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Abstract. The inertial measurement unit (IMU) is a popular sensor
device, which is mainly employed to acquire body or hand gesture
action information for performing specific recognition tasks. We
present a dual-channel artificial neural network (ANN) recognition
decision hybridization scheme incorporated with deep leaning of
IMU-based spectrogram images for cognition of several common
hand gesture intention categorization actions focused on the 6-axis
IMU sensing data (containing 3-axis accelerometer and 3-axis
gyroscope information) and the 6-axis IMU derived spectrogram
images. In this hand gesture intention cognition approach, both
symmetric and asymmetric ANN structures are considered for
intention action classifications. The proposed dual-channel ANN
decision fusion framework contains one ANN recognition channel
with inputs of “6-axis IMU raw data” and the other ANN recognition
channel with inputs of “IMU spectrogram image derived-critical deep
learning features”. Recognition decisions estimated from either of
these two ANN recognition channels form the fusion framework.
Three fusion schemes on dual-channel ANN recognition decisions
are presented in this study, channel output layer accumulation, same
channel candidate output and same-or-dual channel candidate
output. In this study, the well-known deep learning neural network,
visual geometry group- convolution neural network (VGG-CNN), is
employed to carry out deep learning computations on IMU-based
spectrogram images, from which, the critical deep learning feature
of each spectrogram image can then be extracted and used as
an input for the dual-channel ANN. For recognition performance
comparisons, hand gesture intention recognition by the traditional
VGG-CNN deep neural network approach (i.e. recognition of IMU
spectrogram images using typical deep learning of the CNN model)
is also performed. Experiments on classifications of six hand
gesture intention actions show that the presented dual-channel ANN
decision fusion incorporated with deep learning of IMU spectrum
images has competitive performances, reaching better recognition
accuracy than traditional CNN deep learning. c© 2022 Society for
Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.4.040403]

1. INTRODUCTION
Body language through specific body action variations is
an effective nonverbal cue and plays an important role in
human communication. Along with speech communication
and facial expressions, body action information can further
be combined to accurately infer the specific intention
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behavior of the person [1]. In body language-based human
intention expression, hand gesture actions is likely to be the
most representative and effective [2]. In daily life, various
common hand gesture actions have been frequently used to
reveal corresponding specific human intention behaviors of
‘‘anger’’, ‘‘confidence’’, ‘‘anxiety’’, ‘‘joy’’, ‘‘tension’’ and ‘‘inspi-
ration’’. Similar to matured speech recognition [3–7], face
recognition [8, 9] and fingerprint recognition techniques [10,
11] widely used in real world applications, hand gesture
action-based intention recognition, belonging to biometric
characteristics recognition similarly, will undoubtedly be-
came an indispensable and creative humanmachine interface
(HMI) application.

With rapid development in the field of contact and
contactless sensor devices, increased studies on hand gesture
recognition with the specific type of sensor data have
been proposed in the recent years [12–37]. According to
variances of the employed sensor and the acquired data,
hand gesture recognition can be primarily categorized
into RGB image-based [12–14], 3-dimensional (3-D) space
data-based [15–20], depth image-based [21–23], surface
electromyography (sEMG)-based [24–31] and inertial mea-
surement unit (IMU)-based recognition systems [27–37]
where the first three types are contactless categorizations
and the last two approaches belong to the contact class.
For categorization of hand gesture recognition with IMU
sensing data, the sensor device with IMU raw data sensing
is generally equipped with (or embedded in) smart phones,
smart watches or the smart wearable sport\health bracelets.
Compared with contactless hand gesture recognition by the
CMOS image sensor, the 3D sensor (also known as the
RGB-D sensor) or the infrared depth sensor, contact hand
gesture recognition using the wearable IMU motion sensor
is more suitable for use in applications of human activity
measurements, action analysis and recognition in the specific
sport device and specified common hand gesture intention
behavior recognition in this study due to the property of
arbitrary sensing without inconvenient restrictions of the
limited sensing region.

Studies on hand gesture recognition with the IMU
data [27–37] can be further divided into IMU pattern
recognition by typical pattern classifiers such as the artificial
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Figure 1. The MbientLab wearable bracelet device utilized in this work to acquire 3-axis accelerometer and 3-axis gyroscope motion data for constructing
an efficient ANN recognition scheme with 6-axis IMU raw data for hand intention action recognition [38].

neural network (ANN) [34], IMU pattern recognition by
deep neural network (DNN) with deep learning [35–37],
and integrated or combined recognition of the IMU data
and other data with different sensing modalities [27–33].
In the work of [34], only the accelerometer sensor data is
employed directly to classify hand gestures by ANN. That the
IMU signal is considered to be further combined with the
sEMG signal for hand gesture recognition by ANN or other
classifiers can be seen in these studies of [27–31]. In addition,
IMU signal is also explored to be integrated with other
modalities of sensor data, such as acoustic voice data [32] or
mechanomyography data [33], to construct amulti-modality
hand gesture recognition system. On the other hand, in
addition to typical ANN, well-known DNN techniques with
the framework of deep learning neural networks, such as
the typical convolutional neural network (CNN), the typical
recurrent neural network (RNN) and the long short term
memory (LSTM)-type RNN, have also been explored in the
task of hand gesture recognition with IMU data [35–37].

For the above mentioned IMU-based hand gesture
recognition studies, very limited studies have focused on
using deep learning model-derived features of the IMU
raw signal on hand gesture recognition. Researchers have
explored to derive visual geometry group (VGG)-CNN deep
learning features from the Leap Motion Controller (LMC)
3-D image data for hand gesture intention-based identity
recognition in the previous study [20]. The work of [20] only
considers the the derived VGG-CNN deep learning feature
directly for template match-based classification without any
consideration of data fusion or model fusion designs on

recognition. In this paper, a dual-channel ANN recognition
hybridization scheme to make fine fusion of the wearable
6-axis IMU raw and its deep learning features by decision
fusion for accurately cognizing various common hand
gesture intention actions is proposed, which will be detailed
in the following sections.

2. HANDGESTURE INTENTION RECOGNITION BY
ANN CLASSIFICATIONWITH 6-AXIS IMU RAW
DATA

This work adopts the wearable bracelet device developed
by MbientLab [38] to construct a hand intention action
recognition system (see Figure 1). As shown in Fig. 1,
the main sensor platform in the wearable bracelet device,
called MetaMotionC (MMC), contains an accelerometer,
a gyroscope and a temperature sensor. It is to be noted
that in the current version of MMC [38], there are more
abundant motion and environment sensors equipped on
the board to provide real-time data acquisition of human
body and environment data. In this study, for acquiring the
continuous-time motion data of a specified hand intention
action, mainly the 3-dimensional accelerometer data and
the 3-dimensional gyroscope data, only the accelerometer
and the gyroscope sensor of MMC are used. It’s also noted
that although theMMC includes some software development
kits (SDKs) and application program interfaces (APIs) for
rapid implementing an application, this work only employs
the SDK of data acquisition of 6-axis inertial measurement
unit (IMU) raw data (i.e. 3-axis accelerometer and 3-axis
gyroscope raw data) to obtain hand motion data to further
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Figure 2. Illustrations of the ‘‘symmetric’’ artificial neural network structure employed in this work (the same neural node number set in each of two hidden
layers).

Figure 3. Illustrations of the ‘‘asymmetric’’ artificial neural network structure employed in this work (different neural node numbers set in each of two hidden
layers).

analyze and categorize the specific hand intention action
behavior.

In this study, the ANN classification scheme is utilized
to be the classifier for categorizing different types of
hand intention actions on the obtained or modified hand
action data. Totally, 6 different classes of hand gesture
actions to indicate specific human intention behaviors are
defined in the developed recognition system. In this system,
hand intention action recognition using ANN classifications
with 6-axis IMU raw data, two different types of ANN
structures are taken into account, which are ‘‘symmetric’’
and ‘‘asymmetric’’ ANN structures. Figures 2 and 3 illustrate
the symmetric ANN and the asymmetric ANN network
topologies respectively. During the phases of ANN model
establishment (model training) and ANN model simulation
(model test), basic principles of ANN calculations are
adopted in this work, as shown in the following equations,

Eqs. (1)–(4).

hj = f1

( n∑
i=1

wij · IMUi− δj

)
(1)

hk = f2

 m∑
j=1

wjk · hj− δk

 (2)

yl = f3

( o∑
k=1

wkl · hk− δl

)
(3)

Error =
p∑

l=1

(
Expectationl − yl

)
. (4)

Note that when performing ANN model establishment
in the training phase, the well-known back propagation
(BP) algorithm is utilized. All the input hand gesture
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action data are made forward-propagating by Eqs. (1)–(3).
Equation (4) shows that the error signal, Error is obtained
by accumulation of output difference values of each of all p
nodes of the output layer, Expectationl − yl , l = 1, 2, . . . , p
(p = 6 in this work, denoting 6 different hand gesture
intention categorizations). It’s noted that Expectationl and
yl in Equation (4) denote the network expectation output
and the network output of the lth node in the output layer
respectively. In the BP approach, the item Error derived by
Eq. (4) can be multiplied by the factor of the learning rate,
Rate. The formed item, Error · Rate, can then be used to
adjust the connection weight parameter of the ANN model
in the way of output-to-input back propagation.

Focusing on these two different ANN network topolo-
gies, this work evaluates the recognition accuracy in different
settings of various nodes in hidden layer-1 and hidden
layer-2. For evaluations of symmetric ANN, sets of (hidden
layer-1, hidden layer-2) are (5, 5), (6, 6), (7, 7). . . , and
(20, 20). As for the asymmetric ANN topology, totally
20 sets of (hidden layer-1, hidden layer-2) are evaluated,
which are (5, 25), (6, 24), (7, 23), . . . , (25, 5). Note that
symmetric and asymmetric ANN structures with the best
recognition accuracy ((13, 13) in symmetric ANN and (10,
20) in asymmetric ANN) will then be further considered in
the design of dual-channel ANN recognition hybridizations
additionally incorporated with the deep learning feature
ANN recognition channel (i.e. the complete ANN structure
of 6-13-13-6 and 6-10-20-6 after filling the input layer with
6 nodes of the IMU data and the output layer with 6 hand
gesture intention class nodes), which will be detailed in the
following sections.

3. DUAL-CHANNEL ANN RECOGNITION
HYBRIDIZATIONS OF 6-AXIS IMU RAWDATA
AND ITS IMU SPECTROGRAM IMAGE-DERIVED
DEEP LEARNING FEATURES FOR HANDGESTURE
INTENTION COGNITION

As mentioned in the previous section, two different model
types of ANN calculations with 6-axis IMU raw data
are initially established for classification of various hand
gesture intention actions. Taking into consideration the
advancedANNmodel with feature information learning that
is categorized into deep learning models on hand gesture
intention recognition, the popular VGG-16 CNN deep
learning model is employed in this study. For thoroughly
considering VGG-16 CNN computations, a fundamental
method to use the VGG-16 CNN deep learning model with
6 axis IMU-derived spectrogram images for classifying hand
gesture intention actions is initially presented, following
which, the dual-channel ANN recognition approach to
properly hybridize both of the ANN classification decision
of 6-axis IMU raw data and that of the derived VGG-16
CNNdeep learning features by three different decision fusion
designs is presented for hand gesture intention recognition.

3.1 Hand Gesture Intention Recognition by the VGG-16
CNN Deep Learning Model with 6 Axis IMU Raw-Derived
Spectrogram Images (Typical CNN Recognition on Input
Images)
As mentioned before, the 6-axis IMU raw data derived from
3-axis accelerometer and 3-axis gyroscope sensors of the
MMC platform in certain continuous-time period can be
used to represent motion variances of the specific hand
gesture intention action. Such 6-axis IMU raw collected
during continuous-time period is viewed as the time-domain
motion data stream, which can further be transformed into
the frequency-domain information for feature learning and
classifications of the specific deep learning model (typical
VGG-16 CNN employed in this study). In this work, the time
domain-based IMU raw data stream is further transformed
into the frequency-domain characteristics, called the IMU
raw-derived spectrogram image. Such spectrogram informa-
tion is estimated by using the fast Fourier transformation
(FFT) calculation on the 6-axis IMU raw data stream. The
6 axis IMU raw-derived spectrogram image is properly
resized to a fixed-size of 224 by 224 in order to match
the input specification of the VGG-16 CNN model. The
VGG-16 CNN deep learning method essentially belongs
to the VGGNet convolution neural network, which is also
popular and known as the VGGNet-series CNN (generally,
VGG-CNN for simplicity) model [39]. The main property
of VGG-CNN is that on pattern recognition, a satisfactory
classification performance can be achieved by adjusting
the depth (level) of the feature learning model. There are
six different types of structures involved in VGG-CNN
categorization models, each of which corresponds to one
specific model configurations of ‘‘type A’’, ‘‘type A-LRN’’,
‘‘type B’’, ‘‘type C’’, ‘‘type D’’ and ‘‘type E’’. Each of these six
VGG-CNN model configurations has the specific number
of convolution and pooling calculations. The VGG-16 CNN
model adopted in this work is categorized into the class
of ‘‘type D’’. The VGG-16 CNN contains 13 convolution
layers (compounded with pooling computations of 5 layers)
and 3 fully connected (FC) layers. As depicted in Figure 4,
VGG-16 CNN contains two main phases, 13 process layers
for extraction of deep learning features and 3 process layers
for categorizations of the derived deep learning feature.
When an IMU-based spectrum with the size of 224 by 224
completes the deep learning task of accurate extractions of
image characteristics by a series of computations of the first
13 layers of VGG-16CNN, the input image of the IMU-based
spectrum can then be represented by a data vector with the
dimension of 4096 (i.e. the deep learning feature of 4096D).
The 14th layer, i.e. the starting layer of these 3 fully connected
layers, with 4096 nodes will be utilized to transmit the feature
data of 4096D for further classifications of gesture intention
actions.

Different from recognition calculations of conventional
VGG-16 CNN in Fig. 4, the extracted deep learning feature
after computations of 13 process layers has 4096 dimensions,
and such 4096D deep learning features will be independently
separated for further gesture intention classifications using
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Figure 4. Fundamental deep learning by the VGG-16 CNN model with inputs of 6 axis IMU-derived spectrogram images for hand intention action
recognition.

the symmetric ANN (or the asymmetric ANN)mentioned in
Section 2. It’s noted that main differences between the deep
learning model VGG-16 CNN in Section 3.1 and the ANN
model in Section 2 are (1) an additional ability of thorough
learning of input image characteristic provided by VGG-16
CNN (a series of convolution and pooling calculations of the
previous 13 layers) and (2) the fixed pattern classifier with an
invariable design of three fully connected layers (i.e. FC-1 of
the 14th layer, FC-2 of the 15th layer and classifications of the
16-layer) in VGG-16 CNN and the flexible pattern classifier
in ANN that can be designed in a manner of self-definitions
(e.g., the symmetric structure of twohidden layers containing
the same node number in each layer and the asymmetric
structure of two hidden layers containing the different node
number in each layer designed in this work, as shown in
Figs. 2 and 3). A scheme to be able to simultaneously
retain the advantage of the typical VGG-16 CNN model
on deep learning of input data (without considerations
of the invariable final three layers) and the merit of the
classical ANNmodel on a design of flexible and self-defined
classifications will be expected to be performed in hand
gesture intention recognition with outstanding recognition
accuracy. Based on this line of thought, a dual-channel ANN
recognition framework, which can intelligently hybridize
two recognition decisions estimated from two self-defined
ANN recognition channels of the 6-axis IMU raw data and
the VGG-16 CNN extracted deep learning feature data is
presented in this work, and is detailed in later sections.

3.2 Hand Gesture Intention Recognition using ANN
Classifications with Principal Component-Extracted
Critical Deep Learning Features
As mentioned, the 4096D deep learning feature can be
extracted after a series of convolution andmax pooling com-
putation of the first 13 layers of VGG-16 CNN. For real-time
recognition on hand gesture intention categorizations, such
VGG-16CNNextracted 4096Ddeep learning features will be
made by data reduction. Well-known principal component
analysis (PCA)will be utilized herein to derive the significant
data characteristics of the 4096D deep learning features,
i.e. principal components of 4096D features. The main
calculation of the PCA approach is to first establish the

eigenspace of the new dimension-reduced feature vector
that has the smallest value of the reconstruction error,
following which, an eigen-decomposition estimate is then
done to obtain the eigen-value in each axis of the constructed
new space for completing data transform in the new
space. By calculations of Eq. (5) to achieve the minimum
reconstruction error, the 4096D deep learning feature vector
from VGG-16 CNN will be transformed into a new feature
vector with only 80 principal components (the 80-D deep
learning feature used hereafter, for simplicity).

minM,PCDLMSE{DL4096D−M · (PCDL)
′
}, (5)

where MSE denotes mean square error computations,
DL4096D is the 4096D deep learning feature; PCDL denotes
the new feature vector with only principal components in
the constructed eigenspace;M represents the transformation
matrix to perform data transform between two different data
space.

As the work of hand gesture intention recognition by
ANN classification with 6-axis IMU raw data (see Section 2),
the 80-D deep learning feature will then be classified and
evaluated for recognition accuracy by the symmetric and
the asymmetric ANN (see Figure 5). Similar to ANN
evaluations on above-mentioned ANN classification with
6-axis IMU raw data, ANN classification with 80-D deep
learning features is also evaluated for recognition accuracy
by symmetric ANN structures of (5, 5), (6, 6), (7, 7). . . ,
and (20, 20), and asymmetric ANN structures of (5, 25), (6,
24), (7, 23), . . . , (25, 5). Note that in the asymmetric ANN
structure, (10, 20) denoting 10 and 20 nodes in the first and
the second hidden layer of the ANN respectively has the
best recognition performance, which is the same with ANN
classificationwith 6-axis IMU raw data; for evaluations of the
symmetric ANN, the (9, 9) structure that represents 9 nodes
contained in each of two hidden layers of the ANN achieves
the best performance on hand gesture intention recognition.
With the input layer of 80-D deep learning features and
the output layer of 6 hand gesture intention categorizations,
ANN structures of 80-10-20-6 and 80-9-9-6 are used in the
recognition channel of 80-D deep learning feature ANN,
whichwill then be furthermade toANNdecision fusionwith
those of the recognition channel of 6-axis IMU raw ANN.
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Figure 5. ANN classification calculations using the input of VGG-16 CNN derived deep learning feature information with data reduction of principal
component analysis.

Figure 6. The presented dual-channel ANN recognition framework for intelligently hybridizing recognition decisions estimated from two different ANN
channels, ANN with 6-axis IMU raw and ANN with 80-D deep learning features, on hand gesture intention recognition.

3.3 Dual-Channel ANN Recognition Hybridizations of
Original 6-Axis IMU Raw and its 80-D Critical Deep
Learning Features by Decision Fusion for Hand Gesture
Intention Recognition
The presented dual-channel ANN recognition framework is
illustrated in Figure 6. As shown in Fig. 6, one recognition
channel is the 6-axis IMU raw ANN with the asymmetric
structure of the input layer of 6 nodes, the hidden layer-1
of 10 nodes, the hidden layer-2 of 20 nodes and the
output layer of 6 nodes (i.e., the 6-10-20-6 structure, for
simplicity) or the symmetric structure of the input layer
of 6 nodes, the hidden layer-1 of 13 nodes, the hidden
layer-2 of 13 nodes and the output layer of 6 nodes (i.e.,
the 6-13-13-6 structure, for simplicity); another recognition
channel is the 80-D deep learning feature ANN with the
asymmetric structure of the input layer of 80 nodes, the
hidden layer-1 of 10 nodes, the hidden layer-2 of 20 nodes
and the output layer of 6 nodes (i.e., the 80-10-20-6 structure,
for simplicity) or the symmetric structure of the input
layer of 80 nodes, the hidden layer-1 of 9 nodes, the
hidden layer-2 of 9 nodes and the output layer of 6 nodes
(i.e., the 80-9-9-6 structure, for simplicity). Three decision
fusion approaches, ‘‘channel output layer accumulation’’,
‘‘same channel candidate output’’ and ‘‘same-or-dual channel
candidate output’’, for making recognition channel decision
fusion on outputs of recognition channel-1 (6-axis IMU raw
ANN) and outputs of recognition channel-2 (80-D deep

learning feature ANN) can derive a total of 12 different
recognition strategies on hand gesture intention recognition
and are as follows:
• Combined 6-10-20-6 ANN with 6-axis IMU raw and
80-10-20-6 ANN with 80-D deep learning features by
decision fusion of channel output layer accumulation,
• Combined 6-10-20-6 ANN with 6-axis IMU raw and
80-9-9-6 ANN with 80-D deep learning features by
decision fusion of channel output layer accumulation,
• Combined 6-13-13-6 ANN with 6-axis IMU raw and

80-10-20-6 ANN with 80-D deep learning features by
decision fusion of channel output layer accumulation,
• Combined 6-13-13-6 ANN with 6-axis IMU raw and

80-9-9-6 ANN with 80-D deep learning features by
decision fusion of channel output layer accumulation,
• Combined 6-10-20-6 ANN with 6-axis IMU raw and

80-10-20-6 ANN with 80-D deep learning features by
decision fusion of same channel candidate output,
• Combined 6-10-20-6 ANN with 6-axis IMU raw and

80-9-9-6 ANN with 80-D deep learning features by
decision fusion of same channel candidate output,
• Combined 6-13-13-6 ANN with 6-axis IMU raw and

80-10-20-6 ANN with 80-D deep learning features by
decision fusion of same channel candidate output,
• Combined 6-13-13-6 ANN with 6-axis IMU raw and

80-9-9-6 ANN with 80-D deep learning features by
decision fusion of same channel candidate output,
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Figure 7. Illustrations of presented decision fusion of dual-channel ANN recognition using channel output layer accumulation for simultaneous considerations
of 6-axis IMU raw and its deep learning features on hand gesture intention recognition.

• Combined 6-10-20-6 ANN with 6-axis IMU raw and
80-10-20-6 ANN with 80-D deep learning features
by decision fusion of same-or-dual channel candidate
output,
• Combined 6-10-20-6 ANN with 6-axis IMU raw and
80-9-9-6 ANN with 80-D deep learning features by
decision fusion of same-or-dual channel candidate
output,
• Combined 6-13-13-6 ANN with 6-axis IMU raw and
80-10-20-6 ANN with 80-D deep learning features
by decision fusion of same-or-dual channel candidate
output, and
• Combined 6-13-13-6 ANN with 6-axis IMU raw and
80-9-9-6 ANN with 80-D deep learning features by
decision fusion of same-or-dual channel candidate
output.

The presented three decision fusion approaches for hybridiz-
ing two different recognition channels of the 6-axis IMU
raw and the 80-D deep learning feature are detailed in the
following.

(1) Decision fusion of dual-channel ANN recognition by
the channel output layer accumulation approach

The presented channel output layer accumulation ap-
proach is illustrated in Figure 7. As can be seen in
Fig. 7, 6 node output values derived from the ANN output
layer of recognition channel-1 and another 6 node output
values derived from the ANN output layer of recognition
channel-2 are considered to make the final recognition
decision. In channel output layer accumulation, each node
output value of recognition channel-1 is accumulated by its
corresponding node output value of recognition channel-2;
finally, a maximum operation is used on these 6 accumulated
node output values for deriving the recognition result.
Equations (6) and (7) show the calculations of presented
channel output layer accumulation on decision fusion of
dual-channel ANN recognition. Note that in Eqs. (6)
and (7), n denotes the number of hand intention action
categorizations, and n is equal to 6 (i.e. 6 classes for
recognition test) in this work. The recognition result is the

hand gesture intention classification label indicated by the
max of all 6 accumulated output layered node values.

Accumulated output layered nodei
=Output layered node(6 axis IMU raw)i
+ Output layered node(80D deep learning feature)i,

i= 1, 2, . . . , n. (6)
Recognition result= argmaxi=1,2...,n Accumulated output

layered nodei. (7)

Note that in Eq. (6), the item Output layered node
(6 axis IMU raw)i denotes the classification score of the
ith categorization gesture intention derived from the corre-
sponding ith node of the output layer of Channel-1 ANN
recognition with the input of gesture actions represented
by 6-axis IMU raw; another item Output layered node
(80D deep learning feature)i in Eq. (6) is the classification
score of the ith categorization gesture intention estimated
from the corresponding ith node of the output layer of
Channel-2 ANN recognition where the CNN deep learning
feature, the 80D deep learning feature, is employed as the
input data.

(2) Decision fusion of dual-channel ANN recognition by
the same channel candidate output approach

Figure 8 illustrates the presented same channel candi-
date output approach on decision fusion of dual-channel
ANN recognition. As shown in Fig. 8, the max node value
index of all 6 nodes in the output layer of recognition
channel-1 and recognition channel-2 is separately derived by
a maximum operation, i.e., the candidate of channel-1 and
the candidate of channel-2. If both candidates of channel-1
and channel-2 are the same, the recognition decision derived
from the 6-axis IMU raw recognition channel and the 80-D
deep learning feature recognition channel denotes the same
hand gesture intention class. In this situation, the recognition
result output is set as the classification label of the candidate
of channel-1 (or the candidate of channel-2). Conversely,
if the classification label of the candidate of channel-1
is different from that of the candidate of channel-2, the

J. Imaging Sci. Technol. 040403-7 July-Aug. 2022



Ding, Juang, and Lin: Deep learning based decision fusion framework for hand gesture cognition

Figure 8. Illustrations of presented decision fusion of dual-channel ANN recognition using same channel candidate output for simultaneous considerations
of 6-axis IMU raw and its deep learning features on hand gesture intention recognition.

hand gesture intention categorization recognized by two
channels of 6-axis IMU raw and 80-D deep learning features
is obviously different from each other. In this case, such
input data for hand gesture intention action recognition
calculation is perhaps substandard and therefore neglected
directly, i.e. no recognition result is outputted to this input
data. The rationale behind the presented same channel
candidate output approach is that the recognition result will
be outputted by the recognition system only in the case of
reliable recognition result obtained.

(3) Decision fusion of dual-channel ANN recognition by
the same-or-dual channel candidate output approach

The above-mentioned same channel candidate output
approach is essentially ‘‘conditional recognition calculation’’.
Although the same channel candidate output approach is
expected to have an extremely satisfactory recognition accu-
racy due to only the reliable recognition result given, such
type of conditional recognition calculation can occasionally
encounter a problem of waiting for recognition results, i.e.
possibly various times of input data given by the same
user to obtain only one time of recognition result. To
overcome this problem, the same-or-dual channel candidate
output approach is presented. Figure 9 depicts the estimate
procedure of the presented same-or-dual channel candidate
output method. It can be obviously seen in Fig. 9 that
the main difference between the same channel candidate
output approach and the same-or-dual channel candidate
output method occurs only in the situation when the
candidate of channel-1 and the candidate of channel-2 are
not the same. In such a situation, different from the same
channel candidate output approach, presented same-or-dual
channel candidate output herein will simultaneously give
two recognition results to the user, both classification labels
of channel-1 and channel-2 candidates. When one of both
classification labels of channel-1 and channel-2 candidates

is same as the classification label of the input hand gesture
intention action categorization, recognition to this input data
will be viewed to be correct recognition. The same-or-dual
channel candidate output approach on decision fusion of
dual-channel ANN recognition will give the recognition
result in each input action data where the additional user
verification task is required to make a correct choice only in
the case of two different classification labels of channel-1 and
channel-2 candidates.

4. EXPERIMENTS AND RESULTS
Experiments on hand gesture intention recognition with the
MbientLab wearable bracelet device are made in a laboratory
office environment. The 6-axis IMU raw information
including 3-axis accelerometer and 3-axis gyroscope motion
data is obtained from the wearable bracelet device and is
then transmitted to the smart phone device for further
signal analysis of the raw data as shown in Figure 10. As
depicted in Fig. 10, when making a wireless connection
between the wearable bracelet device with the MMC sensing
platform and the specified smart phone device, the MMC
sensing platform will first be detected, following which, a
configuration setting task to select the desired type of sensing
data to perform data acquisition on the sensor platform
will then be done. As can be seen in Fig. 10, although the
MMC sensing platform contains three different sensor types,
accelerometer, gyroscope and temperature sensors, only
accelerometer and gyroscope sensors are used and enabled in
this work. After making a successful configuration, a session
is then established to represent a new raw data capture
mission. All types of sensing platforms developed by the
MbientLab including MMC employed in this work use a
csv-type file for dynamically recording the captured data
during continuous-time period.
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Figure 9. Illustrations of presented decision fusion of dual-channel ANN recognition using same-or-dual channel candidate output for simultaneous
considerations of 6-axis IMU raw and its deep learning features on hand gesture intention recognition.

Figure 10. Connection, configuration and data capture settings on the specified smart phone device to be matched with the MMC sensing platform on
the MbientLab wearable bracelet device.

Table I shows continuous-time actions of the defined
six different hand gesture intention action categorizations of
hand gesture intention recognition. These six different cate-
gorization actions, labeled as ‘‘Label-1’’, ‘‘Label-2’’, ‘‘Label-3’’,
‘‘Label-4’’, ‘‘Label-5’’ and ‘‘Label-6’’, represent ‘‘waving the
arm from top to bottom’’, ‘‘putting the hand on the waist’’,
‘‘rubbing palms of both hands back and forth’’, ‘‘clapping
both hands (both palms)’’, ‘‘crossing both arms on the
chest’’ and ‘‘making a fist and beating the chest and then
pointing the index finger at the opponent’’, respectively.
Note that these operated actions of hand gesture intention
categorizations, Label-1, Label-2, Label-3, Label-4, Label-5
and Label-6 denote common human intention behavior
classes of ‘‘Anger’’, ‘‘Confidence’’, ‘‘Anxiety’’, ‘‘Joy’’, ‘‘Tension’’
and ‘‘Inspiration’’, respectively. These six defined hand
gesture intention actions in this study are frequently seen
and used to express an individual’s specific social intention
behavior in the daily life.

During establishment of the database containing the
above-mentioned six different categorizations of hand ges-
ture intention actions, three persons are requested to wear
the MbientLab wearable bracelet with the 6-axis IMU raw
motion data tomake each of indicated continuous-time hand
gesture actions. Each of these three hand gesture action-
making persons make 50 actions for each categorization
of hand gesture intention actions, a half for ANN model
training (or the VGG-16 CNN model training) and the
other half for recognition rate evaluations in the recognition
test phase. Totally, 900 hand gesture intention actions are
captured in the database, 150 actions for each of the defined
six specified hand gesture intention categorization actions. In
the collected database, 450 actions with 75 actions contained
in each of the six hand gesture intention categorizations are
employed as the training data to establish the recognition
model, and the other 450 actions are used as the test data for
performance evaluation of constructed models.
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Table I. Six different continuous-time hand gesture intention actions with the 6-axis IMU raw sensing wearable bracelet defined in this work.

Tables II and III show the experimental results of hand
gesture intention recognition by symmetric and asymmetric
ANN classification with 6-axis IMU raw data. Observed
from averaged recognition accuracy on classifications of
these six hand gesture intention action types, asymmetric
ANN with the structure of 6-10-20-6 is slightly superior to
the symmetric ANN with the 6-13-13-6 structure by 3.34%.
However, it seems that hand gesture intention recognition
by ANN classification with 6-axis IMU raw data is not very
satisfactory, only 60.67% of 6-10-20-6 ANNwith 6-axis IMU
raw and 57.33% of 6-13-13-6 ANN with 6-axis IMU raw
achieved.

In the phase of hand gesture intention recognition by the
typical VGG-16 CNN deep learning model approach with
6 axis IMU raw-derived spectrogram images, frequency-
domain spectrogram images of each (Type-1, Type-2, Type-
3, Type-4, Type-5 and Type-6) of these six continuous-time
hand gesture intention categorization actions with time-
domain sample signals of 6-axis IMU raw are depicted in
Figures 11, 12, 13, 14, 15 and 16, respectively. Note that in this
work of hand gesture intention recognition, as mentioned,
each action categorization has recorded 75 actions for

recognition test. In each of Figs. 11–16, for simplicity,
only the recent ten test actions for each type (totally, 75
test actions recorded for each categorization) are shown.
Each gesture intention action is represented by the acquired
sample signals of 6-axis IMU raw from the wearable bracelet
in certain continuous-time period, and such numerous
collected IMU raw samples is FFT-transformed to an
unique IMU-spectrogram. In Figs. 11–16, each image of
the IMU-spectrogram represents the corresponding action
with the continuous-time 6-axis IMU raw data. It can be
clearly seen in Figs. 11–16, each of ten IMU-spectrograms
that belong to the same action categorization has the
similar pixel property. IMU-spectrograms categorized into
different types are apparently distinct with each other,
and such well-separated pattern categorization images will
contribute significantly in typical VGG-16 CNN recognition
and further extractions of the established deep learning
feature from VGG-16 CNN. Table IV lists the averaged
recognition performance of VGG-16 CNN with the 6 axis
IMU raw-derived spectrogram image. As can be seen in
Table IV, the recognition accuracy reaches 75.78%, which
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Table II. Recognition accuracy of 6-13-13-6 ANN classifications with 6-axis IMU raw data.

Six different hand gesture classifications on recognition outputs
Input test hand gesture types Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 27 21 3 3 7 14
Type-2 2 61 4 1 6 1
Type-3 1 4 60 5 3 2
Type-4 3 11 11 29 15 6
Type-5 0 8 12 13 41 1
Type-6 9 7 4 8 7 40

Average recognition accuracy: 57.33%

Table III. Recognition accuracy of 6-10-20-6 ANN classifications with 6-axis IMU raw data.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 32 13 3 3 8 16
Type-2 4 65 1 2 0 3
Type-3 1 3 56 6 8 1
Type-4 1 6 13 35 12 8
Type-5 0 5 7 14 44 5
Type-6 13 4 4 3 10 41

Average recognition accuracy: 60.67%

Table IV. Recognition accuracy of VGG-16 CNN deep learning model with the RGB image information of 6 axis IMU-derived spectrogram images.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 65 5 0 1 0 4
Type-2 3 39 8 16 8 1
Type-3 2 0 62 10 1 0
Type-4 0 1 6 65 3 0
Type-5 4 3 8 4 55 1
Type-6 10 3 0 0 7 55

Average recognition accuracy: 75.78%

is more acceptable than those of ANN classifications with
time-domain signals of the 6-axis IMU raw data.

Tables V and VI present the results of ANN classi-
fications with principal component-extracted critical deep
learning features. As mentioned before, the 4096D deep
learning feature extracted from calculations ofVGG-16CNN
can further be derived from critical 80-D deep learning
feature data by PCA estimates. For the use of critical 80-D
deep learning features, in comparisons of symmetric ANN
with the 80-9-9-6 structure and asymmetric ANN with the
80-10-20-6 structure, symmetric ANN is slightly better than
asymmetric ANN on the recognition performance, which is
apparently different to the comparison result of symmetric

and asymmetric ANN classifications with 6-axis IMU raw
data. However, in ANN classifications with the critical 80-D
deep learning feature data, neither the symmetric nor the
asymmetric ANNhas the standard recognition performance.

Tables VII–X show the average recognition accuracy
of the channel output layer accumulation approach that is
used for decision fusion of dual-channel ANN recognition
of the 6-axis IMU raw and its critical 80-D critical deep
learning features, 6-10-20-6 ANN with 6-axis IMU raw
and 80-10-20-6 ANN with 80-D deep learning features,
6-10-20-6 ANN with 6-axis IMU raw and 80-9-9-6 ANN
with 80-D deep learning features, 6-13-13-6 ANN with
6-axis IMU raw and 80-10-20-6 ANN with 80-D deep
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Figure 11. IMU-based spectrogram images (frequency-domain spectrograms) of ‘‘Type-1’’ hand gesture intention actions where 6-axis IMU raw data is
transformed by FFT calculations (for simplicity, only the previous ten Type-1 test actions shown, totally 75 Type-1 actions in the test action database).

Figure 12. IMU-based spectrogram images (frequency-domain spectrograms) of ‘‘Type-2’’ hand gesture intention actions where 6-axis IMU raw data is
transformed by FFT calculations (for simplicity, only the recent ten Type-2 test actions shown, totally 75 Type-2 actions in the test action database).

learning features, and 6-13-13-6 ANN with 6-axis IMU
raw and 80-9-9-6 ANN with 80-D deep learning features,

respectively. The recognition performances among these
different dual-channel ANN recognition hybridizations by

Table V. Recognition accuracy of 80-9-9-6 ANN classifications with 80-D deep learning features.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 49 11 5 6 0 4
Type-2 7 33 11 11 8 5
Type-3 2 8 41 16 7 1
Type-4 2 8 11 46 6 2
Type-5 11 14 1 7 34 8
Type-6 6 10 7 11 2 39

Average recognition accuracy: 53.78%
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Figure 13. IMU-based spectrogram images (frequency-domain spectrograms) of ‘‘Type-3’’ hand gesture intention actions where 6-axis IMU raw data is
transformed by FFT calculations (for simplicity, only the recent ten Type-3 test actions shown, totally 75 Type-3 actions in the test action database).

Figure 14. IMU-based spectrogram images (frequency-domain spectrograms) of ‘‘Type-4’’ hand gesture intention actions where 6-axis IMU raw data is
transformed by FFT calculations (for simplicity, only the recent ten Type-4 test actions shown, totally 75 Type-4 actions in the test action database).

Table VI. Recognition accuracy of 80-10-20-6 ANN classifications with 80-D deep learning features.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 46 14 6 4 0 5
Type-2 4 38 9 7 9 8
Type-3 3 4 38 15 8 7
Type-4 3 10 10 38 8 6
Type-5 4 26 5 1 30 9
Type-6 6 11 7 8 2 41

Average recognition accuracy: 51.33%
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Figure 15. IMU-based spectrogram images (frequency-domain spectrograms) of ‘‘Type-5’’ hand gesture intention actions where 6-axis IMU raw data is
transformed by FFT calculations (for simplicity, only the recent ten Type-5 test actions shown, totally 75 Type-5 actions in the test action database).

Figure 16. IMU-based spectrogram images (frequency-domain spectrograms) of ‘‘Type-6’’ hand gesture intention actions where 6-axis IMU raw data is
transformed by FFT calculations (for simplicity, only the recent ten Type-6 test actions shown, totally 75 Type-6 actions in the test action database).

channel output layer accumulation are 66.67%, 64%, 62.44%
and 60.67%. By properly incorporating the ANN decision
estimate of the ANN recognition channel of critical 80-D
critical deep learning features to the recognition output,
almost all of these recognition outcomes are better than those
of the single channel ANN recognition with 6-axis IMU
raw data and those of the single channel ANN recognition
with 80-D critical deep learning features. Although the
recognition accuracy of decision fusion by the channel
output layer accumulation approach is still lower than that of
typical VGG-16 CNN with 6 axis IMU-derived spectrogram
images, such presented decision fusion scheme is effective
in recognition accuracy increase to single channel ANN
without any considerations on model fusion.

Experimental results of dual-channel ANN recognition
hybridizations by the same channel candidate output ap-

proach are listed in Tables XI–XIV. The averaged recognition
accuracy of combinations of the IMU raw ANN channel and
the critical deep learning feature ANN channel, combined
6-10-20-6 ANN and 80-10-20-6 ANN, combined 6-10-20-6
ANN and 80-9-9-6 ANN, combined 6-13-13-6 ANN and
80-10-20-6 ANN, and combined 6-13-13-6 ANN and
80-9-9-6 ANN, are 88.69%, 87.15%, 84.91% and 88.17%,
respectively. The best of these four different hybridizations
by the same channel candidate output on recognition
performance is the ANN model fusion of the asymmetric
ANN with IMU raw and the asymmetric ANN with critical
deep learning features. Note that all averaged recognition
performances of ANN recognition channel hybridizations by
the presented same channel candidate output approach are
obviously superior to 75.78% of the approach of VGG-16
CNNwith IMU-derived spectrogram images, which strongly
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Table VII. Recognition accuracy of combined 6-10-20-6 ANN with 6-axis IMU raw and 80-10-20-6 ANN with 80-D deep learning features by the channel output layer accumulation
approach.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 54 7 2 1 2 9
Type-2 5 56 3 3 3 5
Type-3 2 2 53 9 7 2
Type-4 2 5 9 44 11 4
Type-5 3 11 3 6 45 7
Type-6 6 6 5 6 4 48

Average recognition accuracy: 66.67%

Table VIII. Recognition accuracy of combined 6-10-20-6 ANN with 6-axis IMU raw and 80-9-9-6 ANN with 80-D deep learning features by the channel output layer accumulation
approach.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 52 8 3 2 1 9
Type-2 8 45 5 3 8 6
Type-3 0 4 52 8 9 2
Type-4 3 6 6 45 9 6
Type-5 9 3 5 7 45 6
Type-6 5 5 2 7 7 49

Average recognition accuracy: 64%

Table IX. Recognition accuracy of combined 6-13-13-6 ANN with 6-axis IMU raw and 80-10-20-6 ANN with 80-D deep learning features by the channel output layer accumulation
approach.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 52 11 2 2 1 7
Type-2 3 52 6 2 9 3
Type-3 0 2 50 9 9 5
Type-4 3 8 8 40 12 4
Type-5 4 7 9 8 39 8
Type-6 5 6 5 7 4 48

Average recognition accuracy: 62.44%

reveals the significant effectiveness of the presented decision
fusion scheme.

Tables XV–XVIII depict the averaged recognition rates
of hand gesture intention recognition by the same-or-dual
channel candidate output approach to hybridize recogni-
tion decisions of dual-channel ANN recognition. By this
presented decision method, the recognition rates become
78.89% of combined 6-10-20-6 ANN and 80-10-20-6 ANN,
79.78% of combined 6-10-20-6 ANN and 80-9-9-6 ANN,
78.67% of combined 6-13-13-6 ANN and 80-10-20-6 ANN,

and 78%of combined 6-13-13-6 ANNand 80-9-9-6 ANN, all
of which also performs more competitive than that of typical
VGG-16 CNNwith IMU-derived spectrogram images, those
of ANN classifications with 6-axis IMU raw data and those of
ANNclassificationswith 80-D critical deep learning features,
as the same channel candidate output approach.

Finally, for clearly illustrating the effectiveness of various
hand gesture intention recognition approaches, a recognition
result summary is shown in Table XIX. Note that in
Table XIX, for presented three different decision fusion
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Table X. Recognition accuracy of combined 6-13-13-6 ANN with 6-axis IMU raw and 80-9-9-6 ANN with 80-D deep learning features by the channel output layer accumulation
approach.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 45 8 5 3 4 10
Type-2 6 48 7 3 6 5
Type-3 1 6 49 7 9 3
Type-4 3 7 7 40 15 3
Type-5 5 5 9 8 41 7
Type-6 4 7 2 7 5 50

Average recognition accuracy: 60.67%

Table XI. Recognition accuracy of combined 6-10-20-6 ANN with 6-axis IMU raw and 80-10-20-6 ANN with 80-D deep learning features by the same channel candidate output
approach.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 17 2 1 0 0 2
Type-2 1 36 0 0 0 0
Type-3 0 0 28 0 0 0
Type-4 0 1 2 19 4 0
Type-5 0 2 0 0 26 0
Type-6 2 1 1 0 0 23

Average recognition accuracy: 88.69%

Table XII. Recognition accuracy of combined 6-10-20-6 ANN with 6-axis IMU raw and 80-9-9-6 ANN with 80-D deep learning features by the same channel candidate output approach.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 20 1 1 1 0 2
Type-2 1 29 0 0 0 0
Type-3 0 1 29 1 1 0
Type-4 0 1 4 24 3 0
Type-5 0 1 0 2 29 0
Type-6 0 1 1 0 1 25

Average recognition accuracy: 87.15%

approaches for hybridizations of dual ANN recognition
channels in this study, only the hybridized framework with
the best recognition accuracy is chosen for performance
comparisons. It can be inferred from Table XIX, that
single-channel ANN recognition approaches with 6-axis
IMU raw data and critical deep learning features have ap-
parently only the substandard performance on recognition,
approaching to 60.67% and 53.78%. The typical VGG-16
CNN recognition approach that uses the IMU-derived spec-
trogram images for classification calculations performs still
a little unsatisfactory, achieving 75.78%. Compared with the
conventional single-channel ANN recognition approach and

the typical VGG-16 CNN method, presented dual-channel
ANNrecognition hybridizations of 6-axis IMUraw and 80-D
deep learning features by decision fusion of the same channel
candidate output scheme and the same-or-dual channel
candidate output scheme have apparently more acceptable
performances with a significant recognition accuracy in-
crement; the best is 88.69% of the same channel candidate
output approach, followed by 79.78% of the same-or-dual
channel candidate output approach. Although decision
fusion by the channel output layer accumulation scheme
is not superior to typical VGG-16 CNN on recognition
accuracy, it is still much more competitive than conventional
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Table XIII. Recognition accuracy of combined 6-13-13-6 ANN with 6-axis IMU raw and 80-10-20-6 ANN with 80-D deep learning features by the same channel candidate output
approach.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 14 4 0 0 0 2
Type-2 0 33 1 0 0 0
Type-3 0 0 29 0 1 0
Type-4 0 4 2 12 2 0
Type-5 0 1 0 0 25 0
Type-6 3 3 0 1 0 22

Average recognition accuracy: 84.91%

Table XIV. Recognition accuracy of combined 6-13-13-6 ANN with 6-axis IMU raw and 80-9-9-6 ANN with 80-D deep learning features by the same channel candidate output approach.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 18 2 0 1 0 2
Type-2 0 28 1 0 0 0
Type-3 0 1 33 0 1 0
Type-4 0 0 2 19 1 0
Type-5 0 1 0 2 28 0
Type-6 0 3 1 2 0 23

Average recognition accuracy: 88.17%

Table XV. Recognition accuracy of combined 6-10-20-6 ANN with 6-axis IMU raw and 80-10-20-6 ANN with 80-D deep learning features by the same-or-dual channel candidate
output approach.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 61 5 1 1 3 4
Type-2 2 67 1 2 0 3
Type-3 1 1 66 3 3 1
Type-4 0 3 6 54 10 2
Type-5 0 3 7 12 48 5
Type-6 7 1 3 1 4 59

Average recognition accuracy: 78.89%

single-channel ANN recognition. Note that for 88.69% of
the same channel candidate output approach, it can also
been further observed the recognition performance of each
of six different categorizations of gesture intention actions
from the confusion matrix listed in Table XI. Observed
from Table XI, the intention action of Type-3 performs best,
achieving perfectly complete recognition, followed by the
Type-2 action with only one wrong recognition result, and
the action of Type-4 performs relatively imperfect, totally
7 incorrect recognition outcomes appeared. It is also noted
that as mentioned in Section 3.3, in the design of the same
channel candidate output approach, the recognition result

of gesture intention action labels can be sent out from the
system (i.e. a recognition decision made by the system) only
in the situation that recognized labels estimated from each
of two recognition channels are the same. It can be seen in
Table XI (also see Tables XII–XIV) that each type action has
inconsistent numbers of recognition decision outputs (e.g.,
19 of Type-1, 37 of Type-2, 28 of Type-3, 26 of Type-4, 28
of Type-5 and 27 of Type-6 in Table XI). For recognition
results of the other recognition methods (Tables V, VI, VII,
VIII, IX, X, XV, XVI, XVII and XVIII), the recognition
decision number of each type action in the confusion matrix
keeps a consistent value of 75. From the viewpoint of
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Table XVI. Recognition accuracy of combined 6-10-20-6 ANN with 6-axis IMU raw and 80-9-9-6 ANN with 80-D deep learning features by the same-or-dual channel candidate output
approach.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 61 4 2 2 1 5
Type-2 2 69 1 1 0 2
Type-3 0 2 68 3 1 1
Type-4 0 1 7 57 7 3
Type-5 0 2 7 12 49 5
Type-6 12 1 2 0 5 55

Average recognition accuracy: 79.78%

Table XVII. Recognition accuracy of combined 6-13-13-6 ANN with 6-axis IMU raw and 80-10-20-6 ANN with 80-D deep learning features by the same-or-dual channel candidate
output approach.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 59 7 0 0 3 6
Type-2 1 66 3 1 3 1
Type-3 1 0 69 3 1 1
Type-4 1 6 5 55 8 0
Type-5 0 5 12 11 46 1
Type-6 5 3 2 4 2 59

Average recognition accuracy: 78.67%

Table XVIII. Recognition accuracy of combined 6-13-13-6 ANN with 6-axis IMU raw and 80-9-9-6 ANN with 80-D deep learning features by the same-or-dual channel candidate
output approach.

Input test hand gesture types Six different hand gesture classifications on recognition outputs
Label-1 Label-2 Label-3 Label-4 Label-5 Label-6

Type-1 58 6 1 1 3 6
Type-2 1 66 3 1 4 0
Type-3 0 1 68 3 1 2
Type-4 2 3 6 56 7 1
Type-5 0 4 12 11 47 1
Type-6 6 4 3 5 1 56

Average recognition accuracy: 78%

Table XIX. Recognition accuracy comparisons on hand gesture intention recognition of different categorization approaches of single channel ANN recognition\VGG-16 CNN without
any fusion and dual-channel ANN recognition hybridizations by different decision fusion schemes.

Single channel ANN recognition with 6-axis IMU raw Dual-channel ANN recognition hybridizations of 6-axis IMU raw and
data or 80-D deep learning features \typical VGG-16 CNN recognition 80-D deep learning features by different decision fusion methods

6-10-20-6 ANN with VGG-16 CNN with 6 axis 80-9-9-6 ANN with 80-D The channel output layer The same channel The same-or-dual channel
6-axis IMU raw data IMU-derived spectrograms deep learning features accumulation approach candidate output approach candidate output approach

60.67% 75.78% 53.78% 66.67% 88.69% 79.78%
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hand gesture intention action recognition with the high
performance requirement of reliably-decided recognition
outcomes, dual-channel ANN recognition decision fusion by
the same channel candidate output approach has the best
competitiveness.

5. CONCLUSIONS
In this study, a dual-channel ANN recognition hybridization
schemewith considerations of both IMU raw data and its de-
rived critical deep learning feature information is proposed
for classifications of several common hand gesture intention
actions. Three different decision fusion approaches, channel
output layer accumulation, same channel candidate output
and same-or-dual channel candidate output, are presented
for recognition channel hybridizations. Experimental results
demonstrate the effectiveness of the developed scheme on
recognition accuracy of hand gesture intention actions, a
significant improvement on ANN recognition with IMU raw
or its critical deep learning features and typical VGG-CNN
deep neural network recognition.
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