).

26 D, Berman, T. Treibitz, and S. Avidan, “Non-local image dehazing,’
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (IEEE,
Piscataway, NJ, 2016), pp. 1674-1682.

27 7. Gu, Z.Zhan, Q.Yuan, and L. Yan, “Single remote sensing image
dehazing using a prior-based dense attentive network,” Remote Sens. 11,
3008 (2019).

28 http://weegee.vision.ucmerced.edu/datasets/landuse.html.

29 https://gdo152.llnl.gov/cowc/.

30 https://github.com/CAPTAIN-WHU/DOTA_devkit.

31 K. Li, G. Wan, G. Cheng, L. Meng, and J. Han, “Object detection inoptical
remote sensing images: a survey and a new benchmark;” ISPRS J.
Photogramm. Remote Sens. 159, 296-307 (2020).

32 MINT & Analysis, http://geimint.blogspot.com/2008/12/chinese-militar
y-airfields.html.

33 https://github.com/chaozhong2010/VHR-10_dataset_coco.

34 https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset.

July-Aug. 2022


https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2004.10934
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1109/TASLP.2020.3036237
https://doi.org/10.1109/TASLP.2020.3036237
https://doi.org/10.1109/TASLP.2020.3036237
https://doi.org/10.1109/ACCESS.2020.2990618
https://doi.org/10.1109/JOE.2019.2950974
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://doi.org/10.1109/CVPR46437.2021.01283
https://doi.org/10.1109/CVPR46437.2021.01283
https://doi.org/10.1109/CVPR46437.2021.01283
http://arxiv.org/abs/1805.09512
https://doi.org/10.1109/CISP.2009.5301485
https://doi.org/10.1109/TPAMI.2003.1201821
https://doi.org/10.1109/ICCVW.2013.117
https://doi.org/10.1109/ICCVW.2013.117
https://doi.org/10.1109/ICCVW.2013.117
https://doi.org/10.1109/TPAMI.2010.168
https://doi.org/10.1109/TIP.2015.2446191
https://doi.org/10.1109/CVPR.2016.185
https://doi.org/10.3390/rs11243008
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://github.com/CAPTAIN-WHU/DOTA_devkit
https://doi.org/10.1016/j.isprsjprs.2019.11.023
https://doi.org/10.1016/j.isprsjprs.2019.11.023
https://doi.org/10.1016/j.isprsjprs.2019.11.023
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
http://geimint.blogspot.com/2008/12/chinese-military-airfields.html
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset

	Introduction
	Related Work
	Proposed Method
	Image Preprocessing
	Architecture of Proposed Method

	Experiment Results and Analysis
	Dataset
	Validation of Proposed Method
	Comparison with Other Methods

	Conclusion
	References

