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Abstract. In the production printing industry, printing speed of not
only plain paper but also special paper has improved. After toner
fixing process, when heat is applied to toner to fix it on paper, the
toner on the paper stick to each other on outlet tray leading to
toner blocking problem in high-speed printing. To control a paper
cooling device, accurate prediction of the outlet paper temperature
is useful. This, however, is not so easy; printing conditions and
paper types are too diverse to conduct the experiments and the
mechanism of the printer is also too complex to develop the physical
model. The machine learning (ML) algorithm to predict the paper
temperature was proposed under the limited printing conditions. In
this research, the ML model that could improve prediction accuracy
and generalization capability was developed by selecting appropriate
paper properties for the input. c© 2022 Society for Imaging Science
and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.3.030507]

1. INTRODUCTION
There are several printing methods in the printing industry,
which are broadly classified into printing with master and
printing without master. The offset printing, which is a
representative of the printing with master, is a printing
method that has superior reproducibility for photographs
and colors and is suitable for a large amount of printing
that has a high definition image quality. However, it is
not suitable for a small amount of printing because the
master-making causes high cost. Also, the offset printer has
a large scaled mechanism and it needs technical adjustment
by the professional operator.
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The advantages of the digital printing, which is a rep-
resentative of the printing without master, are short delivery
time, different contents for each sheet, and extremely small
lots. Further, the electro-photographic printing method is
capable of high-speed printing onto more paper types than
the inkjet printing method, and there are various lineups
ranging from office type to production printing type.

Especially in the production printing industry, the
printing speed of not only plain paper but also special papers
has been improved [1, 2]. Accordingly, it could not lower the
paper temperature sufficiently on the transportation route
in the large volume printing. It causes the toner blocking
problem, when toner on the paper stick to each other when
continuously printed paper is stacked.

To solve this problem, the cooling device has been
developed [3]. It has a U-shaped conveying path and fans
for cooling the paper. In designing the cooling device and
controlling the temperature, accurate prediction of the outlet
paper temperature would be useful.

In earlier studies, the physical model in the fuser
process was developed [4]. The profile of the paper surface
was measured and the contact area was also calculated
by simulating deformation of the paper surface and the
fuser surface. Among other previous studies, the effect of
paper properties on the thermal interactions in the fusing
nip was investigated [5], the measuring method of the
thermal properties of paper has been proposed [6], and the
chemical and physical properties of paper that affect fusing
fix was characterized [7]. This, however, is not so easy; the
mechanism of the printer and fusing process is typically
complex. It is difficult to develop the physical model to
represent the thermal interactions in the fusing nip and it
is also difficult to measure the thermal properties of paper
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Figure 1. Experimental set-up.

accurately because paper is composed of fibers, moisture,
surface coating layer and smoothness of paper surface varies
by paper type. Physical models are based on governing
equations, and the degrees of freedom a model can take
are relatively limited. If the model cannot represent the
experimental results, the cause requires investigation and
correction. If the mechanism is complex, it is difficult to
reproduce the experimental results.

This work proposes using ML as an alternative to
estimate the outlet paper temperature in the production
printing system. ML is a set of algorithms that build a model
based on the training data in order to make predictions
without any human help and has numerous parameters,
which allows for a high degree of freedom. On exposure to
sufficient data, ML algorithms can find relations between
the input and the output and estimate the output of data
based on conditions. It is being extensively used in various
fields, most prominently in computer vision, spam filtering,
driverless cars [8]. It has also found a niche in engineering,
particularly material property prediction and thermal-fluid
modelling [9]. In the printing industry, AI technology is used
to minimize printing failures [10].

The ML algorithm using Artificial neural network
(ANN) to estimate the outlet paper temperature was
proposed [11, 12]. Although there was a correlation between
the predicted value and the measured value under the
limited training conditions, it was not validated under
other paper types and other printing modes. Recently, by
applying appropriate preprocessing to the data and selecting
the appropriate inputs, accurate prediction under various
conditions is obtained [13]. However, it has not been verified
which input is effective for highly accurate prediction of
paper temperature.

The purpose of this work is not only to obtain a highly
accurate predictionmodel under various conditions, but also
to verify how to select the physical properties of paper as the
input to improve the prediction accuracy by using the ML
algorithms.

2. EXPERIMENTAL SET-UP
2.1 Overview of Production Printing System
Experiments were performed by using the production
printing system of the electro-photographic method that can
print 80 sheets in A4 size per minute. This system consists
of paper feed unit, developing unit, photoconductor unit,
transfer unit, fusing unit and heat pipe.

The electro-photographic image forming process is a
process of forming the image of electro-static charge on a
photoconductor, attaching the charged toner to the photo-
conductor by using electro-static force, and transferring and
fixing the toner on paper. The heat pipe lowers the paper
temperature, and blowing air also lowers the heat pipe tem-
perature. Figure 1 shows the configuration of experimental
set-up used in this study and the electro-photographic image
forming process.

2.2 Temperature Sensors
There are 4 sensors used for this experiment, as shown in
Fig. 1 andTable I. Sensor [1] is for the heat roller temperature,
Sensor [2] is for the fusing roller temperature and Sensor [3]
is for the pressure roller temperature. The type of these
sensors is the radiation thermometer. Sensor [2] can also
measure its own temperature, which is used to compensate
the detected temperature with the temperature of the sensor
itself. This temperature has a correlation with the ambient
temperature at the sensor location. Sensors [1]–[3] were
originally installed in the mass production machine to
control the fusing temperature. Sensor [4] is the radiation
thermometer for measuring the outlet paper temperature.
Sensor [4] were installed only for this experiment.

2.3 Temperature Control of Fixing Process
The fixing process is the process of applying heat and
pressure to the toner and the paper, melting the toner and
sticking it to the paper.

The heat for the fixing process is applied to the fusing
belt from the heat roller, and the fusing belt rotates andmoves
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Figure 2. Schematic of ANN.

Table I. Temperature sensors

Sensor No. in Fig. 1 Target Sensor type

[1] Heat roller Radiation thermometer
[2] Fusing roller Radiation thermometer
[2] Fusing roller sensor Radiation thermometer
[3] Pressure roller Radiation thermometer
[4] Outlet paper Radiation thermometer

to the nip portion between the fusing roller and the pressure
roller. The fusing temperature is controlled by the heat roller
and the temperature sensor [1] in Fig. 1 that detects the heat
roller temperature.

The fusing temperature that is used in the following
sections indicates the target temperature of the heat roller
and heat roller temperature is controlled to follow the
target temperature. The heat roller temperature, the fusing
roller temperature, the fusing roller sensor temperature, and
the pressure roller temperature indicate the temperature
measured by each sensor.

2.4 Paper Properties
Since the objective of this work is to predict the outlet paper
temperature in different printing conditions, this experiment
involved experiments with 9 types of A3 sized paper with
different properties that included basis weight, thickness,
smoothness and surface coating as shown in Table II. These
properties affect the heat transfer characteristics from the
fusing unit to the paper and paper temperature rise.

Basis weight is a unit that represents the weight of paper
per squaremeter. Paper thickness is the thickness of the paper
measured with a micrometer.

Smoothness is the degree of surface flatness. Smoothness
is measured by pressing the paper against the glass and
measuring the time that air passes between them. The unit
of smoothness is second. The shorter the passing time is,

Table II. Paper properties

Paper type Basis weight [g/m2] Thickness [µm] Smoothness [s] Surface coating

A 53 66 82 Non-coated
B 81 94 95 Non-coated
C 156 184 40 Non-coated
D 100 102 788 Coated
E 161 171 731 Coated
F 68 91 47 Non-coated
G 128 149 50 Non-coated
H 133 139 777 Coated
I 127 145 102 Coated

the more uneven the paper is, because the air is more likely
to come out. Therefore, the smaller the number of seconds
is, the lower the smoothness is. Generally, the higher the
smoothness of the paper, the higher the glossiness.

Surface coating is used to obtain a higher finish quality.
The coating material is usually the mixture of calcium
carbonate and the binder resin.

3. ML ALGORITHM
To predict the outlet paper temperature using the temper-
ature values measured in the experimental set-up shown
in Fig. 1, ML algorithm using ANN was developed using
TensorFlow [14], Keras [15] and Scikit-learn [16] libraries
publicly available for Python programming language.

Generally, prediction modeling methods are divided
into a classifier and a regressor. A classifier can predict
discrete class label output. A regressor can predict continuous
quantity output. In this study, the output value of the ANN is
temperature that is a continuous quantity, thus making our
ANN a regressor rather than a classifier.

In conventional technologies, thermophysical properties
of paper were generally required to predict the outlet
paper temperature. However, it is difficult to measure the
thermophysical properties of the porous paper, and it is
especially difficult to measure the contact thermal resistance
between the paper and the fusing nip. In recent years,
highly accurate physical models have been developed, but
we considered easier machine learningmodel by using paper
properties such as basis weight, thickness and smoothness
that are not thermophysical properties. The advantage of this
study is that it is easy to handle these properties that can be
fed into ML model directly and obtain accurate prediction.

3.1 Data Preprocessing
Due to the nature of the experiment, the obtained exper-
imental data needed preprocessing because the raw data
measured with the radiation thermometers and contact
thermocouple contained a lot of extraneous information
for ML. There was a gap between the n-th paper and the
(n + 1)-th paper and there is the period that the sensors
measure the temperature of components when the paper

J. Imaging Sci. Technol. 030507-3 May-June 2022



Hase et al.: Paper temperature prediction modeling in production printing system by using machine learning

Figure 3. Outlet paper temperatures of training experiments

Table III. ANN configuration

Number of hidden layers 3
Number of neurons of each hidden layer 64, 45, 14
Activation function on hidden layers ReLU
Activation function on output layer Linear
Optimizer Adam

was not passing. There was a large difference of the paper
temperature and component temperature between the gap
and the paper passing period. Moreover, as there was a
slight temperature fluctuation during the period of one
sheet passing, the temperature averaging processing was also
conducted.

The data was finally scaled between 0 and 1 as it was
found during algorithm training that this practice yields
better results. After ML was completed, data was restored
to the original scale to verify the results on training and
validation.

3.2 ANN Configuration
JAs is the case in most MLmodels, ANN configuration plays
a crucial role in the performance of the model. Schematic of
ANNwhich was used in this work is shown in Figure 2. ANN
configuration is shown in Table III.

ANN of this work comprises of a large number of
interconnected neurons. The first layer is the input layer
with several inputs. The number of inputs depends on each
model. The last layer is output layer with one output. The
three middle layers are the hidden layers, and the number
of neurons of each hidden layer is 64, 45, 14 respectively.
There exists an activation function and a bias on each neuron.
The input information is propagated forward through the
network.

Adam optimizer [17] was used for updating the weights
of neurons. As for the activation function, Rectified Linear

Unit (ReLU) was used in the hidden layers and a linear unit
was used in the output layer.

Layers of the network were formed by the Dense()
function provided by the Keras library [15]. Mean squared
error (MSE) was used as the loss function:

MSE=
n∑

i=1

(yi− ŷi)2

n
, (1)

where n is the number of data, yi and ŷi are themeasured and
predicted values for the ith data, respectively. Note that MSE
was also usedwhen evaluating the performance of themodel.
The algorithm also used early stopping feature; the training
was stopped when no further significant decrease in loss is
achieved after each training epoch.

The coefficient of determination R2 was also used to
evaluate the error of the predicted values:

R2
= 1−

∑n
i=1(yi− ŷi)2∑n
i=1(yi− y)2 . (2)

3.3 Experimental Conditions
There are 20 experimental conditions shown in Table IV.
Experiment (Exp.) No. 1 to No. 16 were conducted for the
training of the ML model, and Exp. No. 17 to No. 20 were
conducted for validation of the ML model.

The conditions of the training experiment were deter-
mined as follows. Commonly used paper types were selected,
covering the paper properties from 53 g/m2 to 161 g/m2

basis weight, from 66 µm to 184 µm thickness, and from
40 s to 788 s smoothness. The fusing temperature of Std.,
+20◦C, −20◦C and the printing speed of Standard (Std.),
−17%, −49% were the ranges that were used in the actual
printing. The printing speed is the speed at which the paper
is conveyed, and it is also the peripheral velocity of the fusing
roller, heat pipe roller, transfer roller, and photoconductor
roller.
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Table IV. Experimental conditions

Exp. No. Paper type Fusing temperature [◦C] Printing speed [mm/s] Purpose

1 A −20 Std. Training
2 A Std. Std. Training
3 A +20 Std. Training
4 B −20 Std. Training
5 B Std. Std. Training
6 B +20 Std. Training
7 B −20 −17% Training
8 B +20 −17% Training
9 B −20 −49% Training
10 B +20 −49% Training
11 C −20 Std. Training
12 C Std. Std. Training
13 D −20 −17% Training
14 D +20 −17% Training
15 E −20 −49% Training
16 E +20 −49% Training
17 F +10 Std. Validation
18 G −15 Std. Validation
19 H +15 −49% Validation
20 I −10 −17% Validation

The verification experiment was conducted at the paper
types and the fusing temperatures that were different from
those of the training experiment, but the printing speed was
selected from the following speeds of Std.,−17%,−49%.

The experiment was conducted by printing the test
letters on paper while temperature of each paper, and the
fusing unit were recorded. One experiment was performed
with one type of paper and 500 sheets were printed.

4. RESULTS ANDDISCUSSIONS
4.1 Outlet Paper Temperature of Training Experiment
Before discussing the results, we considered the difference
in outlet paper temperature under each condition obtained
in the training experiments. Figure 3 shows the results of
the outlet paper temperatures of the training experiments.
The ordinate is the 100 sheets average temperatures from
the 400th sheet to the 500th sheet when 500 sheets are
continuously printed, and those were measured by sensor [4]
in Fig. 1. One scale on the ordinate is 10◦C.

There was a difference of more than 20◦C between the
maximum and minimum. It means that the outlet paper
temperature depends on paper type, fusing temperature and
printing speed. It is easy to understand that different fusing
temperatures cause different paper temperature.

When the printing speed is lower, the heating time in
the fusing unit is longer, but the period that lowers the paper
temperature from the fusing unit to the outlet is also longer,
whichmakes it difficult to predict. For example, although the
fusing temperatures of No. 6 and No. 10 were the same, the

printing speed of No. 10 was lower than that of No. 6 and a
large amount of heat was obtained from the fusing unit. But
the period that lowered the paper temperature was longer,
then the outlet paper temperature dropped by 7◦C.

The type of paper also affected the paper temperature.
The fusing temperature and the printing speed of No. 4 and
No. 11 were same, but since the paper type was different, the
outlet paper temperature difference was 9◦C.

Thus, it was confirmed that the paper temperature
was significantly influenced by the paper type, the fusing
temperature, and the printing speed. In the production
printing industry, many types of paper are used for printing,
and printing conditions such as fusing temperature and
printing speed are numerous. It takes a lot of time to
evaluate all conditions and the occurrence of the toner
blocking. Therefore, the effectiveness of predicting the paper
temperature after the fusing process based on the ML model
was shown in the following sections.

4.2 Outlet Paper Temperature Prediction Model
In order to predict the outlet paper temperature, the fusing
unit temperatures and the paper property shown in Table V
were selected as the inputs. The outlet paper temperature was
used as the output.

In the first MLmodel, only the basis weight of the paper
was included in the inputs. The basis weight represents mass
per area of paper. In general, the basis weight is displayed
as part of the product name as an indicator of the paper
thickness.

It was tested whether it could be predicted using only the
fusing unit temperatures and the paper basis weight which
assumed a value that correlates with the heat capacity of the
paper.

Figure 4. Result of training in outlet paper temperature prediction model.
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Figure 5. Result of validation in outlet paper temperature prediction
model.

Table V. Input and output of outlet paper temperature prediction model

Input Output

Heat roller temperature Outlet paper temperature
Fusing roller temperature
Fusing roller sensor temperature
Pressure roller temperature
Printing speed
Paper basis weight

Figure 4 shows the result of training in the outlet paper
temperature prediction model which was trained with the
experiments fromNo. 1 toNo. 16. The predicted temperature
was within±3◦C of the measured temperature.

Figure 5 is the result of validation in this model which
was validated with the experiments of No. 17 to No. 20.
The result was that the difference between the predicted
temperature and the measured temperature was within
±9◦C and was too large to correctly predict the occurrence
of the toner blocking. It is desirable to keep it within ±5◦C.
MSE and R2 were not good results either.

Figure 6 is the temperature profile of the verification
experiment. The abscissa is the number of printed sheets. In
continuous printing of 500 sheets, themeasured temperature
and the predicted temperature were plotted every 10 sheets.
At the beginning of the continuous printing, the paper
temperature was low because the temperature of the heat
pipe and the paper passing route was also low, then the paper
temperature gradually rose and became constant.

Especially in Exp. No. 19, the difference between the
predicted temperature and the measured temperature was
large.

Table VI. Input and output of outlet paper temperature prediction model with paper
thickness added to input

Input Output

Heat roller temperature Outlet paper temperature
Fusing roller temperature
Fusing roller sensor temperature
Pressure roller temperature
Printing speed
Paper basis weight
Paper thickness

Table VII. Input and output of outlet paper temperature prediction model with paper
thickness and paper smoothness added to input

Input Output

Heat roller temperature Outlet paper temperature
Fusing roller temperature
Fusing roller sensor temperature
Pressure roller temperature
Printing speed
Paper basis weight
Paper thickness
Paper smoothness

4.3 Outlet Paper Temperature Prediction Model with
Paper Thickness Added to Input
In this section, we examinedwhether the prediction accuracy
could be improved by adding the paper thickness as an
input in addition to the paper basis weight as shown in
Table VI. Because the paper density assumed a value that
correlates with the thermal conductivity of the paper, it
can be calculated by using the basis weight and the paper
thickness.

Figure 7 shows the result of training in the outlet paper
temperature prediction model which was trained with the
experiments of No. 1 to No. 16. The predicted temperature
was within±3◦C of the measured temperature.

Figure 8 is the result of validation in this model which
was validated with the experiments of No. 17 to No. 20.
Although MSE and R2 improved slightly, the difference
between the predicted temperature and the measured
temperature was still within±9◦C.

Figure 9 is the temperature profile of the verification
experiment. Especially in No. 17, the difference between
the predicted temperature and the measured temperature
was large. The prediction accuracy was improved slightly by
adding the paper thickness. However, it did not reach the
target value±5◦C.

From those results, although the basis weight and the
thickness that were estimated to have a correlation with heat
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Figure 6. Outlet paper temperature profile of validation experiments in outlet paper temperature prediction model.

Figure 7. Result of training in outlet paper temperature prediction model
with paper thickness added to input.

Figure 8. Result of validation in outlet paper temperature prediction model
with paper thickness added to input.
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Figure 9. Outlet paper temperature profile of validation experiments in outlet paper temperature prediction model with paper thickness added to input.

capacity and thermal conductivitywere included in the input,
the target prediction accuracy was not obtained.

4.4 Outlet Paper Temperature Prediction Model with
Paper Thickness and Paper Smoothness Added to Input
Another possible factor that should be considered is the
effect of contact thermal resistance between the paper and
the fusing belt, pressure roller, and heat pipe. The surface
of paper differs depending on the paper type, and it is
presumed that paper with a rough surface has high contact
thermal resistance, and paper with a smooth surface has low
thermal resistance. Therefore, smoothness that is presumed
to correlate with contact thermal resistance was added to the
input as shown in Table VII.

Figure 10 shows the result of training in the outlet paper
temperature prediction model which was trained with the
experiments of No. 1 to No. 16. The predicted temperature
was within±3◦C of the measured temperature.

Figure 11 is the result of validation in this model which
was validated with the experiments of No. 17 to No. 20.
Figure 12 is the temperature profile of the verification experi-
ment. The difference between the predicted temperature and
the measured temperature was ±5◦C which was within the

Figure 10. Result of training in outlet paper temperature prediction model
with paper thickness and paper smoothness added to input.
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Figure 11. Result of validation in outlet paper temperature prediction
model with paper thickness and paper smoothness added to input.

Figure 12. Outlet paper temperature profile of validation experiments in outlet paper temperature prediction model with paper thickness and paper
smoothness added to input.

target value. Also, MSE and R2 were improved compared to
the previous models.

It was confirmed that the prediction accuracy was
improved by adding the paper smoothness as well as the
paper basis weight and the paper thickness to the input.
Therefore, it is suggested that there is a correlation with the
paper smoothness and contact thermal resistance.

In the previous studies [11, 12], the paper properties
were not included in the ANN inputs. It is estimated
that the prediction accuracy of the previous studies was
probably more than±9◦C if the verification experiment was
conducted under different paper type, fusing temperature,
and printing speed conditions from the training conditions.
This is because the prediction accuracy was±9◦Cwhen only
basis weight among the paper properties was input in this
study, and the paper properties were not considered in earlier
studies. Thus, the ML model including appropriate paper
properties could improve the prediction accuracy compared
to the previous studies.

5. CONCLUSIONS
In this work, ML algorithm using ANN was applied to paper
temperature prediction in the production printing system
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with electro-photography method. It was shown that the
outlet paper temperature could be accurately predicted by the
simple ML model without relying on a complicated physical
model.

By inputting the fusing unit temperatures, printing
speed and paper properties of various paper types, we
developed the ML model that could predict the outlet
paper temperature with high accuracy. Furthermore, it was
confirmed that the prediction accuracy was improved by
adding the paper smoothness as well as the paper basis
weight and the paper thickness to the input. It is suggested
that the paper temperature depends not only on the heat
capacity and thermal conductivity of the paper, but also on
the thermal resistance of the contact between the paper and
the fusing unit, heat pipe. This is because the smoothness of
the paper represents the contact rate between the paper and
the member.

Until now, outlet paper temperature has been evaluated
by conducting a lot of experiments, or by developing a
complicated physical model. However, ML models enabled
accurate and easy temperature prediction. Moreover, al-
though it is usually difficult to handle property values such
as the smoothness of paper with a physical model, it was
possible to input the value directly.ML algorithm using ANN
has the potential to be applied to various thermal designs of
the printing system as well as the outlet paper temperature.
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