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Abstract. To meet the requirement of diverse geometric
transformation and unstructured graph data for intelligent shape
analysis method, this paper proposes a novel 3D graph recognition
method based on geometric encoded feature learning, which
effectively optimizes the feature extraction process from low-level
geometry to high-level semantics, and improves the generalization
and robustness of deep learning. Firstly, we adopt GMDS and KNN
to build isometric embedding space and extract intrinsic geometric
features. Secondly, in combination with the BoF method, the unified
geometric encoded feature is generated, which effectively enhances
the shape description ability of all kinds of graph data. Finally,
an adaptive dynamic graph convolution network is established.
Through dynamic spectral graph convolution and weighted feature
refining, we implement efficient deep feature extraction and 3D
graph recognition. A series of experimental results show that our
proposed method achieves better performance in graph recognition
and classification task. Moreover, whether the 3D graphs are rigid or
non rigid, or incomplete and unconnected graph data, our method
is significantly robust and efficient. c© 2022 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.3.030503]

1. INTRODUCTION
Because traditional 3D shape analysis methods [1–3] rely
on the low-level geometric features, it is difficult to get
meaningful results when dealingwith shapes having complex
geometry and topology.

The successful applications of neural networks in
image processing, speech recognition and natural language
processing have promoted the study of 3D shape analysis
based on deep learning model. It is mainly divided into
three aspects: handcrafted feature-basedmethod, view-based
method and original data-based method [4].

Handcrafted feature-based methods learn high-level
features from low-level features. For example, DeepSD [5],
SGWC [6], DeepGM [7], etc. However, they are limited
in specific topological structure and heavy eigenfunction
solving. View-based learningmethods convert 3D shape into
a series of 2D images, and then extract the view features
by deep learning frameworks [8–10], which are efficient
since they make full use of the successful CNN learning
model in the field of the 2D image. However, view-based
learning methods only consider the visual similarity and
ignore the intrinsic geometric information between 3D
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shapes. Recently, the methods based on original data have
been widely studied, which can directly learn features from
original 3D data. For example, PointNet [11] manipulated
points and solve the permutation invariant problem by a
multi-layer perceptron (MLP) without considering the local
geometry. PointNet++ [12] further applies PointNet recur-
sively on the nested partitions to extract local features and
combines learned features from multiple scales. However,
PointNet++ still processes each point in the local point set
individually and does not extract the relationships. And 3D
Shape Net [13], VoxNet [14] and OctNet [15] use CNN to
learn features from voxelized 3D shapes.

Although a large number of methods have emerged
for 3D data analysis, they are either effective for specific
geometry or limited to the global shape analysis while
ignoring the local structural similarity.

An increasing number of applications where 3D data are
represented in the form of graphs have triggered the research
upsurge of graph-based learning system. As graphs can be
irregular and may have a variable number of unordered
nodes, which has imposed significant challenges on existing
machine learning algorithms. Researchers have explored
them in two main streams, spectral-based method and
spatial-based method. The first is to define and optimize
the spectral convolution operator on local graph [16–18]
or global graph [18–20]; the other is to gather the node
feature from its spatial neighborhood by designing dynamic
convolution operator [21, 22], attention weighted networks
and neighborhood sampling mechanism so on [23, 24].
However, they still face challenges such as the tedious
computation, the generalization of diverse types of graph, the
adaptivity to geometric transformation of irregular graph,
the performance of large-scale graph learning.

This paper presents a general deep feature learning
method for 3D graph data recognition. The two main
contributions of this paper are: to propose a general
geometric embedding and coding method to effectively
measure the intrinsic features of irregular graph data and to
present a novel graph convolution network to enhance the
adaptability to various geometric transformations.

Firstly, we embed irregular 3D graph data into an
isometric space, where the intrinsic geometric features
(low-level features) are extracted based on the sparse
sampling and generalizedmultidimensional scaling (GMDS)
analysis. Secondly, the bag of feature (BoF) model is
used to generate geometric encoded features (middle-level
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features), which are robust to diverse graph structure and
geometric transformation. Finally, an adaptive dynamic
graph convolution network (ADGCN) is established to
effectively learn deep features (high-level features) from
geometric encoded features. Experimental results show that
the proposed method achieves the effect of state of the art in
shape analysis and recognition.

The paper is structured as follows: we present the
related works in Section 2. The encoded geometric feature
construction is presented in Section 3. Section 4 introduces
our adaptive dynamic graph convolutionnetwork for 3Ddata
recognition. Experimental results are analyzed and discussed
in Section 5. We conclude our work in Section 6.

2. RELATEDWORKS
Unlike images, which typically have fixed grid structure,
graph data has irregular structure, making it difficult to
define convolution and pooling operations. Moreover, graph
data can be complex, containing diverse types and numerous
properties, and quite often, graphs may have millions of
nodes and edges. Great efforts have been made to solve these
problems [25, 26].

Bruna et al. [27] first developed a graph convolution
based on the spectral graph theory. Spectral graph CNN
models have isometry invariance and hence have been
applied to non-rigid shape analysis [28]. However, this
approach had a number of drawbacks including the com-
putational complexity of Laplacian eigendecomposition, and
a lack of spatial localization, as the Laplacian eigenbasis
is domain-dependent. Defferrard et al. [17] introduced
ChebNet and used a polynomial filter in spectral method,
which greatly reduced the time complexity. GraphHeat [29]
adopted HKS as convolution kernel to realize the low-pass
filter instead of Chebyshev polynomials. DCNN [19] re-
placed the eigenbasis of the convolution by a diffusion-basis.
DGCNN [21] further improved the graph neural network
with a dynamic local convolution kernel and spectral clus-
tering. Due to different nearest neighbor graph structures, it
is impossible to directly apply the spectral analysis of graph
Laplacian. Following this, Yi et al. [30] used SyncSpecCNN
to align different graph structures to a standard space in
the spectral domain, which has achieved the effect of state
of the art. PATCHY-SAN algorithm [20] transformed graph
structure into sequence structure, and then directly applied
the convolution on the sequence structure by convolution
neural network.

Spatial-based Graph convolutional network uses a
convolution-like operation to aggregate features of all
adjacent nodes for each node, followed by a linear trans-
formation to generate a new feature representation for a
given node. Graph attention networks (GATs) [23] employed
the attention mechanism to obtain different and trainable
weights for adjacent nodes by measuring the correlation
between their feature vectors and that of the central node.
In neighborhood sampling, GraphSAGE [22] uniformly
sampled a fixed number of neighbors for each node
during training. FastGCN [31] further adopted a layer-wise

sampling in each convolutional layer to reduce variances
and lead to better performance. Wang et al. [21] (DGCNN)
designed an edge convolution operator to extract feature
from a center point and the edge vector from its neighbor
to itself. They not only searched neighbors in the input
Euclidean space, but also clustered similar features in the
feature space. However, DGCNN still has some limitations,
such as their neighborsmay be too similar to provide valuable
edge vectors; or the features are extracted independently
without considering the global topology; or there are many
trainable parameters when we train the whole network.

In order to better understand and recognize complex
and diverse 3D graph data, the shape features should not only
be distinctive, but must also be adaptive and stable to various
geometric transformations.

Inspired byDGCNN,we provide a general deep learning
method for diverse graph data analysis, which not only takes
the local geometry into account, but also generates a global
encoded feature for any type of 3D graphs.We also design an
adaptive dynamic graph convolution network (ADGCN) to
improve the stability and robustness of deep feature learning.

Figure 1 illustrates the pipeline of our proposedmethod.
Firstly, we build an isometric embedding space for graph data
where the embedded geometric features of HKS and distance
are extracted. Secondly, we generate a compact and uniform
representation by encoding the geometric features into global
statistic feature, which has stronger discrimination and
stability. Finally, an adaptive dynamic graph convolution
network (ADGCN) is established to implement efficient
deep feature learning and graph recognition via dynamic
spectral filtering and weighted feature refining. Experiments
demonstrate that our learningmethod achieves better results
than the state-of-art on classification tasks.

3. GEOMETRIC FEATURE EMBEDDING AND
ENCODING

3D data represented by irregular graph includes connected
graph and disconnected graph. Usually the spectral con-
volution is adopted for the connected graph learning,
such as: GCN [17], DGCNN [21]. However, due to the
large scale of nodes; it involves in the tedious Laplacian
eigendecomposition and the huge storage problem. For the
disconnected graph data, it is often considered as point
clouds and extracts geometric features through local point
set andmulti-layer perception (PointNet, PointNet++). But it
neglects either the local geometric connectivity or the global
topology.

In order to effectively obtain the discriminative features
for general 3D graph data, we adopt GMDS [32] to convert
irregular graph data into an isometric embedding space and
construct geometric encoded feature with the help of bag
of features, which can effectively improve the generalization
ability and robustness of shape descriptor.

3.1 Isometric Embedding Based on GMDS
The core idea of GMDS [32] is to implement the isometric
shape embedding andmatching by calculating theminimum
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Figure 1. The framework of our method (taking 3D coordinates and their local neighborhood as input, we map them into an isometric space to generate
embedded features based on GMDS. Then combining with the embedded HKS and the embedded distance, the BoF model is adopted to construct
geometric encoded features, which can better reveal global structural properties of diverse graph data, the local topology and the geometric encoded
features are input into an ADGCN to learn the discriminative deep features for classification task).

distortion mapping on the sampled surface in the finite
metric space. This mapping function transforms the non
rigid matching problem into the rigid matching problem
effectively by embedding the geometric structure of the
surface into the low dimensional Euclidean space. We make
full use of the advantages of GMDS, and propose an
optimized embedding method, which can effectively embed
complex, large-scale transformation graph data into a unified
metric space.

3.1.1 Sampled Surface
If a surface S is covered by a set of surfaces Sr ⊂ S, then
the set S = ∪s∈SrBS(s, r) is called ‘‘r-covering’’ of S, where
Bs(s0, r)= {s ∈ S : dS(s, s0) < r} is the sphere with radius r
around the point S0 in S. A finite r-covering of S consisting
ofN points is denoted by SrN . Themetric on SrN is assumed to
be the restricted metric dS | SrN (s, s

′)= dS(s, s′); for all s, s′ in
SrN . An arbitrary finite sampling of S consisting of N points
is denoted by SN , where S is called ‘‘continuous’’ surface and
SN a ‘‘discrete’’ one.

Given two surfaces S andQ, a transformationψ :Q→ S
is said to have ‘‘distortion’’ ε, that is disψ ≡ sup |dQ(q, q′)−
dS(ψ(q), ψ(q′))| = ε. Then the transformation ψ : Q→ S
with disψ = 0 is called an ‘‘isometry’’.

Assume two sampled surfaces SrN andQr
N ′ (representing

the continuous surfaces S and Q) and the geodesic distances
between the samples represented by an N × N matrix
DSN = (dS(si, sj)) and an N ′ ×N ′ matrix DQN , respectively.
Each sampled surfaces is mapped into an m-dimensional
Euclidean space by a near-isometric embedding, obtained by
minimization of the stress function:

arg min σ(X;DSN )=
1
N

∑
i>j
(dRm(xi, xj)− dS(si, sj))2.

(1)
Here X denotes a N ×m matrix of coordinates in Rm, and
dRm denotes the Euclidean metric. The stress can be thought

of as a L2 measure of the distance distortion caused by such
an embedding.

3.1.2 GMDS
Similar to the Euclidean case, the ‘‘generalized stress’’
(GMDS) is defined as

arg min(U ;DQN , dS,W )

=
1∑

j>i
wij

∑
j>i
(wij(dS(ui, uj)− dQ(qi, qj))p)

1
p , (2)

where the matrix U represents the positions of N points
on S in some local or global parametric coordinates ui, and
W (wij) is a symmetric matrix of nonnegative weights.

The GMDS method adopted ‘‘canonical forms’’ (CFs)
based on Euclidean embeddings and can be performed in
a computationally efficient manner. The distance measure is
effective for simple surfaces, but it is not enough for complex
and disconnected 3D graph data.

In this paper, we introduce an isometric embedding
metric based on local heat kernel signature (HKS) and the
measurement of diffusion distance. Different from GMDS,
it does not rely on the graph connectivity and avoids the
tedious eigendecomposition, instead, it finds a good way
to transform local features to global ones. The extracted
shape features not only reveal the consistency of the intrinsic
structure of the non-rigid transformation, but also have
good generality and flexibility in the connected graphs and
disconnected graphs.

First, we calculate the discrete HKS feature u(si) for each
node by applying discrete Laplacian operator in itsK -nearest
neighborhood (KNN ) [33]:

L=A−1Wh;

Wh =
1

4π2 e
d(vi,vj)

4t ,
(3)
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Figure 2. Sampling points based on farthest point sampling (FPS) method on different graphs.

where, Wh is the similarity matrix in the local KNN
neighborhood, d(vi, vj) denotes the distance between any
pair of mesh vertices xi and xj, and t is a positive, that
determines the width of the kernel. A is a positive diagonal
matrix, corresponding to the triangle area of the shared node
in the graph. The local heat kernel features can be obtained
by solving the Laplacian matrix L [34].

Second, we select sampling points (s1, s2, . . . , sj) based
on FPS (see Figure 2), and compute the diffusion distance
between the sampling points as parameterized embedded
coordinates du(·):

arg min σ(X ,DuN )=
∑
i>j
‖dRl (xi, xj)− du(u(si), u(sj))‖

∈ Rn×l xi ∈ S, sj ∈ SlN , (4)

where an l × l matrix DuN = du(u(si), u(sj)) represents the
embedding space with diffusion distance between the ith
sampling point and the jth sampling point. Then each pair
of nodes (xi, xj) in Euclidean space are transformed into
l-dimension embedding space. In this way, an l-dimensional
embedded HKS for each node is constructed.

Our method implements the multidimensional scaling
by using discrete embedded HKS features and Euclidean
distance measurement instead of using geodesic distance
in traditional GMDS; it not only effectively avoids the
dependence on topological connectivity, but also better
reveals the intrinsic structure of graph data (Figure 3a).

When the parametric coordinates u(si) is defined by
local distance, we can extend our method to compute
embedded distance feature. We, first calculate the average
distance D̃i for each node si with itsK -nearest neighborhood
Neb(si), and then construct l-dimensional distance feature
dg with Euclidean measurement by mapping local average
distance to global topology (Fig. 3b):

D̃i =
1
K

K∑
sj∈Neb(si)

d(si, sj);

dg (si)= ‖D̃i1, D̃i2, . . . , D̃il‖.

(5)

In our experiment, we set the K -nearest neighborhood
K = 8, the number of sampling point l = 150. We use
a pigeon (connected graph) in SHREC2011 and a sofa
(disconnected graph) in ModelNet10 as examples. The
comparison between local HKS (top) and GMDS embedded
HKS (bottom) of two pigeons is shown in Fig. 3(a). It
can be seen that GMDS embedded HKS features have
stronger structure perception ability. Fig. 3(b) illustrates
the stability of our embedded distance features between
two different types of graph data. It can be seen that the
embedded l-dimensional distance feature effectively reveals
global topology.

Our embedded features are based on multi-scale ge-
ometric measurement in finite sampling space. In order
to verify the difference between our embedding space
and continuous space, we further compare our embedded
features of HKS and distance with the ground truth features.
As shown in Fig. 3(c), that two feature curves of pigeon
models are extremely similar to the ground-truth feature
curves. It confirms that our isometric mapping function
effectively reveals the intrinsic geometric features with mini-
mum geodesic error. Meanwhile, our isometric embedding
method effectively avoids the time complexity of global
affinity matrix construction and large eigendecomposition
in massive point cloud data, and thus greatly improves the
operation efficiency.

Although our embedding function generates isometric
feature for 3D graph data with arbitrary structure (connected
or disconnected), it is still low-level geometric feature and
unstable to complex topology and noisy data. Therefore, it is
very important to reveal intrinsic shape features of large-scale
complex and incomplete 3D shapes.

BoF model proposes a good way to create visual
vocabulary space, which effectively maps multiple geometric
features to the frequency of visual words in order to represent
the global distribution of features. This method not only
effectively improves the discrimination of shape features,
but also greatly improves the robustness of isometric and
non-isometric transformation [35–38]. Combining with BoF
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Figure 3. Embedded features of different models.

model we further introduce a geometric feature encoding
method.

3.2 Geometric Feature Encoding
Taking the GMDS embedded features as input fin(S(sg , sh)),
where Sg is the embedded distance, and Sh is the embedded
HKS, we convert each descriptor fin(Si) into a vocabulary
space, where a codebook is constructed by quantizing

it into a k number of codewords. These codewords are
usually defined as the centers V = (v1, v2, . . . , vk), which
are generated by an unsupervised K -means algorithm.
Each descriptor is then mapped to a codeword in the
codebook via the k × n cluster soft-assignment matrix
C = {cr1, cr1, . . . , crn}: The frequency of each word is
counted as the output feature. Finally, combining with the
local coordinates of each point, we can obtain the geometric
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Figure 4. Geometric encoded features of different models (the x -axis represents the number of codewords k = 55; the y-axis represents the frequency of
each codeword, the color from blue to red denotes the feature value from low to high).

encoded features of the model fgeo(S) ∈ Rk.

Cri =
exp(α‖si− vt‖22)

k∑
t=1

exp(−α‖si− vt‖22)

; fgeo(S)=
N∑
i=1

cri, (6)

where C is denoted as encoded geometric descriptor. ‖ · ‖22 is
the L2 -norm, and α is a smoothing parameter that controls
the softness of the assignment.

Figure 4 shows the encoded geometric features of
different shapes, the curve represents the frequency of each
word. In our experiments, we choose the clustering number
k= 55, it can be seen that the geometric embedded features
are discriminative and stable. Especially for the incomplete
model, it can effectively reveal the structural consistency.

4. ADAPTIVE DYNAMIC GRAPH CONVOLUTIONAL
NETWORK FOR GRAPH RECOGNITION

The encoded geometric feature is structure-aware and has
significant representation ability in isometric transformation
shapes and incomplete shapes. However, the 3D graph data
is complex and diverse; it is still an important issue to explore
consistent feature representation for massive, large-scale and
non isometric 3D shapes.

Based on the geometric encoded features and the
DGCNN framework [21], we propose an adaptive dynamic
graph convolution network (ADGCN) for irregular 3D
graph data analysis, which effectively improves the efficiency,

robustness and versatility of 3D graph recognition (as shown
in Figure 5).

The traditional GCN method usually uses average
weighted aggregation of adjacent nodes for feature extrac-
tion. Due to the different number of adjacent nodes in
3D graph data, the different size of reception field and
different weighted filters are needed. DGCNN improves
it with an EdgeConv, which captures local geometric
structure by constructing a dynamic local neighborhood
graph and applying convolution-like operations on the edges
connecting neighboring pairs of points.

Inspired by DGCNN, we propose an adaptive dynamic
graph convolution network for graph data learning. It takes
the geometric encoded features and the local topology as
input, applies spectral convolution operator to local graph
instead of ‘‘EdgeConv’’, which fully considers different local
geometry and can better reveal the local intrinsic properties.
The K -nearest local graph is dynamically updated layer by
layer in the feature space, which improves the adaptability
of the learning process. Meanwhile, a weighting module is
added to fuse the output feature of each layer to generate
informative deep feature, as it effectively enhances the
discrimination of deep feature.

Our learning framework consists of two parts. First, we
generate the geometric encoded features for each node based
on its local subgraph (k-nearest neighborhood) asmentioned
in Section 3:

fgeo = g (Xs,As, k̂), (7)
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Figure 5. Adaptive dynamic graph convolution network (ADGCN) (ADGCN applies spectral convolution operator on local graphs, where the KNN -local
graph is dynamically updated in feature space layer by layer. We first take the KNN -local graph and the geometric encoded feature (A,K , f ) as input,
and adopt Chebyshev polynomials as convolution operator to extract local features, the output features of each layer are weighted and fused to generate
the final deep features for classification task).

where g (·) is the encoded feature generator, As is the affinity
matrix of subgraph, Xs ∈ <

3is the sth input node, taking k̂
sampling points as input, the geometric encoded feature fgeo
is extracted by generator g (·).

Second, taking the geometric encoded feature fgeo and
the local topology as input, the spec-graph convolution
operator updates the feature of each node through adjacent
nodes and feature filtering:

X̂l+1 = σ(µ(·)X̂lWl), (8)

where X̂l and X̂l+1 represent the input and the output of
features, Wl is the trainable weight matrix and σ(·) is the
ReLU function. We use Chebyshev polynomials to simplify
the spectral convolution kernel µ(·):

µ(Â,K )=
p∑

i=1

Ti(L̂), (9)

where L̂= 2L/λmax − I , L is the Laplace-Beltrami operator
of subgraph (X ,A,K ).

Our ADGCN is built with two convolutional layers, two
pooling layers and one full connection layer (FC) (see Fig. 5).
There are 32 convolution kernels in the first layer and 64
convolution kernels in the second layer. Each layer uses the
ReLU activation function and the max-pooling operation.
We take the local topology As and geometric encoded
feature fgeo as input in the first layer, and apply spectral
convolution to extract deep feature from its neighborhood;
furthermore, we update the local graph by recomputing the

K -nearest neighbors in the feature space, and then input
the renewed local graph and features into second layer. The
output features of each layer are weighted and concatenated.
Finally, the deep features are fed into a Softmax classifier
for recognition task. We take cross-entropy loss function to
optimize the learning process.

The deep learning algorithm is summarized in Algo-
rithm 1.

5. EXPERIMENTS
We conducted extensive experiments to validate the effec-
tiveness of our method on public SHREC and ModelNet
datasets. Among them, 60% of the models are randomly
selected as training sets, 20% models as test sets, and 20%
models as verification sets.

• SHREC is a standard3D Shape Retrieval Contest
(SHREC) datasets which includes SHREC-2010,
SHREC-2011, SHREC-2015 and SHREC-2016.
SHREC10 contains 200 non-rigid models with different
postures from 10 classes. SHREC-2011 consists of 600
mesh models from 30 categories. SHREC-2015 is a
dataset of 1200 watertight mesh models with 50 classes.
SHREC-2016 contains 400 incomplete models with
cuts and holes.
• ModelNet includes two datasets which respectively con-

tain CAD models of 10 and 40 categories. ModelNet10
consists of 4899 object instances. ModelNet40 consists
of 12,311 object instances.
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Figure 6. Training accuracy and loss curves on ModelNet40.

In our experiment, we set the K -nearest neighborhood
to 8, the l sampling point is 150, an initial learning rate
is 0.001 and the learning attenuation rate is 0.95, the
momentum is 0.9, and the polynomial coefficient is 10.
Batch size is 16. All layers are implemented with batch
normalization.

Figure 6 shows the training process of our model in
ModelNet40. It can be seen that when the number of
iterations reaches 2500, the accuracy and loss curve tends to
be stable. Therefore, in our experiments, we set the number
of iterations to 3000 to obtain the optimal training results.

In this section, we first discuss the time complexity
of our method, and then evaluate the performance under
different sampling points. Furthermore, we verify the

robustness and stability of our geometric encoded feature
and deep feature based on ADGCN learning model. Finally,
we comprehensively analyze the advantages and limitations
of our method against other state-of-the-art methods.

5.1 Time Complexity of Our Method
Our work mainly includes two modules. One is geometric
feature extraction module and the other is deep feature
learning module. In geometric feature extraction module,
we first calculate the discrete HKS of each node according
to its k-nearest neighborhood. Secondly, l sampling points
are chosen by using FPS, and l-dimensional embedded HKS
is generated through diffusion distance measurement. The
time complexity is O(lnK 2), where n is the number of
nodes, K is the average number of local neighborhood of
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Table I. Time complexity and accuracy analysis of different methods on ModelNet40.

Method Infer/ms Acc (%)

PointNet [11] 25.3 89.2
PointNet++ [12] 163.2 90.7
DPAM [40] 36.6 91.4
DGCNN [21] 27.2 92.9
Ours 24.8 92.7

each node, and l is the sampling points over the shape.
Because our method computes the discrete HKS based
on local neighborhood, it effectively avoids the tedious
computation caused by eigendecomposition on the whole
graph, Furthermore, we adopt BoF model to transform the
low-level shape descriptor into a vocabulary space, and
construct geometric encoded features via k cluster and
soft-assignment matrix. It costs O(kn2), k is the number
of clustering center, which is set to 55 in our experiment.
Therefore, the overall time complexity of geometric feature
extraction is O(lnK 2) + O(kn2), since K , l, k are much
less than n, it thus costs O(n2). In deep learning module,
we take the geometric encoded feature and local topology
as inputs and learn the deep features by a two-layer
weighted spectral convolution network, where theKNN local
graph is recomputed based on the features of each spectral
convolution layer. We weight the feature of each layer and
concatenate them to generate a 1024 dimensional feature as
output. Table I shows that our learning model achieves the
better trade-off between the computational complexity and
the resulting classification accuracy.

5.2 Number of Sampling Points
First, we evaluate the influence of sampling points on
geometric feature encoding and shape classification; we
sample 30, 50, 80, 100, 120 and 150 anchor points,
respectively. As shown in Figure 7, with the increase of
the number of sampling points, the accuracy is improving.
Taking the ModelNet10 as an example (Fig. 7a), when the
number of sampling point is 30, the experimental accuracy
reaches 89.85%, and when 150 sampling points are taken,
the accuracy reaches 97.14%, an improvement of 7.29%. The
experimental results on different datasets have shown the
consistence in Fig. 7(b). In order to balance accuracy and
efficiency, we use 150 sampling points to extract embedded
shape features in the following experiments.

5.3 Robustness of Geometric Encoded Feature
Second, we test our geometric encoded feature on diverse
graph data. As shown in Figure 8 whether they are complex
disconnected graphs, or non-rigid deformed graphs and
incomplete graphs, the geometric encoded features provide
stable and discriminative representation, revealing both the
intrinsic structural consistence between the same category
and the significant discrimination between the different

Table II. The classification performance (average accuracy %) by using different
features on SHREC-2015, SHREC-2016, ModelNet10.

Dictionary SHREC SHREC SHREC Mean in ModelNet10
2010 2011 2015 (SHREC)

Embedded HKS 86.34 85.80 82.40 84.85 90.53
Geometric Encoded Feature 95.41 97.23 94.24 95.63 92.36
Deep Feature based on ADGCN 98.19 98.72 97.94 98.28 97.14

kinds of graphs. Specifically, it is robust to the incomplete
graph data.

5.4 Performance of Deep Feature
Our method builds a bridge from low-level geometric
features to high-level semantic features for general graph
data, which constructs encoded feature based on local
geometry embedding, and then extracts deep features based
on our ADGCN learning model. In order to study the
performance of our method, we compare the embedded
feature, geometric encoded feature and deep feature in
Table II.

We feed different features into a standard Softmax
classfier, and evaluate the classification performance based
on standard 3D shapes benchmarks. We can see that the
classification result of geometric encoded features is 1.83%
higher than embedded features on Modelnet10 dataset, the
average improvement is 10.78% on SHREC dataset. While
the deep feature based on our ADGCN is better than that
of encoded feature, and the average improvement rate is
2.65% and 4.78%. The classification results of each category
with these three features on different datasets are shown in
Figure 9.

We further compare our proposed method with several
baseline methods on three benchmarks in Table III.

First, we compare our approach against the classic
handcraft feature-based deep learning methods, such as
GA-BoF [37], SGWC [6], DeepGM [7] and DeepShape [36].
GA-BoF only used scale invariant heat kernel and average
geodesic distance to generate middle-level descriptor to
classify 3D shapes, so it has the lowest performance.
SGWC used spectral graph wavelet signatures to construct
middle-level features and implement the classification task
bymulticlass SVM.While DeepGM andDeepShape adopted
geodesic moments and multiscale HKS as input, and then
learned deep features based on auto-encoder and deep
belief networks (DBN). We can see that the classification
accuracy of our deep feature is 2.53% higher than that of
DeepGM, and 3% than that of SGWC and DeepShape in
SHREC datasets. Unlike DeepGM, DeepShape and SGWC,
which rely on geometric connectivity and global similarity
matrix, our method creates geometric encoded features by
local embedding and visual vocabulary mapping, which has
stronger generalization and discrimination ability in variety
of graph data.
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Figure 7. Recognition accuracy based on different number of sampling points.

Figure 8. Geometric encoded features of different graph data (The x -axis represents the number of cluster center (codewords); the y -axis represents the
frequency of each codeword, the color from blue to red denotes the feature value from low to high).

Second, we made a contrastive analysis between our
method and state-of-art deep learning methods, such as LP-
3DCNN [39], DPAM [40], PointwiseNet [41], SK-Net [42]
and DGCNN [21]. LP-3DCNN uses ReLPV module to
extract feature graph from each 3D local neighborhood
of input graph. Then, after passing through the activation
function, these featuremaps at different frequency points are
combined linearly. DPAM inserts three point modules into
the framework, and combinesmulti-level features to improve

the representation ability. DGCNN presented an EdgeConv,
which extracts edge features by establishing KNN local
graph, and provides a dynamic convolution mechanism to
effectively improve the representation ability of deep features.
PointwiseNet aggregates the low-level geometric descriptors
of each point with some visual words to indirectly express
its high-level semantic information. SK-Net proposed an
end-to-end network framework to jointly optimize the
inference of spatial key point with the learning of feature
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Figure 9. Classification results of each category on ModelNet10 (left) and SHREC2011 (right).

Table III. Comparison of different methods on three datasets (Average accuracy %).

Method SHREC 2010 SHREC 2011 SHREC 2015 Mean in (SHREC) ModelNet10

GA-BoF [37] 86.02 93.20 72.93 84.05 —
DeepShape [36] 95.5 96.53 92.87 94.97 —
SGWC-BoF [6] 95.66 97.66 92.54 95.29 —
DeepGM [7] 96.33 97.89 93.03 95.75 —
DGCNN [21] 94.0
LP-3DCNN [39] — — — 94.3
DPAM [40] — — — 95.1
PointwiseNet [41] — — — 95.5
SK-Net [42] — — — 96.2
Ours 98.19 98.72 97.94 98.28 97.14

representation of a point cloud for a specific point cloud
task. The key the network is to generate Skeypoints and then
extract local structure and normalized spatial pattern based
on key points.

As we can see that our proposed method effectively
optimize the process of geometric feature coding to deep
feature learning, and the average classification accuracy
on ModelNet datasets is 97.14%, which is 0.94% higher
than SK-Net and 1.64% higher than PointwiseNet. Our
deep feature enhances the discrimination and robustness
to diverse graph data and achieves better classification
accuracy, which is about 3% than LP-3DCNN and DPAM.
In particular, it provides a general deep learning platform
for both CAD data and non-rigid transformed data and
incomplete data.

We test the precision-recall curves of our proposed
method on SHREC 2011 and ModelNet10 (see Figure 10).
Compared to the typical handcrafted feature based methods,
GA-BoF has the lowest precision, since it only used the
geometric features. SGWCandDeepGMachieve comparable
results which learn the high-level feature from multiscale
wave kernel signature and geodesic moments. Whether it
is handcrafted-based feature extraction method or deep
learning method, our method has achieved better retrieval
performance.

6. CONCLUSION
This paper presents a generalized deep learning method
for irregular 3D graph, which provides a work-flow from
local feature embedding to multi-feature encoding and deep
feature learning. The extensive experimental results have
shown its efficiency and effectiveness for various 3D data.
The other valuable part of our method is to improve the
generalization and discrimination via an adaptive dynamic
graph convolutional network, which achieves significantly
better performance than state-of-the-art methods.

However, with rapid increase of large-scale graph data,
there will be huge time complexity in the process of local
feature embedding and geometric feature encoding, it will
be an inevitable trend to explore more efficient graph-based
deep learning model for large-scale graph data. Recently,
many significant works have been proposed around reducing
model size, enhancing the anti-inference ability of training
process, improving augmented and unsupervised learning
model so on [43–45].

In the future work, we will further extend our method
to optimize our learning model, improve the learning pro-
cess, automatically extract structural features for semantic
segmentation and shape understanding.
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Figure 10. Comparison of PR curves of different methods on SHREC2011 and ModelNet10.
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