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Abstract. In the context of the COVID-19 outbreak in a global
scenario, mandatory mask-wearing and temperature control can
effectively prevent its spread and realize self-protection. Therefore,
real-time face-mask wearing and temperature measurement
technology is of greater importance against the background of
infectious disease prevention and control. The present study
adopted MobileNet as the backbone of the single-stage RetinaFace
framework for real-time face detection and mask-wearing detection.
Moreover, the focal loss function of α dynamic value was
adopted to avoid the class imbalance problem and improve
the classification accuracy in the training stage. Regarding
face temperature measurement technology, non-contact and
uncooled temperature-sensitive elements were used for temperature
measurement, but it was easily affected by environmental variables.
Therefore, an SVR model was employed for temperature calibration
with the constant temperature blackbody as reference. The
alignment errors for the accuracy of face detection, mask wearing
detection and temperature correction were 89.58%, 97.84% and
4.85%, respectively. The parameter quantity of the face mask
wearing detection model reached 0.42 M, while the computation
quantity arrived at 2.039 GFLOPs. The detection model proposed
in this study combines real-time mask-wearing detection with face
temperature measurement, which can help to quickly measure
the body temperature and detect whether one wears face masks
properly in the context of COVID-19, so as to reduce the risk
of epidemic spread. c© 2022 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.1.010403]

1. INTRODUCTION
Since the outbreak of COVID-19 in 2020, countries around
the world have issued their epidemic prevention policies, of
which wearing face masks and measuring body temperature
are the most fundamental requirements. An epidemic
prevention measure that is often employed at borders and
places of mass gathering is non-contact body temperature
measurement and detection of no masks on faces with
real-time image analysis technology [1–3]. At present,

Received June 9, 2021; accepted for publication Sept. 14, 2021; published
online Oct. 13, 2021. Associate Editor: Yung-Kuan Chan.
1062-3701/2022/66(1)/010403/10/$25.00

technologies related to Machine Learning (ML) have been
widely applied to issues, including autonomous driving and
National Language Processing (NLP) [4, 5]. Additionally,
ML is aimed at predictions in relation to natural language
processing and time-series data, and it has also gradually
developed the cooperation of Recurrent Neural Network
(RNN) and Long Short-Term Memory (LSTM) to make
predictions, such as the analysis and prediction ofCOVID-19
positive cases [6].

In the field of image recognition and object detec-
tion, artificial neural networks (ANNs) are a widely used
computational model for object detection and parameter
learning. Through data training and detection procedures of
themodel, the trainedANNsmodel can be effectively applied
to data clustering [7], data classification [8], and object
recognition and detection [9], etc. LeCun et al. [10] proposed
ConvNet based on the ANNs, which is a multi-layer
convolutional neural network (CNN) architecture, hoping
to solve the problem of handwritten character recognition.
Its main concepts were originated from Neocognitron, a
multi-layer neural network architecture. Thereafter, Lecun
et al. [11] continued their research within the architecture,
and published LeNet-5, which is the foundation of the
CNN. Currently, the CNN has been widely applied to the
identification of check numbers. Hinton and Alex adopted
deep learning and GPU-accelerated AlexNet [12] and
participated in the ImageNet object recognition competition.
They achieved good outcomes: the error rate seen at 15.3%,
which was 10.8% lower than the second place, making deep
learning attract much attention again. The use of CNN
becomes the mainstream in the subsequent ImageNet object
recognition contest. By 2020, the recognition error rate of
CNN-based image identifiers has reduced to less than 5%.

Generally, a sliding window method is used to scan the
images one by one and predict the possible region in which
objects are located. However, this method requires a large
amount of computation. Therefore, it has been replaced by
cascading, weight sharing and region proposal to reduce
the cost incurred by large amounts of computation. Deep
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learning based generic object detection can be divided into
two categories in terms of the framework: the two-stage
framework, which generates region proposal first and makes
a prediction later, and the single-stage framework, which
only necessitates one CNN forward to obtain category results
and positions. The computational basis of the two-stage
framework lies in how to effectively carry out the selective
search algorithm and make predictions based on search
results. A classic method is R-CNN which mainly locates
object candidate boxes with handcrafted features. The use of
R-CNN needs to train three models. Moreover, it takes much
time to execute the selective search algorithm, and CNNmay
repeatedly extract candidate boxes in the feature extraction
stage, resulting in the waste of computing resources. Fast
R-CNN [13] was proposed in 2015 to share feature maps via
the region of interest pooling (RoI pooling for short) to run
the feature extraction network only once. Faster R-CNN [14]
was proposed for the first time to replace the selective search
algorithmwith Anchor, and the region proposal network was
used to predict proposal objects, which makes a significant
contribution to the subsequent single-stage framework.Mask
R-CNN [15] was proposed to reduce the deviation of RoI
pooling from the original image for Fast R-CNN and Faster
R-CNN; instead, RoI align was used to directly output the
floating-point arithmetic value and correspond the feature
map to the original image, so as to avoid the deviation.

The single-stage framework first appeared in Detector-
Net [16]. It regards object detection as a regression problem
and changed the softmax layer of the CNN to a bounding
box offset region for the first time. However, this method
necessitates the object boxes of different sizes as samples
for subsequent model training and more computation for
inference. OverFeat [17] adopts the architecture of a fully
connected network. Moreover, it has multiscale input, and
integrates the bounding box regression and classifiers into
the same network. However, the accuracy is lower than
that of R-CNN in the same period. In 2017, the mean
Average Precision (mAP) of YOLOv2 (You Only Look
Once, Version 2) [18] in COCO dataset surpassed that of
Faster R-CNN, and the speed was 10 times faster. SSD
(Single Shot Detector) [19], another method based on the
anchor in 2016, follows the idea of Faster R-CNN and
improves YOLO; it proposed to replace Anchor with Prior
Box. The image dataset provided by VOC2007 at that time
showed that its operation speed and detection accuracy were
superior to those of YOLO and Faster R-CNN. The detection
methods based on the single-stage framework gradually
surpassed those based on the two-stage framework in terms
of speed and accuracy, and the demand for edge computation
increases rapidly. Many object detection methods realize
improvement based on YOLO and SSD.

Li [20] adopted the cascade CNN architecture of
the two-stage framework, and used the multi-scale
method to solve the problem of multi-scale face detection.
MTCNN [21], which appeared in 2016, followed the cascade
CNN architecture, but adopted multi-task learning to
solve the problem that the region proposal network of

the two-stage framework in the cascade CNN architecture
is time-consuming. MTCNN uses an image pyramid to deal
with the problem of multi-scale face detection, and it is able
to realize real-time detection in terms of the overall execution
efficiency, so relevant applications emerge one after another.
In 2017, the single-stage headless (SSH) face detection
framework [22] referred to SSD and adopted the feature
pyramid hierarchy to solve the problem of scale invariance.
Moreover, it proposed the context module based on the
self-attention mechanism to improve its accuracy, which
is five times faster than the framework based on image
pyramid. Face Attention Network (FAN) [23], published in
the same year as SSH, proposes to solve the problem that
objects cannot be detected due to occlusion when applied.
Instead, it adopts the feature pyramid network [24], for it can
retain more underlying features than the feature pyramid
hierarchy. For each layer of output, the feature is extracted
via the self-attention CNN, after which the exponential
activation function and the original output are used to
calculate the dot product. In addition, an attention-loss
function is added for optimization. Retina Face [25],
which appeared in 2020, combines the single-stage prior
box of SSD, scale-invariance of FPN, context module of
SSH, and multi-task learning to improve the accuracy and
instantaneity of identification. In addition to the above new
methods, few are produced by finely tuning the generic
object detection method. For example, YOLOv3 [26] can
generate an appropriate anchor box aspect ratio through
K-mean clustering to improve the accuracy of the detection
box. In 2017, Face R-CNN directly adopted the framework
of faster R-CNN and optimized the loss function to solve the
imbalance between positive and negative samples [27].

There aremany different face detectionmethods, and re-
searchers should select one according to their specific needs,
i.e. choice between timeliness and accuracy. For example,
this study mainly aims to integrate deep learning-based face
detection technology with the thermal imaging camera as
the core technology of real-time human body temperature
detection. To achieve the best detection accuracy and
real-time detection, the environment variables that affect
face detection and thermal imaging cameras need to be
considered simultaneously, which can avoid the situation
that faces are precisely detected whereas face temperature
cannot be accurately measured. Therefore, this study uses
the Retina Face model as the infrastructure and Mobile Net
model as the backbone to detect the masks on faces and
measure face temperature in real time.

2. MASKWEARING DETECTION AND FACE
TEMPERATUREMEASUREMENT TECHNOLOGY

Based on the RetinaFace model with a single-stage frame-
work, the present study proposes an object detection
method, which includes face mask wearing detection and
real-time face temperature measurement. The detection
model in this study mainly consists of five modules,
namely the feature pyramid network (FPN) module, prior
box module, context module, multi-task loss module and
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real-time temperature measurement module. FPN uses
Mobile Net as the CNN backbone architecture to realize
real-time detection, for it requires less computation.

2.1 Feature Pyramid Network
In the traditional CNN feature extraction procedure, the
feature map is not scale invariant. Therefore, when CNN is
trained, the training set will increase the diversity of different
size image samples through the preprocessing procedure of
automatic scaling and reduction to improve the detection
rate of different size objects [28–30]. The face detection
model MTCNN uses the feature extraction method of the
image pyramid network to reduce 1/2 of the original image
sequentially, after which the reduced images are fed into
different layers of the image pyramid. Its main purpose lies
in giving different receptive fields to the CNN layers of
the image pyramid by rescaling original images to make
it scale invariant. However, the convolutional computation
procedure of the CNN layers still requires a large amount
of computation in the image pyramid. Therefore, the feature
pyramid network (FPN) method is proposed to reduce
the amount of convolution computation. FPN is a feature
extraction method for object detection. The difference
between FPN and image pyramid network (IPN) is that FPN
only employs a single CNN architecture and outputs feature
maps of different layers P = {p1, p2, . . . , pn}. FPN divides
the backbone of the CNN architecture (e.g. ResNet [31],
VGG [32], MobileNet [33], and AlexNet [12]) into multiple
stages in a certain order, and the feature map of each stage is
saved C = {c1, c2, . . . , cn}. Thereafter, the feature map of the
next stage is magnified twice, and added to the feature map
of the current stage, which enables the featuremap to be used
for prediction. The feature extraction of FPN is calculated by
Eq. (1) as follows:

P = ( f 1
θ ◦ f

2
θ · · · f

T
θ )(C), (1)

where P represents the feature map that each layer exports
from the image pyramid after FPN operation, C represents
the exported feature maps of each stage in the backbone
{c1, c2, . . . , cn}, and f tθ represents the t th feature connection
block. FPN is able to keep the underlying features that are
close to those of original pictures without losing the features
of each layer. In comparison with the IPN, FPN has better
performance in terms of the recognition rate and efficiency.
Therefore, a number of CNN-based detection models adopt
FPN feature extraction methods, e.g. YOLOv3 [26] and
RetinaNet [34].

To achieve the instantaneity of temperature measure-
ment, MobileNet was chosen as the basis of the FPN
backbone architecture. Each channel experienced depthwise
convolution, after which the pointwise convolution with
a kernel size of 1 × 1 to get the results close to the
traditional convolution operation in a faster manner. Due
to the difference in the size and number of kernels, there
is a gap of (1/N ) + 1/(k × k) in the speed between
MobileNet Backbone and traditional convolution, whereinN
indicates the number of filters when the kernel size is k× k.

In this study, FPN adopts MobileNet as the backbone,
for its low computational complexity. Its architecture can
be divided into three stages, so three feature maps that
correspond to three stages C = {c1, c2, c3} can be obtained.
In the convolution procedure of each stage, the strides of the
receptive fields are {8,16,32}. The exported feature map of
the FPN is P = {p1, p2, p3}. MobileNet Backbone does not
require a large amount of computation such that the feature
map for each stage is reserved as the input of the context
module.

2.2 Context Module and Prior Box
The context module in this study is a continuation of
the three feature maps generated by FPN {p1, p2, p3},
which corresponds to the computation of their respective
context modules. The receptive fields of three different
sizes with a kernel size of {(3 × 3), (5 × 5), (7 × 7)} are
adopted. Lastly, they are concatenated to get three feature
maps {m1,m2,m3}. They are the feature maps of different
scales with a shape size of cmi × hmi × wmi , i = 1, 2, 3,
wherein cmi is the number of their channels, hmi is their
height, and wmi is their width. Prior Box, which was
first proposed in SSD, is an improved prior box generator
based on the anchor of YOLO and Faster R-CNN. It can
quickly generate a fixed number of prior boxes, which
correspond to the feature maps of the bounding box
head to realize rapid detection and classification. It is
significantly faster in comparison with Faster Region-based
Convolutional Network (Faster R-CNN) that employs the
two-stage framework, i.e. prediction of the possible object
location through the region proposals network and RoI
pooling of the object location. The detection model based on
the single-stage framework, such as YOLO [35] and SSD [19],
can realize real-time detection because the position of the
prior box for the object has been generated in advance, and
the offset between the object box and the prior box as well
as the category of the object can be predicted simultaneously
within one CNN forward pass. In this study, the total number
of prior boxes Npbox is determined by the size of the three
feature maps, which has been computed by the context
module. The size of the originally input image affects the
shape size of the featuremap. The total number of prior boxes
is computed via Eq. (2) below:

Npbox =
∑
i
numpbox× hmi ×wmi , i= 1, 2, 3, (2)

where numpbox is the number of prior boxes that can be
generated by each value in the feature map (the present study
set numpbox = 2, hoping to avoid an excessive number of
prior boxes and reduce the computational complexity). The
coordinates of the center point of prior boxes in the orig-
inal image are (Xpbox,Ypbox), Xpbox← (Xmi + 0.5) × smi ,
Ypbox← (Ymi + 0.5) × smi , wherein (Xmi ,Ymi) represents
the coordinates of all points in the two-dimensional feature
map mi (only with hmi ×wmi included), 0.5 the offset of the
coordinates, and smi the stride in the layer. In the process
of corresponding the feature map mi to the prior box, m1
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corresponds to a prior box with a matrix order of 16× 16,
m1

1
Bpbox = [bij] ∈ R16×16, and a matrix order of 32 × 32,

m2
1
Bpbox = [bij] ∈ R32×32. Moreover, m2 corresponds to a

prior box with matrix orders of 64× 64, m2
2
Bpbox = [bij] ∈

R64×64, and 128 × 128, m2
2
Bpbox = [bij] ∈ R128×128. In

addition, m3corresponds to a prior box with matrix orders
of 256 × 256, m1

3
Bpbox = [bij] ∈ R256×256 and 512 × 512,

m2
3
Bpbox = [bij] ∈ R512×512. In the final stage, the feature

maps m1, m2, and m3 that come from the Context Module
were preprocessed via the head, and the final results were{
Aface,Afmask,Abbox_ofs

}
, wherein Aface = [aij] ∈ RNpbox×2

represents the confidence score of the ith prior box for the
jth face category, Afmask = [aij] ∈ RNpbox×2 represents the
confidence score of the ith prior box for the jth category
of wearing face masks, and Abbox_ofs = [aij] ∈ RNpbox×4

represents the offset of the ith prior box for the values of
the jth coordinate for the bounding box regression task. The
prediction of the offset via the bounding box regression is
able to stay scale-invariant.

2.3 Multi-Task Learning
Multi-task learning is a training method based on sharing
weights. Single-task learning trains prediction targets using
different networks (or hidden layers), whereas the multi-task
learning uses commonnetworks and parameters for training,
which helps reduce computation and over-fitting when
model training is underway even though it takesmore time to
find out the minimum losing value of each task. The present
study aims to detect face temperature and people wearing
masks at the same time. Therefore, the multi-task learning
method needs to perform the training of three different tasks,
namely face classification, face mask wearing classification
and bounding box regression. To avoid the imbalance of
positive and negative samples caused by the task category
of face classification, the focal loss function was selected as
the basis for adjusting the network weight. The focal loss
function is shown in Eq. (3) below:

lossface(g facei , ofacei ;α, γ )=

Npbox∑
i=1

−α ( g facei × log(ofacei )

+ (1− g facei )γ × (1− log(ofacei )) ), (3)

where g facei represents whether the ith prior box is the label of
a human face or not g facei = {g face(1)i , . . . , g face(n)i }, g face(n)i ∈

{0, 1}, indicating whether the ith prior box is the confidence
score of a human face ofacei = {oface(1)i , . . . , oface(n)i }, 0 ≤
oface(n)i ≤ 1, in which α is the coefficient that adjusts the ratio
of positive to negative samples, and γ is the coefficient that
adjusts the weight of easy samples. The combination of α and
γ is conducive to solving the imbalance between positive and
negative samples, thus improving the speed and accuracy of
convergence.

In the process of face-mask-wearing classification, this
study detected faces and mask wearing at the same time. In
addition, mask wearing is related to human faces. Therefore,

whether the prior box is a human face is determined first,
after which it necessitates the judgment of whether there
is a mask on the human face. In the inference stage, the
non-maximumsuppression (NMS) is used to remove the face
bounding box that does not meet the need of face detection.
Therefore, when NMS is performed, face classification is
the major outcome, which often results in the removal of
the box for those who wear masks properly. To avoid this
situation, the present study improves the focal loss function,
making it suitable for the detection of additional attributes
based on the prior box (such as the detection of masks and
goggles on faces). The parameter α of the original focal loss
function, a hyperparameter manually assigned, is adjusted
mainly based on the ratio of positive to negative samples.
The present study proposed an improved mask-wearing loss
function lossfmask (vi, g fmask

i , ofmask
i ; γ ), changing α into a

dynamically adjusted parameter so that it can be regulated
according to the confidence score of the face category. The
larger the confidence score of a face, the greater the impact
on the loss of mask wearing. This way, it is expected that
the confidence score of mask wearing can follow the face
detection box with the largest confidence score to improve
the effect of inference, as shown in Eq. (4) below:

lossfmask(vi, g fmask
i , ofmask

i ; γ )=

Npbox∑
i=1

− vi ( g fmask
i × log

(ofmask
i )+ (1− g fmask

i )γ (1− log(ofmask
i ))), (4)

where vi represents whether the ith prior box is the
confidence score of the human face vi = {v(1)i , . . . , v(n)i },
0≤ v(n)i ≤ 1, g fmask

i representswhether the ith prior box is the
label of wearing masks g fmask

i = {g fmask(1)
i , . . . , g fmask(n)

i },
g fmask(n)
i ∈ {0, 1}, ofmask

i represents whether the ith prior
box is the confidence score of wearing masks ofmask

i =

{ofmask(1)
i , . . . , ofmask(n)

i }, 0 ≤ ofmask(n)
i ≤ 1, and γ is the

coefficient that adjusts the weight of easy samples. The
bounding box regression task can predict the offset between
ground-truth and prior boxes, and the L2 Loss Function is
used as the basis for adjusting the weight of the network, as
shown in Eq. (5) below:

lossbbox_ofs(g bbx_ofsi , obbx_ofsi )=

Npbox∑
i=1

∥∥∥g bbx_ofsi − obbx_ofsi

∥∥∥2

2
,

(5)
where g bbx_ofsi represents the offset between the ith prior
box and the ground-truth box g bbx_ofsi = {g bbx_ofs(1)i , . . . ,

g bbx_ofs(n)i }, g bbx_ofs(n)i ∈ R, and obbx_ofsi represents the offset
between the ith prior box and the predicted box
obbx_ofsi = { obbx_ofs(1)i , . . . , obbx_ofs(n)i }, obbx_ofs(n)i ∈ R. In
the training phase, the prior box is mapped to the feature
map for each task, and the intersection over union (IoU)
between the ground-truth bounding box Bgt and the prior
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box Bpbox is calculated by Eq. (6) as follows:

J (Bgt ,Bpbox)=
∣∣Bgt ∩Bpbox∣∣∣∣Bgt ∪Bpbox∣∣ , (6)

where Bgt represents the position of the ground-truth box in
the training sample, Bpbox the prior box and the IoU between
Bgt and Bpbox, which can be calculated via J function. With
the prior box and the ground-truth object bounding box
matched and IoU calculated, the IoU with the highest score
can be regarded as pairing successfully. In other words, the
optimal ground-truth box B∗gt corresponding to each prior
box is successfully identified. The ground-truth box B∗gt with
IoU > 0.5 can be regarded as a positive sample. Otherwise,
it is a negative one. This way, the purpose of training can be
achieved.

2.4 Thermal Imaging Temperature Correction
The present study uses the non-contact temperature sensor
FLIR Lepton 3.5 to measure temperature. As a non-contact
thermal camera, it is susceptible to the interference of
environment variables. FLIR Lepton 3.5 has an error within
5% when measuring a target with a constant temperature
of 35◦. To reduce the error and achieve more accurate
measurement of face temperature, it is necessary to correct
temperature with the help of a blackbody that has constant
temperature. The temperature of an object to bemeasured by
a thermal imaging camera is affected by its emissivity. Only
by setting objects to be measured with the same emissivity
can correct temperature be obtained. The emissivity of
a human body is 0.98 and that of a black body is 1.0;
their emissivity is close to each other. Moreover, a black
body can operate at constant temperature so that the
black body can be used as the calibration basis. Support
Vector Regression (SVR) algorithm [36, 37] can accurately
predict numerical data. The Support Vector Machine (SVM)
algorithm not only has excellent classification accuracy
for object classification [38, 39], but its extended SVR
algorithm can also accurately predict power generation [40–
42]. Therefore, the present research employs the SVR
algorithm for temperature correction of a thermal imaging
camera.

SVR is an extension to the SVM classification algorithm.
SVM is a supervised learning model, which consists of
linear and non-linear ones. It is often applied to data
classification and regression analysis. Linear SVM aims
to find out the optimal hyperplane and classify the data
optimally. It is assumed that the input data is {(xi, yi)},
1 ≤ i ≤ n, yi ∈ {−1, 1}, xi ∈ Rd , wherein xi is the original
input value while yi is its label. Moreover, the optimal
hyperplane can satisfy wTx + b = 0, and its largest data
classification distance (margin) is 2/‖w‖.

The SVR algorithm provides a more flexible way for
the model to set an acceptable allowable error. On the
other hand, not all data follow a linear distribution, so SVR
will map raw data into a high dimensional space through
the kernel function, which is conducive to finding out the

optimal hyperplane. SVR, like SVM, finds out the best
hyperplane and minimizes the allowable error before data
classification. The objective function of SVR is shown in
Eq. (7) as follows:

min

(
1
2
‖w‖2+C

N∑
i=1

(ξi+ ξ
∗

i )

)
s.t. yi−wxi− b≤ ε+ ξi
− yi+wxi+ b≤ ε+ ξ∗i
ξi, ξ

∗

i ≥ 0, (7)

where ‖w‖ represents the distance, while ξi and ξ∗i are
the deviations of two different data sets. If the constant C
is positive, overfitting can be avoided. The present study
employs the SVR algorithm for temperature correction; The
face bounding box Bbbox is obtained in the face detection
stage, after which the temperature of the human face region
Tbbox is obtained from the corresponding position of the
thermal imaging camera temperature matrix Tthermal. The
input variables of an SVR model include the maximum
temperature of the black body region max(Tblackbody), the
actual temperature of the black body tblackbody and the
maximum temperature of the face max(Tbbox). The final
predicted result of the model is the actual maximum
temperature of the face region t∗bbox, which can realize
real-time temperature correction and reduce the error.

3. EXPERIMENT
In the present study, different experiments were conducted
to verify the accuracy of the proposed method used to detect
face mask wearing and non-contact face temperature.

3.1 Face Recognition and Mask Wearing Detection
Experiments
In this study, AIZOOTech was used to collect theMAFA [43]
and Wider Face [44] datasets. A total of 7,959 photos
were collected, which were divided into training sets and
testing sets. There were 6,120 photos in the training set,
of which 3,006 were from MAFA dataset while 3,114 came
from Wider Face dataset. There were 1,839 photos in the
testing set, of which 1,059 came from MAFA and 780 were
from Wider Face. The majority of the photos were covered
faces, so the diversity of the samples was insufficient. To
improve the detection accuracy, pre-training was conducted
via Wider Face to obtain a pre-trained model. Moreover,
a new model was trained based on the model parameters
that experienced inheritance training. This study aims to
use edge devices for real-time mask wearing detection and
face temperature measurement. The experiment consisted of
two parts: parameter quantity and detection speed, as well as
the evaluation of detection accuracy. The parameter quantity
is the sum of the CNN parameters for each layer, while
the detection speed was measured based on floating point
operations (FLOPs).Moreover, themodel detection accuracy
was evaluated using the receiver operating characteristic
(ROC) curve, and the area under the curve (AUC) and mAP
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were calculated as the benchmark. When the CNN model is
loaded, the trained parameters are loaded into thememory to
facilitate subsequent recall and computation. In addition, the
parameter quantity affects the utilization of thememory. The
computation of the parameter quantity needs to consider the
convolution kernel size k× k, the size of input channels C i

in
and output channels C i

out for each convolution layer, which
are calculated by Eq. (8) below. The parameter quantity
of a model affects memory utilization. FLOPs serve as a
speed indicator that reveals the computation speed, which
involves the input size for each layer H i

×W i. Regarding
edge devices, the initial input image size greatly affects
the amount of subsequent computation. The FLOPs are
computed by Eq. (9). The experimental results show the
number of parameters in our proposed model is 0.42 M, and
the amount of computation is 2.039 GFLOPs.

parameters=
∑
i
(hi×w i

×C i
in+ 1)×C i

out (8)

FLOPs=
∑
i
(hi×w i

×C i
in+ 1)×C i

out×H i
×W i.

(9)

Regarding the evaluation of the object detection model, both
the object detection position and the confidence score of
classification will affect its performance. If the offset of the
position is too much and cannot be filtered through the
threshold of confidence scores, an excessive number of false
reports and detection will occur. In the present study, the
intersection over union (IoU) was used as the benchmark to
determine the similarity between the bounding box and the
ground-truth box when the accuracy of the object detection
box was evaluated. If the two boxes overlap, then IoU = 1,
indicating that the detection is accurate.

When the object classification of the detection box
was evaluated, whether there was a better confidence score
threshold was evaluated to screen out wrong detection boxes.
The confusionmatrix under each threshold was computed to
measure the difference between predicted and actual results.
The matrix is composed of ground truth and predicted
labels, which is conducive to the analysis of classification
accuracy by True Positive (TP), False Positive (FP), False
Negative (FN), and True Negative (TN). The number of
classification prediction results for each object under each
confidence score threshold can be obtained through the
above confusion matrix. After computation, the ratio of true
positive rates TPR = TP/(TP+ FN) to false positive rates
FPR = FP/(FP+ TN) was calculated and used as the basis
of ROC curve computation. TPR and FPR can measure the
accuracy of the object detection model. In the present study,
they were used to draw a ROC curve, as shown in Figure 1,
with corresponding thresholds of confidence scores, serving
as the basis for the accuracy of the detection model. It is
used for detection through the area ratio of the AUC (i.e.
probability); when the AUC is greater than 0.7, it means
that the model is able to make predictions accurately under
a given confidence score threshold. The benchmark can be

Figure 1. The ROC Curve of the Proposed Model with an AUC of 0.86.

used to predict the quality of the proposed model based on
the AUC. The benchmark of 0.8 ≤ AUC ≤ 0.9 means the
excellent discrimination and that of 0.9≤AUC≤ 1.0 means
the outstanding discrimination. The AUC of the proposed
model arrived at 0.86, indicating that the proposedmodel has
the excellent discrimination.

There are a number of methods to measure the accuracy
of object detection models, of which the most commonly
used measuring metric is the average precision (AP). It
is computed by using the confusion matrix to calculate
the mean of the precision under different recall and IoU.
The precision is calculated as TP/(TP+FP) and the recall
is calculated as TP/(TP+FN). AP can be calculated with
methods when it comes to different datasets. Therefore,
this study used three different AP metrics to evaluate the
accuracy of the model, namely AP for VOC 2007, AP for
VOC 2010 and mAP for COCO. In VOC 2007 dataset, the
AP is computed as follows: IoU > 0.5 is regarded as a positive
sample and the confusion matrix under different confidence
score thresholds are calculated. After that, the precision and
recall (Pc,Rc) of the detection model are calculated. AP is
computed via Eq. (10) below:

AP =
1
Nr

Nr∑
i=1

gi(Pc,Rc; ri), (10)

where Nr represents the number of recall thresholds.
In the VOC 2007 dataset, Nr = 11, and ri represents
11 recall thresholds, r ∈ {0, 0.1, 0.2, . . . , 1}. The function
gi(Pc,Rc; ri) will return the maximum value that meets
the criteria Rc ≥ ri. In the VOC 2010 dataset, the recall
thresholds ri, r ∈ {0, 0.14, 0.29, 0.43, 0.57, 0.71, 1}Nr = 7
was adjusted when AP was computed, while other compu-
tation methods were the same as those used to calculate
the AP in VOC 2007 dataset. When the AP of COCO
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Table I. Experimental results of face detection.

Dataset Measuring metric Results

VOC 2007 AP 0.8957508284908179
MAFA + WIDERFACE VOC 2010 AP 0.8532333887049719
Face Mask Dataset Val COCO mAP 0.5544180875433907

AUC 0.862302828740021

Table II. Average precision on the MAFA dataset.

Methods AP on MAFA

LEE-CNNs [43] 0.764
DEFace [45] 0.778
The method proposed by the present study 0.787

dataset was computed, a more rigorous evaluation method
was adopted in comparison with that for the VOC dataset;
VOC only adopts the threshold condition IoU > 0.5, but
the AP of COCO adopted a group of threshold condi-
tions Ii , I ∈ {0.5, 0.55, . . . , 0.95} and 101 recall thresholds
ri, r ∈ {0, 0.01, 0.02, . . . , 1},Nr = 101 for AP computations
for ten times. Finally, the average of ten-timeAP computation
results is taken as the AP value of the COCO dataset. Table I
shows the experimental results of the proposed detection
model under different measuring metrics. Table II lists the
experimental results of the proposed detection model in
MAFA testing set. Its accuracy arrived at 0.787, the parameter
quantity 0.42 M, and computation 2.039 GFLOPs.

During the training process of the face mask-wearing
detection model, this study added dynamic α to the focal
loss function, enabling an increase in the accuracy of mask
wearing detection. After the detection model had been
trained for 250 epochs, the loss value of the original focal
loss function dropped from 9.6787 to 1.3312, and the loss
value of the focal loss function with the added dynamic α
decreased from 8.9384 to 1.3728. Besides, after the detection
model employed the validation set as well as 250 epochs of
tests, the loss value of the original focal loss function ranged
between 0.0486 and 0.0487, and the loss value of the focal loss
function with the added dynamic α declined from 0.0499 to
0.0479, which can show better robustness in object detection.

When mask-wearing detection is evaluated, the clas-
sification result is a subtask, for the detection of whether
masks are worn is necessary only when the position of
a face is successfully detected. Thus, IoU that is greater
than a certain threshold is considered as the benchmark. In
the present study, the samples of IoU > 0.5 were utilized
to evaluate the ROC curve, AP for VOC 2007 and AP
for VOC 2012. However, the number of samples to be
evaluated decreased with the increase of IOU thresholds,
thus resulting in an increase of AP value when mAP for
COCO was measured. The ROC curve of mask-wearing
detection is shown in Figure 2. AUC arrived at 0.98,

Figure 2. The ROC Curve of the Mask-Wearing Classification, AUC =
0.98.

Table III. Experimental Results of Mask Classification.

Dataset Measuring metric Results

VOC 2007 AP 0.8807275309514689
MAFA+WIDERFACE VOC 2010 AP 0.8363384188626908
Face Mask Dataset Val COCO mAP 0.9518421957193862

AUC 0.9783792991054246

indicating outstanding discrimination. The experimental
results ofmask-wearing detection under differentmetrics are
shown in Table III, which shows that AP calculated based
on the COCO dataset has the highest accuracy, and the
mAP reaches 0.95. From these experimental results, the face
mask-wearing can be successfully detected by the proposed
method and the detected result of a reality scenario is shown
in Figure 3.

3.2 Thermal Imaging Camera Temperature Calibration
Experiment
The thermal imaging camera is susceptible to environmental
variables, which reduces its measurement accuracy. There-
fore, the present study used the blackbody with constant
temperature and an emissivity of 1.0 for temperature
correction. In this study, two blackbodies were utilized to
train the thermal imaging camera temperature calibration
model: one blackbody, which was set at the constant
temperature of 40.00◦C as reference, recorded its actual
measurement temperature Xa, while the other, whose
constant temperature was set between 36.00◦C and 40.00◦C,
recorded the temperature it measured Xb at a sampling
interval of every 0.05◦C. In the data preprocessing stage, the
blackbody was measured 8 times per second. Due to data
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Figure 3. The detection results of the study in a simulated reality scenario. The proposed method is able to detect various face mask-wearing and face
temperature with both the surveillance camera and the thermal imaging camera.

redundancy, duplicate data were deleted. There were 999,768
entries of raw data, whereas 23,445 entries of data were kept
after repeated ones were removed.

When the SVR model was in the training phase, cross
validation was employed to divide the dataset into training
data, testing data and validation data based on a ratio of
0.8:0.1:0.1. In addition, the polynomial kernel function was
adopted to map the data into a high dimensional space.
The SVR model involves different hyperparameters, i.e. the
degree of the polynomial d , the penalty function C , and
adjustment coefficient g . During parameter optimization,
the grid search with cross validation was utilized to find out
the best hyperparameter combination and avoid overfitting.
The data can bemapped into a high dimensional space via the
polynomial kernel function k(Xa,Xb) as shown in Eq. (11):

k(Xa,Xb)= (gXa ·Xb+ 1)d , (11)

where Xa and Xb represent the temperature records of two
blackbodies. During the cross validation, three indicators
were adopted for measurement, namely the coefficient of
determination r2, mean-square error (MSE), and mean
absolute percentage error (MAPE). The coefficient of
determination r2 indicates the explanatory power of the
regression model, and r2 > 0.5 means that the model
has a preliminary explanatory power for the input–output
relationship. The MSE, which represents the error between
predicted and actual values, is calculated via Eq. (12) below:

MSE =
1
N

N∑
d=1

(
yd − ŷd

)2
, (12)

where N represents the sample number of validation data,
yd represents the actual temperature difference of the

Table IV. The best hyperparameters and accuracy of the SVR temperature calibration
model.

Kernel function Polynomial kernel function

The degree of the polynomial d 1
Penalty function C 1000.0
Adjustment coefficient g 0.0001
Coefficient of determination r 2 0.9950
MSE 0.0425
MAPE 4.8545

dth validation dataset, while ŷd represents the predicted
temperature difference of the dth validation dataset. MAPE
indicates the percent error between the predicted and actual
values, which is calculated via Eq. (13) below:

MAPE =
1
N

N∑
d=1

∣∣∣∣yd − ŷd
yd

∣∣∣∣ . (13)

The best hyperparameter values obtained via the grid
search with cross validation are listed in Table IV, wherein
the MSE of yd and ŷd is 0.0425. In addition, the MAPE
of the proposed model is 4.8545%, which is less than
10%. Therefore, it is a highly accurate prediction model.
The benchmark of MAPE < 10% indicates highly accurate
forecasting, and that of 10%≤MAPE < 20% indicates good
forecasting.

After the face temperature detectionmodel is calibrated,
the scatter plot for the predicted values versus standardized
residuals between 25◦ C and 40◦ C is shown in Figure 4,
wherein the residuals are all scatted around the 0 dashed line
and fall within±2 standard deviations of the 95% confidence

J. Imaging Sci. Technol. 010403-8 Jan.-Feb. 2022



Tung, Wang, and Su: Real-time face mask-wearing detection and temperature measurement based on a deep learning model

Figure 4. The scatter plot for the predicted values versus standardized
residuals of the face temperature detection model.

interval, except for 2 predicted values containing larger
residuals. The residuals of the predicted values between 35◦
C and 39◦ C all fall within±2 standard deviations, indicating
that the face temperature detection model in this study is
applicable to the measurement of face temperature.

4. CONCLUSION
As of 2021, COVID-19 continues to spread all over the
world.Wearing face masks andmeasuring body temperature
remain to be the most important basic requirements for
epidemic prevention. The present study used the multi-task
RetinaFace framework for face detection and mask-wearing
detection, and adopted MobileNet as the backbone because
of its less parameter quantity and computation, which
facilitates real-time feature extraction as well as computation
and deployment of the detection system in the edge device.
For the majority of object classification learning algorithms,
the focal loss function was adopted to avoid the problem
that the class distribution of data are highly unbalanced,
which results in class imbalance. Consequently, the present
study replaced the hyperparameter value α with dynamic
value α, which was applied to the subtask training stage of
the mask-wearing detection in order to improve detection
accuracy and avoid class imbalance.

MAFA and Wider Face datasets were utilized in this
research; a total of 7,959 samples (including the pictures
of human faces, faces with masks and masquerades on
them). The parameter quantity reached 0.42 M, and the
computation quantity arrived at 2.039 GFLOPs. In terms
of face detection accuracy, the accuracy of AP for VOC
2007 was 0.8958, and AUC 0.8623, which indicates that the
detection accuracy of this model is high. In addition, the
detection accuracy of MAFA was 0.787, and as this study
focused on real-time face detection, MobileNet was set as the
backbone for its low parameter quantity and computation.
Regarding the accuracy of mask-wearing detection, the
accuracy of mAP for COCO arrived at 0.9784, and AUC
0.9518, revealing that the detection accuracy of this model
is very high. As for the validation of thermal imaging

temperature correction model, the MSE arrived at 0.425 and
the MAPE reached 4.8545, indicating that the model has
highly accurate forecasting. In order to achieve safe and fast
face temperature detection, this study adopted the Lepton 3.5
thermal camera module developed by FLIR and performed
real-time temperature calibration. The experimental results
for the SVR temperature detection model can only represent
the higher prediction accuracy that can be achieved through
a specific hardware combination, whereas those for other
types of thermal cameras still need to be verified. This study
used dynamic value α to modify the focal loss function
of the face mask wearing classification task. Although it
can improve the accuracy of multi-task learning, it is only
applicable to additional sub-task classification. Moreover,
the actual application will be limited by the accuracy of
face detection, so that the accuracy of sub-tasks will reduce.
Consequently, not only does future research need to focus
on the accuracy of sub-task detection, but it also needs to
enhance the accuracy of face classification at the same time,
thereby lifting the overall object detection and recognition
accuracy.

The detection model proposed in this study combines
real-time mask-wearing detection with face temperature
measurement, which can help to quickly measure the body
temperature and detect whether one wears face masks
properly in the context of COVID-19, so as to reduce the risk
of epidemic spread.
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