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Abstract. A method based on the error space division of principal
component analysis (PCA) is proposed to improve both the spectral
and colorimetric reconstruction accuracy in spectral dimensionality
reduction. Founded on the error source analysis of PCA from
a geometric point of view, an objective function minimizing the
within-cluster spectral reconstruction error is established to divide
the error space of PCA. PCA is implemented again to each divided
cluster to reduce the dimensionality of spectral reflectance. The
proposed method, error-space-divided PCA (ESDPCA), is tested
using four different spectral datasets. The root mean squared error
(RMSE) and CIEDE2000 colour difference are adopted as the
spectral and colorimetric evaluation metric respectively. Statistical
results indicate that ESDPCA can outperform PCA by at least one
principal component (PC) in colorimetric accuracy, while it can
outperform PCA by at least two or three PCs in spectral accuracy.
Comparisons with other three representative methods (i.e., LabPQR,
LabRGB, and XYZLMS) show that ESDPCA outperforms them both
in spectral and colorimetric accuracy significantly. In addition, the
proposed method is robust for spectral datasets and compatible
with few other methods involving PCA. Moreover, the computation
complexity of ESPCA has the same order of magnitude as that of
PCA. c© 2022 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.2.020410]

1. INTRODUCTION
Visible spectral reflectance is the intrinsic physical property
of materials and can be applied to characterize colour
withoutmetamerism phenomenon. This property has drawn
considerable attention in the fields of high-fidelity colour
reproduction [1, 2], fine art conservation [3, 4] as well as
digital image archives [5, 6], especially with the diversity of
light sources, the complexity of colour rendering devices,
and also the increasing requirements of colour reproduction
accuracy in recent years.

The major issue is that unlike the traditional trichro-
matic system, the spectral data, usually described by several
dozens of dimensions, has become a tough challenge for data
storage and communication between different rendering
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devices. It is necessary to reduce the dimensionality of the
spectral data and to construct a lower-dimensional space
for smooth data storage and communication. Here the
low-dimensional space needs to satisfy the constraint that
the space has the lowest possible dimensionality; besides, the
spectral reflectance reconstructed from the space is as similar
as possible to the original spectral reflectance.

Many methods, such as PCA [7–9], nonnegative ma-
trix factorization [10], weighted canonical correlation re-
gression [11], independent component analysis [12], XY-
ZLMS [13], LabPQR [14], LabAB [15], LabRGB [16] and
LabLab [17], have been proposed to reduce the dimension-
ality of the high-dimensional spectral reflectance. Among
them, PCAmethod is extensively used for dimensionality re-
duction of spectral reflectance. Thismethod reformulates the
spectral reflectance as the weighted sum of a small number
of orthogonal basis to remove the high correlations between
different dimensions of the original spectral reflectance.
It can achieve optimal spectral accuracy as it minimizes
the RMSE between the original and the reconstructed
spectral reflectance. However, the best spectral accuracy
does not always mean the best colorimetric accuracy since
the spectral sensitivity of human visual system is not a
constant function of the spectral wavelengths. In other
words, different wavelengths have different contributions to
the perceived colour.

Recent studies have realized the situation and treated
each wavelength differently according to their relative
contributions to the perceived colour. Thus, many weighting
functions with respect to luminous efficiency function,
colour matching functions and human cone spectral sensi-
tivities have been proposed to weight the spectral reflectance
before the implementation of PCA [18–22]. These methods
are regarded as weighted PCA. Due to the complexity of the
mechanism of colour perception, most of these weighting
functions are obtained by a trial and error technique. The
relevant psychophysical experiment or a mathematical proof
to find the optimal weighting function is still elusive. These
methods have improved the colorimetric accuracy of the
reconstructed spectral reflectance to some extent. However,
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the improvement of the colorimetric accuracy usually comes
at the sacrifice of the spectral accuracy. This compromise
violates the original intention of spectral colour reproduction
that reach the consistent reproduction of spectral reflectance,
which will inevitably evokemetamerism phenomenon again.
The main reason resulting in this dilemma is that these
methods regard PCA only as a useful tool and focus chiefly
on the weighted pre-processing of the original spectral
reflectance while they pay little attention to the tool itself,
which puts the cart before the horse.

Though the relationship between the spectral accuracy
and the colorimetric accuracy is not strictly positively
correlated, the colorimetric accuracy will be increased if the
spectral error is smaller enough. In the limit, the colorimetric
error will be zero if the spectral error is zero. The spectral
error is the root cause of colorimetric error. To improve
the colorimetric accuracy, the spectral accuracy should be
improved first. This conforms to the original intention of
spectral colour reproduction. Based on this point of view,
PCA is selected in this study to investigate the feasibility of
further improving the spectral accuracy and the colorimetric
accuracy simultaneously since it already has the best spectral
reconstruction accuracy compared with other methods.

The basic principle of PCA is reviewed and the source
that leads to the error in spectral reconstruction is analysed
from a geometric viewpoint. The control strategy and
corresponding objective function thatminimizes the spectral
error is proposed to divide the error space of PCA. Then
PCA is implemented again to each divided spectral cluster for
dimensionality reduction. The influence of cluster number
and PC number on the spectral and colorimetric accuracy
is tested. The proposed method is also compared with other
three representative methods to verify its effectiveness.

2. METHODS ANDMATERIALS
2.1 Principal Component Analysis
A set of spectral reflectance vectors ri ∈ Rn(i = 1, 2,K ,m)
can be represented by ri =

∑n
j=1 ajvj and vj are basis vectors.

The objective of PCA is to find the orthonormal basis for the
subspace Rl of Rn that minimizes

min
vj

m∑
i=1

‖ri− r̂i‖2, j= 1, 2, . . . , l ≤ n (1)

here r̂i =
∑l

j=1 ajvj represent the approximated spectral
reflectance. In practice, the dataset is usually mean-centred
first X = [r1 − r r2 − r . . . rm − r], where r = 1/m

∑m
i=1 ri

denotes the mean of the dataset. The minimums are the
eigenvalues of matrix XXT arranged in the descending
order and the solutions are the eigenvectors u1, u2, . . . ,un
arranged corresponding to the eigenvalues. Then spectral
reflectance of the dataset can be approximately reconstructed
by

r̂i = r+
l∑

j=1

bjuj, (2)

where bj are called factor scores and can be interpreted
geometrically as the projections of mean-centred ri onto the
basis vectors.

2.2 Error Source Analysis
When approximating the spectral reflectance in Rl , the
reconstruction error occurs due to abandoning of the
orthogonal complement space of Rl . Defining the orthonor-
mal basis matrix of the orthogonal complement space
as UT

= {ul+1 ul+2 . . . un}, then the spectral error 1ei can
be calculated by:

‖1ei‖2 = ‖ri− r̂i‖2 =

∥∥∥∥∥∥r+
n∑

j=1

bjuj− r−
l∑

j=1

bjuj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑

j=l+1

bjuj

∥∥∥∥∥∥
2

=

∥∥∥U⊥b⊥i ∥∥∥2
=

n∑
j=l+1

b2
j (3)

here b⊥i are vectors for the spectral reflectance ri in the
orthogonal complement space.

An example of reducing a two-dimensional random
dataset into one dimension is showed in Figure 1(a) from
the intuitive geometric viewpoint. The dataset is obtained
by generating evenly distributed random numbers between
0 and 2 first, and then selecting the numbers between line
y − x > −1 and line y − x < 1. The blue solid arrow
represents the first PC that the random dataset is reduced
to, while the red dashed arrow represents the abandoned
second PC. Then the reconstruction error for each sample
is the length of the red dashed arrow which is parallel to the
second PC. It is the distance of the sample point to the first
PC. The total reconstruction error for the two-dimensional
random dataset is the length accumulation of all the red
dashed arrows.

2.3 The Proposed Method
The reconstruction error produced in PCA is the distance
from the sample toRl inRn along the abandoned orthogonal
complement space of Rl . To decrease this error is to decrease
the distance, namely to decrease the length of the red
dashed arrows in Fig. 1(a). If several other lines parallel
to the first PC are properly added to divide the dataset
along the second PC and the smallest distance from the
sample to the lines is taken as the new reconstruction
error, as shown in Fig. 1(b), the length of most red dashed
arrows will be cut short. In Fig. 1(b), the green thick
arrow represents the first PC of Cluster 1 while the green
thin arrows represent the reconstruction error for each
sample of Cluster 1. The blue and red arrows represent the
first PC and reconstruction error of Cluster 2 and Cluster
3, respectively. Obviously, the total error accumulation of
the new red dashed arrows in Fig. 1(b) will be reduced
significantly comparedwith that of the old red dashed arrows
in Fig. 1(a). It indicates that by dividing the error space
of PCA, the total reconstruction error can be decreased
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Figure 1. Schematic diagram of the proposed ESDPCA. (a) Error analysis of PCA in reducing a two-dimensional random dataset into one dimension. (b)
Division of the abandoned second PC.

under the same reduced dimensionality, which satisfies the
constraint required for spectral dimensionality reduction.

Similarly, for the high-dimensional spectral dataset,
the total reconstruction error can be reduced by properly
dividing the abandoned high-dimensional orthogonal com-
plement space. If the spectral dataset R is divided into
K clusters R = {R1 R2 . . . RK } in the abandoned or-
thogonal complement space, to minimize the within-cluster
reconstruction error, the objective function used for the
division can be defined as follows:

min
K∑
j=1

∑
ri∈Rj

‖b⊥i − cj‖2, (4)

where cj is the mean of all the spectral reflectance in cluster
Rj. It is notable that the proposed method is equivalent
to the original PCA when K equals 1. In this study, the
K -means algorithm is applied to solve Eq. (4) by randomly
selecting K factor score means for the m samples in the
orthogonal complement space [23]. Due to the limited sizes
of the spectral dataset, PCA is implemented again to each
divided cluster for further reduction of the reconstruction
error. Based on this principle, the proposed method is called
error-space-divided PCA (ESDPCA).

2.4 Materials
Four spectral datasets, the Matt Munsell Atlas [24], the
Natural Colour System (NCS) [25], a printing dataset and
a mineral pigment dataset, are selected as the testing
samples to investigate the proposed ESDPCA. The spectral
reflectance of 1269mattMunsell colour chips weremeasured
at 1 nm wavelength interval between 380 and 800 nm by the
Perkin-Elmer lambda 9 UV/VIS/NIR spectrophotometer;
the spectral reflectance of 1675 colour chips from the NCS
Atlas were measured at 10 nm intervals between 400 and
700 nm by the HunterLab UltraScan spectrocolourimeter;
the 1473 colour chips of the printing dataset were printed
by the Canon IPF5100 printer using the CMY inks and their
spectral reflectance were measured by X-Rite Spectroscan at
10 nm intervals between 400 and 700 nm; the 1694 spectral
reflectance of the mineral pigment dataset were measured
by the GretagMacbeth SpectroEyeTM at 10 nm intervals

between 400 and 700 nm. Here the spectral reflectance from
the Matt Munsell Atlas was resampled at 10 nm intervals
between 400 and 700 nm.

3. RESULTS ANDDISCUSSIONS
3.1 Analysis of ESDPCA
Spectral reflectance from the Matt Munsell Atlas is selected
as the testing sample to investigate the characteristics
of ESDPCA. The spectral reflectance is firstly reduced
into different dimensionalities (1–9) with different cluster
numbers (1, 5, 10, 16 and 23). The spectral reflectance
is subsequently reconstructed by linearly combining the
orthogonal basis that spans the low-dimensional spaces.
The RMSE between the original spectral reflectance and
the reconstructed spectral reflectance is calculated as the
metric of spectral accuracy. The CIE 2000 colour difference
under the CIE 1931 standard observer and the CIE
standard illuminant D65 is calculated to evaluate the
colorimetric accuracy. Statistical results of RMSE and colour
difference between the original spectral reflectance and the
reconstructed spectral reflectance are shown in Tables I
and II respectively.

Firstly, the performance of the proposed ESDPCA
and the original PCA (the column titled ‘1 Cluster’) is
compared. It is obvious that the proposedmethod has a better
performance both in spectral accuracy and colorimetric
accuracy. ESDPCA can outperform PCA by at least one PC
in colour difference, while it can outperform PCA by at least
two or three PCs in RMSE. For example, the colour difference
of ESDPCA with 23 clusters and 4 PCs is better than that of
PCAwith 6 PCs, while the RMSEof ESDPCAwith 23 clusters
and 4 PCs is significantly better than that of PCA with 8 PCs
and comparable to that of PCA with 9 PCs. In other words,
ESDPCA with 23 clusters and 4 PCs outperforms PCA by 4
PCs in RMSE, and 2 PCs in colour difference. This indicates
that ESDPCA can reduce the dimensionality of the spectral
reflectance significantly under the same accuracy constraint,
which can facilitate the description and mapping of spectral
colour gamut. The different performance of ESDPCA in
spectral accuracy and colorimetric accuracy result from
the nonlinear relationship between the spectral RMSE and
colour difference. However, the colorimetric accuracy is
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Table I. RMSE of ESDPCA with different PC and cluster numbers.

Number of PCs
1 Cluster (Original PCA) 5 Clusters 10 Clusters 16 Clusters 23 Clusters

Max Mean Max Mean Max Mean Max Mean Max Mean

1 0.2571 0.0769 0.1323 0.0436 0.1043 0.0327 0.0913 0.0271 0.0702 0.0232
2 0.1638 0.0417 0.0725 0.0192 0.0713 0.0153 0.0449 0.0124 0.0415 0.0109
3 0.1060 0.0192 0.0444 0.0109 0.0266 0.0083 0.0234 0.0070 0.0240 0.0061
4 0.0744 0.0130 0.0271 0.0078 0.0172 0.0058 0.0146 0.0049 0.0129 0.0042
5 0.0550 0.0094 0.0220 0.0056 0.0167 0.0045 0.0128 0.0037 0.0097 0.0032
6 0.0303 0.0076 0.0159 0.0045 0.0133 0.0036 0.0106 0.0030 0.0096 0.0026
7 0.0302 0.0055 0.0122 0.0035 0.0080 0.0027 0.0067 0.0023 0.0057 0.0020
8 0.0172 0.0045 0.0086 0.0027 0.0064 0.0022 0.0050 0.0018 0.0042 0.0016
9 0.0146 0.0032 0.0061 0.0020 0.0051 0.0017 0.0047 0.0015 0.0036 0.0013

improved in ESDPCA on the basis of improving the spectral
accuracy. Moreover, the colorimetric accuracy of ESDPCA
can be further improved by the weighted processing of the
original spectral reflectance since it already has excellent
spectral accuracy and is compatible with weighted PCA.

Secondly, the advantage of error space division to the
maximum spectral error is investigated. In terms of PCA, the
spectral samples with a relatively decentralized distribution
can lead to a large spectral reconstruction error, especially
the maximum error. It is notable that the introduction of
ESDPCA can reduce the maximum error remarkably. As
shown in Table I, ESDPCA with 16 clusters and 2 PCs
outperforms PCA with 4 PCs in mean RMSE, whereas it
outperforms PCA with 5 PCs in maximum RMSE. Figure 2
illustrates the implementation of ESDPCA with 2 PCs and
5 clusters to the Matt Munsell Atlas spectral dataset from
a geometric point of view. The length of the short black
arrow is the maximum spectral error of ESDPCA along the
abandoned third PC, while the length of the long black arrow
is the maximum spectral error of PCA along the abandoned
third PC. It is apparent that the maximum spectral error of
ESDPCA is remarkably smaller than that of PCA.

Thirdly, the influence of cluster number and PC number
on spectral reconstruction accuracy is considered. Tables I
and II show that the reconstruction accuracy of spectral
reflectance increases with the increasing of cluster number.
For instance, the RMSE of ESDPCA with 4 PCs and 23
clusters is better than that of ESDPCA with 4 PCs and 5
clusters. In addition, with the same cluster number ESDPCA
improves the reconstruction accuracy more and more as the
number of PCs increases. For instance, theRMSEof ESDPCA
with 23 clusters and 3 PCs is less than that of PCAwith 6 PCs,
whereas the RMSE of ESDPCA with 23 clusters and 4 PCs is
less than that of PCA with 8 PCs.

Fourthly, the PCs of different clusters are compared to
investigate their characteristics. ESDPCA with 6 PCs and 10
clusters is implemented on the Matt Munsell Atlas spectral
dataset. The first 6 PCs of the 10 clusters are shown in
Figure 3. It is apparent that, from the first PCs to the
sixth PCs, the discrepancy between the PCs increases. This
phenomenon can be attributed to the limited number of

the spectral reflectance used for dimensionality reduction.
As shown in Fig. 2, the discrepancy between the clusters in
Fig. 2(b) is more scattered than that in Fig. 2(a), especially
for the outmost clusters along the third PC. Thus, ESDPCA
carries out PCA again to each divided cluster in order to
improve the spectral reconstruction accuracy.

Finally, the computation complexity of ESPCA has the
same order of magnitude as that of PCA. The compu-
tation complexity of PCA is O(n3

+ n2m) and K -means
algorithm is O(KIm(n − l)

1
α ), where I is the number of

iterations and α is a number greater than 1, relating to the
computation complexity of Euclidean distance. According
to the computation process, the complexity of ESDPCA
is O(n3(K + 1) + 2n2m + KIm(n − l)

1
α ). Since I and K

are regarded as constants and α > 1, the complexity of
ESDPCA can be determined asO(n3

+ n2m). It has the same
complexity classes as PCA.

3.2 Comparison with Three Other Representative Methods
In order to further evaluate the effectiveness of the proposed
method, the performance of ESDPCA is compared with the
three other representative methods, LabPQR, LabRGB, and
XYZLMS. Four spectral datasets are selected as the testing
samples. These four methods are implemented on each
spectral dataset, and then converted back to reconstruct the
spectral reflectance by applying the parameters describing
the low-dimensional spaces. The RMSE between the original
and the reconstructed spectral reflectance is calculated as
the metric of spectral accuracy. The CIEDE2000 color
difference formula was selected as the colorimetric metric.
The colorimetric values for the color difference formula
were calculated under the CIE 1931 standard observer and
eleven illuminants. The illuminants are the CIE standard
illuminants A, D50, D65, D90, F2, F7, F11, and four
other actual LED light sources (Cooper DL11, GE Par30,
Osram Diachroic, Solux Diachroic) [26]. The error space of
ESDPCA is divided into 24 clusters and the dimensionality
is reduced to 6 which is equal to that of LabPQR, LabRGB,
and XYZLMS. Results of these four methods are shown in
Tables III and IV respectively.
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Table II. Colour difference of ESDPCA with different PC and cluster numbers.

Number of PCs
1 Cluster (Original PCA) 5 Clusters 10 Clusters 16 Clusters 23 Clusters

Max Mean Max Mean Max Mean Max Mean Max Mean

1 31.724 16.176 28.916 10.765 23.072 7.897 18.815 6.388 17.532 5.372
2 45.741 12.008 21.013 4.460 13.739 3.401 10.742 2.561 10.612 2.402
3 12.886 2.173 10.343 1.099 6.074 0.861 5.446 0.742 5.331 0.649
4 9.336 1.221 4.978 0.677 4.610 0.557 3.135 0.453 2.797 0.402
5 2.900 0.557 1.939 0.310 1.572 0.268 1.066 0.194 1.295 0.186
6 2.915 0.554 1.181 0.222 1.208 0.195 0.956 0.180 0.836 0.146
7 2.286 0.116 0.780 0.089 0.570 0.074 0.699 0.069 0.430 0.059
8 0.920 0.095 0.671 0.066 0.387 0.058 0.353 0.049 0.322 0.048
9 0.937 0.087 0.334 0.053 0.320 0.048 0.269 0.040 0.211 0.036

Figure 2. Implementation of ESDPCA on Matt Munsell Atlas spectral dataset with 2 PCs and 5 clusters. (a) The first PC and divided third PC, (b) the
second PC and divided third PC.

Table III. RMSE of the four methods.

Samples
XYZLMS LabRGB LabPQR ESDPCA

Max Mean Max Mean Max Mean Max Mean

Matt Munsell Atlas 0.0569 0.0095 0.0590 0.0136 0.0558 0.0088 0.0075 0.0026
NCS 0.0685 0.0102 0.0665 0.0144 0.0635 0.0103 0.0123 0.0041
Printed Colour 0.0602 0.0159 0.0967 0.0347 0.0345 0.0114 0.0074 0.0009
Mineral Paint 0.0771 0.0160 0.0491 0.0123 0.0703 0.0142 0.0121 0.0022

It is obvious that XYZLMS, LabRGB and LabPQR have
similar performances as their performances are inconsistent
with the variation of the spectral datasets, while the
performance of ESDPCA is remarkably better than them
both in spectral accuracy and colorimetric accuracy for all
the spectral datasets. It can be inferred that the performances
of XYZLMS, LabRGB and LabPQR depend heavily on
spectral datasets, whereas ESDPCA is relatively robust to
spectral datasets. It is not difficult to conclude that ESDPCA
has excellent capability in spectral dimensionality reduction
for spectral colour reproduction.

4. CONCLUSIONS
A new method constructed by dividing the error space of
principal component analysis (PCA) is proposed to reduce
the spectral dimensionality for spectral colour reproduction.
It improves colorimetric accuracy at the foundation of
improving spectral accuracy in spectral reconstruction,
which conforms to the original intention of spectral colour
reproduction. Comparisons with traditional PCA suggest
that the colorimetric accuracy of ESDPCA is better than that
of PCA by at least one PC, while ESDPCA can outperform
PCA by at least two or three PCs in RMSE. With the same
PC numbers, the performance of ESDPCA becomes better
with the increase of division number, and with the same
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Figure 3. The first six PC vectors of ten clusters.

Table IV. Colour difference of the four methods.

Samples
XYZLMS LabRGB LabPQR ESDPCA

Max Mean Max Mean Max Mean Max Mean

Matt Munsell Atlas 2.755 0.228 1.186 0.313 2.822 0.208 0.777 0.160
NCS 2.195 0.215 1.377 0.303 2.403 0.204 0.807 0.163
Printed Colour 1.622 0.459 2.041 1.161 0.730 0.307 0.459 0.081
Mineral Paint 3.227 0.258 1.398 0.284 4.615 0.520 1.144 0.141

division number the performance of ESDPCA is better and
better as the PC number increases. Comparisons with three
representative methods indicate that the proposed ESDPCA
can outperform them remarkably both in spectral accuracy
and colorimetric accuracy for all the spectral datasets and
it is also robust to spectral datasets. Besides, ESDPCA can

be extended to LabPQR to further improve its accuracy
since the PQR components of LabPQR are also derived by
PCA. Due to its excellent compatibility, ESDPCA can also
be combined with weighted PCA. All these imply that the
proposed method will deliver better performance in spectral
colour reproduction.
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