
Journal of Imaging Science and Technology R© 66(1): 010506-1–010506-27, 2022.
c© Society for Imaging Science and Technology 2022

A Comprehensive Halftone Image Quality Evaluation of
First- and Second-order FMHalftones

Sasan Gooran
Linköping University, Media and Information Technology, Department of Science and Technology, Norra grytsgatan 10A,

Norrköping 60233, Sweden
E-mail: sasan.gooran@liu.se

Abstract. Halftoning is a crucial part of image reproduction in
print. For large format prints, especially at higher resolutions, it is
important to have very fast and computationally feasible halftoning
methods of good quality. The authors have already introduced
an approach to obtain image-independent threshold matrices
generating both first- and second-order frequency modulated
(FM) halftones with different clustered dot sizes. Predetermined
and image-independent threshold matrices make the proposed
halftoning method a point-by-point process and thereby very fast. In
this article, they report a comprehensive quality evaluation of first-
and second-order FM halftones generated by this technique and
compare them with each other, employing several quality metrics.
These generated halftones are also compared with error diffusion
(ED) halftones employing two different error filters. The results
indicate that the second-order FM halftoning with small clustered dot
size performs best in almost all studied quality aspects than the first-
and second-order FM halftoning with larger clustered dot size. It is
also shown that the first- and second-order FM halftones with small
clustered dot sizes are of almost the same quality as ED halftones
using Floyd–Steinberg error filter and of higher quality than halftones
generated by ED employing Jarvis, Judice, and Ninke error filter.
c© 2022 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.1.010506]

1. INTRODUCTION
Since many of the reproduction devices, such as printers, are
limited to only a few output states (printing inks), digital
halftoning, which is the process to convert a continuous-tone
image to a pattern of binary pixels, is one of the most
essential parts of printing. Since the human eye is limited
in its capacity to resolve small dots and dots close to each
other, the human eye is not able to distinguish between the
con-tone image and the binary one if the viewing distance is
sufficiently far or/and the dots are sufficiently small.

Halftoning algorithms are commonly divided into two
main sub-categories, called amplitude modulated (AM) and
frequency modulated (FM). In AM halftones, i.e., periodic
clustered-dot halftones, the size of the dots is varied while
their spacing is constant. The FM methods, themselves,
can be categorized into two sub-groups, which we refer
to as first-order FM (also called dispersed-dot halftones)
and second-order FM (also called stochastic clustered-dot
halftones). In the first-order FM, the size of the dots is
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constant while their frequency is variable. In the second-
order FM, the size and the frequency are both varied [1].
Regarding the computational process, halftoning methods
can be divided into a number of categories, from point-by-
point ordered dithering [2] to error diffusion [3] to advanced
iterative halftoning methods such as direct binary search
(DBS) halftoning algorithm [4]. In point-by-point ordered
dithering, or any other point-by-point halftoning, pixels in
a cone-tone image are converted to black or white pixels
based on a simple comparison with a threshold, making
them the fastest halftoning technique. In error diffusion
(abbreviated to ED in this article), the current pixel value
is, at first, compared to a threshold, and the same position
in the output halftone is set to 1 if the pixel value is greater
than the threshold. Otherwise, a 0 is set at that position. An
error is then calculated and diffused to neighboring pixels
using a so-called error filter. This algorithm starts at one
pixel and scans the image, usually one row and one pixel
at a time, and terminates when the last pixel is processed.
Therefore, this algorithm is not terminated until all pixels
have been processed, making it slower than point-by-point
halftoning algorithms. The original or non-modified ED is
simple but suffers from correlated artifacts and directional
hysteresis [2]. Hence, there have beenmanymodifications to
improve this algorithm reported in literature [5, 6]. The itera-
tive halftoning methods, such as DBS [4] or IterativeMethod
Controlling the Dot Placement (IMCDP) [7], operates on the
whole image and usually result in higher quality halftones but
at the cost of high computational complexity.

For high resolution prints, especially large format
prints, it is very important that the halftoning process
is fast but still of good quality. For example, in order
to produce a printout at 1200 dpi of the size of an A3
page, i.e., approximately 12× 16 inches2, an image of size
14 400 × 19 200 pixels is to be halftoned. If the iterative
methods or even ED methods were directly applied to such
a large image, it would require a large amount of data
to be processed and many operations to be performed,
making the computational procedure very slow. Just to give
an indication of the computational complexity, consider the
ED method using Floyd–Steinberg filter with four elements
being applied to the image in the above example. At
each pixel, in addition to the comparison to a threshold,
four multiplications and four additions/subtractions (one to
calculate the error and three to diffuse the error) are also
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required. For the example above, it means nearly 1.1 billion
additions and 1.1 billion multiplications. Furthermore, since
the result is not obtained in this method until the last
pixel in the scanning order is processed, they cannot be
performed by parallel processing. In [1], a method, referred
to as point-by-point IMCDP in this article, is proposed
that generates image-independent threshold matrices for
first- and second-order FM halftoning. Predetermined and
image-independent threshold matrices make the proposed
halftoning method point by point and thereby very fast.
The only operation that is required is a comparison per
pixel. In addition, this method has the benefit that it can
be performed by parallel processing. The point-by-point
IMCDP is thoroughly reported in [1] and briefly described
in Section 2.

The main goal of this article is to report a thorough
study of the properties and a quality evaluation of the first-
and second-order FM monochromatic and color halftones
generated by point-by-point IMCDP. The characteristics
and the quality of these halftones are compared with ED
and ordered dithering methods. Four important objective
quality measures, including mean squared error, gray level
representation, graininess, and sharpness, are going to be
implemented formonochromatic halftones. Three important
objective quality measures for color halftones, including
spatial-CIELAB 1E, graininess, and sharpness are also
implemented. These quality measures are all applied on the
perceived printed halftones, which is achieved by using a
printer model and an eye model. The printer model used in
this article is the dot-overlap model, and the eye model is
a Gaussian function approximating the impulse response to
Mannos and Sakrison’s eye sensitivity function. Thesemodels
are briefly described in this section. In order to apply the
eye model to color halftones, spatial-CIELAB (S-CIELAB)
filtering is used, which is also shortly described in this
section.

1.1 Printer Model
The printer model used in this article is the dot-overlap
model, thoroughly described in Refs. [8] and [9]. In this
printer model, it is assumed that the printed dots are circular
rather than square and they are larger than the minimal
covering size, as illustrated in Figure 1. In this figure, b(m, n)
is the binary (halftone) image, in which the empty pixels are
supposed to be 0. There are four printed dots illustrated in
this figure. The printer model output, bp(m, n), is obtained
by

bp(m, n)=

{
1, if b(m, n)= 1
f1α+ f2β − f3γ, if b(m, n)= 0,

(1)

where each element (m, n) in bp is dependent on b(m, n)
and its eight neighbors. The parameter f1 is the number of
horizontally and vertically neighboring dots that are black, f2
is the number of diagonally neighboring dots that are black
and not adjacent to any horizontally or vertically neighboring
black dot, and f3 is the number of pairs of neighboring black

Figure 1. The dot-overlap model.

dots in which one is a horizontal neighbor and the other
is a vertical neighbor. The area of each square pixel is T 2,
where T denotes the height/width of each pixel as shown in
Fig. 1. What the parameters α, β , and γ are and how they
are calculated are thoroughly described in Ref. [8]. There is
an important parameter in this model called ρ, which is the
ratio of the actual dot radius of a printed dot to the ideal dot
radius, which is equal to T/

√
2. With the ideal radius, we

mean the radius of the smallest circle that covers an entire
square. Therefore, the larger the ρ, the more the impact of
the printer.

1.2 Eye Model
The reason halftoning works is that the eye attenuates higher
frequencies. There have been a number of models proposed
in different research works to estimate the modulation
transfer function (MTF) of the eye. In this article, we employ
Mannos and Sakrison’s estimation, thoroughly described in
Refs. [9] and [10]. The MTF of the eye according to Mannos
and Sakrison is

H(f )= 2.6(0.0192+ 0.114f )e−(0.114f )1.1 , (2)

where the frequency f is in cycles/degree. This MTF is
plotted in Figure 2(a). As seen in this graph, the eye is most
sensitive to frequencies around 8 cycles/degree according to
this model. It has been found in Ref. [9] that the impulse
response of the 1-D eye filters can be well approximated by
Gaussian functions with an appropriate standard deviation
(σ ). Note that, the impulse response is specified in degrees of
visual angle and the spacing of the dots is given by,

τ ≈ 1/RD radians=
180
πRD

degrees, (3)

where R is the print resolution in dpi, and D is the
viewing distance in inch. The frequency will then be f =
1/τ = (πRD/180) cycles/degree. As explained in Ref. [9],
a Gaussian filter with σ = 0.0095 degrees is virtually
identical to the impulse response of the 1-D eye filter.
The standard deviation σ = 0.0095 degrees corresponds to
σ = 0.0095/τ = 0.0095πRD/180 pixels. For example, for
R = 600 and D = 15, the standard deviation is σ ≈ 1.5
pixels. A Gaussian function approximating the 1-D impulse
response of the eye filter for R= 600 andD= 15 is shown in
Fig. 2(b).
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Figure 2. (a) The MTF of the eye (according to Mannos and Sakrison). (b) The impulse response of the Gaussian function representing the 1-D best-fit eye
model for print resolution R = 600 dpi, and viewing distance D = 15 inches.

1.3 Spatial-CIELAB
Spatial-CIELAB (S-CIELAB) filters are used in this article
to mimic the human visual system (HVS) to simulate
the perceived printed color halftones [11]. To apply the
S-CIELAB filtering, an image is first converted to CIEXYZ
color space and then linearly transformed to an opponent
color space, represented by a luminance channel (O1), and
two chromatic, i.e., red–green (O2) and blue–yellow (O3),
channels by

O1 = 0.279X + 0.720Y − 0.107Z
O2 =−0.449X + 0.290Y − 0.077Z
O3 = 0.086X − 0.590Y + 0.501Z .

(4)

These three images are then filtered by three filters repre-
senting the sensitivity functions of the eye. The luminance
channel is filtered by a band-pass filter already discussed
in Section 1.2 and shown in Fig. 2(a), and the other two
channels by two different low-pass filters [12]. As shown in
Ref. [12], eye sensitivity function for the blue–yellow channel
has a lower cut-off frequency than the one representing
the red–green channel. The sensitivity drops to its half at
around 20 cycles/degree for red–green and at around 10
cycles/degree for blue–yellow channel. The filtered opponent
color spacematrices are then converted back toCIEXYZwith
inverse matrix operations and thereafter are transformed
into CIELAB color space, resulting in three matrices
representing L*, a*, and b* components of S-CIELAB. The
resulting CIELAB images can be used as both a full-reference
and a no-reference quality metric, discussed in Sections 4.1.2
and 4.3.2, respectively.

The remainder of this article is organized as follows.
Section 2 provides a brief description of the point-by-point
IMCDP method. In Section 3, two important FM halftone
properties; blue/green-noise characteristics and dot gain,
are studied for point-by-point IMCDP and error diffusion
generated halftones. In Section 4, twelve different halftones
are compared with each other based on four halftone quality
measures for monochromatic and three quality metrics for
color halftones. In Section 5, halftone images generated
by the examined halftoning methods are illustrated and
Section 6 provides a brief summary and conclusion.

2. POINT-BY-POINT IMCDP, FIRST- AND
SECOND-ORDER FMHALFTONES

This section starts with a subsection describing the approach
to generate first- and second-order FM threshold matrices to
halftone monochromatic images. This is followed by another
subsection describing how different threshold matrices for
different color channels should be designed to obtain
independent, dot-on-dot and dot-off-dot printing.

2.1 Point-by-Point IMCDP: Monochromatic
As discussed in Section 1, it is desirable to have halftoning
techniques of good quality that are fast in operation. There
are different methods reported in literature that are able
to generate different halftone structures, dot shapes, and
alignments by creating thresholds to be applied to an input
image on a point-by-point basis [1, 13].

The point-by-point IMCDP halftoning algorithm gen-
erates image-independent threshold matrices creating first-
and second-order FM halftones. This point-by-point tech-
nique is based on an iterative halftoning method called
Iterative Method Controlling the Dot Placement (IMCDP),
thoroughly described inRef. [7]. The IMCDPmethod, briefly
described, starts with a blank image the same size as the
original image and places the first dot at the position where
the original image is darkest, i.e., holds the maximum pixel
value. It ensures that this position will not be found as
the maximum again by setting a very small number at
this position in the original image. The effect of this dot
placement is then fed back into the halftoning process by
subtracting a neighborhood of the position of the found
maximum by a filter. We refer to this as the feedback
process from now on. By doing that, the probability to
find the next maximum in that neighborhood is reduced.
This process proceeds and in each iteration one dot is
placed at the position of the maximum pixel value and
the effect of the placed dot is fed back by an appropriate
filter until a predetermined number of dots are placed. In
point-by-point IMCDP, instead of an original image as the
input, an image (a matrix) holding uniformly distributed
pseudo-random numbers is used. The generated threshold
matrix will be the same size as this input random matrix.
Another difference is that, in IMCDP, a pre-decided number
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of pixels are iteratively set to 1 in the initial blank image.
In this point-by-point method, the initial blank matrix is
iteratively filled by successive integers starting from 1 to
the number of elements in the matrix. For example, for a
256× 256 threshold matrix, the matrix is filled by successive
integers from 1 up to 2562

= 65,536. In Ref. [1], it is also
thoroughly described how one can generate the threshold
matrix in a way that dot distributions (or dot shapes) on
both sides of the mid-tone, i.e., 50%, are symmetric. Since
the threshold matrices are usually smaller than the images
being halftoned, they need to be tiled in order to cover the
whole image. Thus, cutting the feedback filter, when outside
the border of the matrix will cause boundary/tiling artifact,
where the matrices are tiled. This issue is managed in this
method by performing a wraparound process [1]. The most
important part of the generation of a threshold matrix is
the feedback filter. Different appropriate filters can generate
different halftone structures, shapes, and alignments [1].
In order to generate well-formed first-order FM halftones
having blue-noise characteristics, the following Gaussian
function is used to perform the feedback process

f (m, n)= e−(m
2
+n2)/2σ 2

. (5)

In order to find an optimal standard deviation (σ ), a number
of different thresholdmatrices were generated using different
σ :s. The obtained halftone images using these threshold
matrices were then compared to the original image using the
mean squared error, discussed in Section 4.1.1. We found
that σ = 1.7 generates threshold matrices that result in the
smallest average mean squared error when tested on many
different test images. Therefore, in this article, to generate
first-order FM threshold matrices, we use the filter in Eq. (5)
with σ = 1.7. In Section 3.1, it is shown that these first-order
FM halftones have blue-noise characteristics. A number of
halftone images using this threshold matrix are illustrated in
Section 5.

As discussed earlier, another important aspect of point-
by-point IMCDP is that, it can also generate threshold
matrices obtaining second-order FM, i.e., green-noise [14],
halftone structures. This is achieved by using the following
filter in the feedback process

h(m, n)= e−(m
2
+n2)/2σ 2

1 − e−(m
2
+n2)/2σ 2

2 . (6)

The filter in Eq. (6) is a Gaussian function subtracted from
another Gaussian function with larger standard deviation,
i.e., σ1 > σ2. By this filter, the pixel values around the found
maximum are decreased with a radius decided by σ1. After
the single dots have been distributed, the dots start to cluster
and the maximum size of the clustered dots will depend
on σ2. By appropriate choices of σ1 and σ2, it is possible
to meet a specific demand for the size of the clustered dot
at a certain gray level. In this study, we use σ1 = 1.7 as in
the first-order FM. In order to generate second-order FM
halftones with three different clustered dot sizes, i.e., small,
medium, and large, we use σ2 = 0.5, σ2 = 0.6, and σ2 = 0.7,
respectively. In Section 3.1, it is shown that these generated

second-order FM halftones have green-noise characteristics.
Several halftone images using these threshold matrices are
illustrated in Section 5.

2.2 Point-by-Point IMCDP: Color
Since periodic clustered halftones (i.e., AM) usually suffer
from moiré, second-order FM halftones provide a solution
because of their stochastic nature of distributing the clustered
dots. FM color halftoning is usually performed by halftoning
each color channel independent of the other channels.
However, dot-off-dot halftone structures have been proposed
in literature, with the advantage of producing smoother
halftones and a larger gamut while using less ink compared
to independent color halftoning [7, 13]. In order to explain
how our proposed point-by-point method is able to generate
dot-off-dot halftone structures, let us for simplicity focus
on two colorants, for example, cyan and magenta and call
the threshold matrices for these two channels Tc and Tm,
respectively. In the CMY print, the yellow channel is usually
halftoned independent of the other two because of its
low contrast on white paper [7, 15]. If identical threshold
matrices are used for C and M, i.e., Tm = Tc , the dots in C
andM channels will be placed precisely at the same positions
producing a dot-on-dot printing. If two different threshold
matrices Tc and Tm are generated and used for C and M,
different colorant dots are placed independent of each other,
although the same filters and parameters have been used to
generate both matrices. The reason is that the input image to
point-by-point IMCDP is a randommatrix and it will change
from time to time. On the other hand, if one of the threshold
matrices, for example, Tc , is generated and the other one
is computed by Tm = 1 − Tc , provided Tc is normalized
between 0 and 1, then the overlap between the two colorants
will not occur as long as the sum of their coverage does not
exceed 100% [1]. Note that, in the operation 1− Tc , by 1
we mean a matrix of ones the same size as Tc . In order to
illustrate the differences between these three strategies, a CM
color patch with 50% cyan and 50% magenta is halftoned by
second-order FM (σ1 = 1.7 and σ2 = 0.6) using dot-on-dot,
independent, and dot-off-dot printing. Figure 3(a) shows
the dot-on-dot printing, being generated using Tm = Tc .
In this case, there is 50% blue (magenta on cyan) and
50% non-printed area. In Fig. 3(b), independent structure
is illustrated, for which the threshold matrices were created
by running the same code twice, obtaining two different
threshold matrices Tc and Tm. In this halftone, there is 25%
cyan, 25% magenta, 25% blue, and 25% non-printed area,
according to Demichel’s equations [16]. Fig. 3(c) shows the
dot-off-dot printing, being generated using Tm = 1 − Tc .
Since the sum of the coverage is equal to 100%, it is still
possible to completely avoid blue dots. Consequently, in
this color halftone, there is 50% cyan and 50% magenta.
Note that, although the original color patch is the same, the
three color halftones in Fig. 3 will result in different colors,
especially when printed [7, 15]. More color halftone images
will be illustrated in Section 5. In order to achieve dot-off-dot
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Figure 3. Second-order FM (σ1 = 1.7 and σ2 = 0.6) color halftones with 50% cyan and 50% magenta. The C and M channels have been halftoned
(a) using dot on dot (b) independently (c) using dot off dot.

structures for three colorants, for example, C, M, and Y, we
use Tm = 1−Tc and Ty = 2 · |1/2−Tc | [1].

3. HALFTONE PROPERTIES
As mentioned in Section 2, well-formed first- and second-
order FM halftones should have blue- and green-noise
characteristics, respectively. First in this section, we study
whether or not the halftones obtained by point-by-pint
IMCDP generated threshold matrices possess these char-
acteristics. Another important factor that should be taken
into account in printing, especially at high resolutions, is
dot gain. In this section, we also study the dot gain for our
proposed first- and second-order FM halftones employing
the printermodel discussed in Section 1.1 using different ρ:s.
Comparisons in terms of these two properties between our
proposed and error diffusion halftones using two different
error filters are also reported in this section.

3.1 Blue- and Green-noise Characteristics
Well-formed first-order FM halftones have blue-noise char-
acteristics, which means that the quantization noise is
shifted toward higher frequencies. Well-formed second-
order halftones, on the other hand, possess green-noise
characteristics, meaning that the quantization noise contains
smaller low-frequency and high-frequency components.
One of the approaches to assess this property is to study
the quantization noise spectrum (QNS), i.e., the Fourier
spectrum of the difference between the original and the
halftone image, as defined in Eq. (7).

Q(u, v)= |fftshift(fft2(g (m, n)− b(m, n)))|, (7)

where g (m, n) and b(m, n) are the original and the halftone
image, respectively, and fft2 denotes the two-dimensional
Fourier transform. The function fftshift is used to shift the
zero-frequency to the center of the spectrum, making the
lower frequencies be concentrated around the center. Since
the dc-term usually dominates the values of a spectrum, the
log transformation, as shown in Eq. (8), is used to illustrate
the QNS.

LogtransformQ(u, v)= log(1+Q(u, v)). (8)

In order to illustrate the difference between first- and
second-order FM halftones, a patch at 25% coverage has
been halftoned by four different halftoning approaches,
namely; first-order FM (σ = 1.7) and second-order FM
using (σ1 = 1.7 and σ2 = 0.5), (σ1 = 1.7 and σ2 = 0.6),
and (σ1 = 1.7 and σ2 = 0.7), which are shown in Figure 4
(top row). Fig. 4 (bottom row) shows the log transformation
of the QNS for these four halftones. It is worth pointing
out that, in this article, we always use σ = 1.7 to generate
first-order FM halftones by point-by-point IMCDP, and
therefore from now on, we skip specifying the σ value for
it. To generate second-order FM halftones, in this article, we
always use σ1 = 1.7, and therefore different second-order
FM halftones, i.e., small, medium, and large clustered dot
size, are only referred to as by their σ2 value. Note that,
in Fig. 4 (bottom row), the darker the tone, the lower
the values. There are two criteria for a well-formed FM
halftone. The first one is that the quantization noise is
shifted toward the higher frequencies, and the other one is
that the dots are placed homogeneously which results in a
circularly symmetric QNS. Thus, the first observation is that
all four spectra in Fig. 4 are circularly symmetric, implying
homogeneous dot placement. As seen in Fig. 4(a), the noise
is shifted toward the higher frequencies where the human eye
is less sensitive. Fig. 4(b)–(d) show that the strongest noise is
shifted to mid-frequencies. Smaller clustered dot size makes
the quantization noise be shifted toward higher frequencies,
which was expected because the smaller clustered dot size
means that the second-order FM approaches the first-order
FM. Whether or not the second-order FM is able to shift
the noise toward the frequencies where the human eye
is not sensitive depends on the viewing distance and the
print resolution, which will be discussed in more detail in
Section 4.1.1.

In order to have a better analysis of the characteristics
of the proposed first- and second-order halftones, they are
compared with the well-known error diffusion halftoning.
Therefore, the patch at 25% has been halftoned also by
original error diffusion (ED) with Floyd–Steinberg (FS)
and Jarvis, Judice, and Ninke (J) error filters, shown in
Figure 5(a) and (c), respectively. The halftone created by ED
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Figure 4. Halftones at 25% coverage together with their corresponding quantization noise spectrum. The halftoning methods are: (a) first-order FM,
(b) second-order FM (σ2 = 0.5), (c) second-order FM (σ2 = 0.6), and (d) second-order FM (σ2 = 0.7).

Figure 5. Halftones at 25% coverage together with their corresponding quantization noise spectrum. The halftoning methods are: (a) error diffusion (FS),
(b) modified error diffusion (FS), (c) error diffusion (J), and (d) modified error diffusion (J).

(FS) is highly structured, which is also reflected in its QNS.
Although, the halftone generated by ED (J) looks better than
that created by ED (FS), it is still not well formed, because
its QNS is not circularly symmetric. Another important
observation is that the ED (J) method behaves more like
a second-order FM halftoning because the quantization
noise has been shifted toward mid-frequencies. In order
to improve error diffusion in this aspect, we have done
a simple modification. In the original error diffusion, the

threshold value is always 0.5, but in our modification we
instead use a random number between 0.25 and 0.75. This
modification reduces the structures but results in noisier
halftones. From now on, we use the abbreviation ED for
the original non-modified error diffusion and MED for this
simple modified version of error diffusion. The error filters
used in the method are referred to as FS (Floyd–Steinberg)
and J (Jarvis, Judice, and Ninke). Fig. 5(b) and (d) show
the halftone results created by MED (FS) and MED (J),
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Figure 6. RAPS curves for a 10% halftone patch halftoned by: (top left) first-order FM. (Top right) Second-order FM (σ2 = 0.5, 0.6, and 0.7). (Bottom left)
Original and modified error diffusion (FS). (Bottom right) Original and modified error diffusion (J).

respectively, and their corresponding QNS. The QNS in (b)
verifies that this halftone is more well formed than ED
(FS). The QNS in (d) shows that the halftone created by
MED (J) behaves more like a first-order FM than created
by ED (J). Note that, although the MED methods create
more well-formed halftones than ED methods, their results
are still not very well formed because of the lack of circular
symmetry, which is also reflected in their radially averaged
power spectrum, discussed shortly.

Another approach to analyze whether a first- or second-
order FM halftone is well formed is to illustrate its radially
averaged power spectrum (RAPS) curve. The peak of the
RAPS curve of a well-formed FM halftone is at its principal
frequency [2, 17]. For a first-order FM halftone, the principal
frequency is fg =

√g for 0 < g ≤ 1/2 and fg =
√

1− g
for 1/2 < g < 1, where g is the gray level [2, 17]. For
a second-order FM halftone, the principal frequency is
fg =

√
g/M for 0 < g ≤ 1/2 and fg =

√
(1− g )/M for

1/2 < g < 1, where g is as before and M is the average
clustered dot size [14]. Figure 6 (top row) shows the RAPS
curves and the corresponding principal frequencies for first-
and second-order FMhalftones at 10% coverage. The top-left
graph shows the RAPS curve for the proposed first-order FM
halftone and the principal frequency at

√
0.1= 0.316. The

top-right graph shows the RAPS curves for the second-order
FM halftones with (σ2 = 0.5), (σ2 = 0.6), and (σ2 = 0.7).
The average clustered dot sizes have been computed by first
labeling the binary halftones using 8-connectivity and then
computing the area of each clustered dot and taking their
average. The average clustered dot size for these second-order
FM halftones at 10% are 1.03, 1.21, and 1.48, yielding the
principal frequencies of 0.311, 0.288, and 0.260, respectively.
This graph also shows that with smaller clustered dot size
the second-order FM approaches first-order FM. The RAPS

curves for halftones at 10% halftoned by ED and MED
methods using FS and J filters are illustrated in Fig. 6 (bottom
row) together with the corresponding principal frequencies.
In order to better illustrate the RAPS curves, these curves
were clipped at 2.5 because the peaks for ED methods were
very high. These RAPS curves reveal that MED methods
generate halftones with better blue-noise characteristics, but
they are still not as well formed as the proposed first-order
FM.

3.2 Dot Gain
The printed dots usually become larger than their size
in the corresponding digital bitmap. This phenomena is
referred to as dot gain [18]. Dot gain is basically divided
into two main categories; physical/mechanical and optical
dot gain. Physical dot gain refers to the phenomena where
the printed dots become physically larger, while the optical
dot gain is because of the diffusion of the light in the paper
or substrate [18]. There are many factors and parameters
affecting dot gain. Some of the most important parameters
are paper quality, type of printer or print press, print
resolution, and halftoning. Dot gain causes the printed
halftone image to be darker than its corresponding digital
bitmap. Hence, the effect of dot gain is usually compensated
for prior to halftoning. However, there have been halftoning
methods, such as least-squares model-based halftoning
reported in Ref. [9], that take into account the dot gain
effect within the halftoning algorithm. Since in the first-order
FM halftones, the printed dots are isolated, the dot gain
effect is obviously greater than in AM and second-order FM
halftones. In this article, we are going to employ the printer
model shortly discussed in Section 1.1 to simulate the dot
gain effect. The reason using a printer model to simulate dot
gain is that we want to give a general study not necessarily
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Figure 7. (a) Dot gain curves for the proposed first-order FM for ρ = 1.0, ρ = 1.1, and ρ = 1.2. (b) Dot gain curves for the proposed first- and second-order
FM with (σ2 = 0.5), (σ2 = 0.6), and (σ2 = 0.7) for ρ = 1.2.

Figure 8. Dot gain curves for original and modified error diffusion for ρ = 1.2. (a) ED (FS) and MED (FS). (b) ED (J) and MED (J).

restricted to one type of printer or print press, paper quality
etc. Figure 7(a) shows three dot gain curves for the proposed
first-order FMhalftones using ρ = 1.0, ρ = 1.1, and ρ = 1.2.
As expected, the larger theρ, the larger the dot gain.Different
ρ values could represent the dot gain in different printing
situations. For instance, ρ = 1.2 gives a dot gain at 50%
very close to a first-order FM halftone printed at 1200 dpi
by an offset print press on a coated paper [19]. Fig. 7(b)
shows four dot gain curves for first- and second-order FM
with (σ2 = 0.5), (σ2 = 0.6), and (σ2 = 0.7) simulated using
ρ = 1.2. As expected, the smaller the clustered dot size, the
larger the dot gain. As stated earlier, in order to take into
account the effect of dot gain, the original con-tone image
is commonly compensated for dot gain prior to halftoning
process. Let us explain this by an example. Assume that a
patch at 50% is supposed to be printed using first-order FM
halftoning in a print condition represented by ρ = 1.2. If
the coverage in the digital bitmap is 50%, according to the
corresponding dot gain curve in Fig. 7, i.e., the solid-line
curve, the coverage of the printed halftone will be 82%
because the dot gain is 32% at 50% reference coverage. In
order to get 50% coverage after print, the coverage in the
digital bitmap should be 24%. Therefore, each pixel value in

the original image is compensated for dot gain the same way
before being halftoned. This will result in an image lighter
than the original, which will have the same tonal values as
the original image after being halftoned and printed. Figure 8
shows the dot gain curves for ED andMEDmethods with FS
and J filters for ρ = 1.2. As can be seen in this figure, there is a
roof-like peak at 50% for original error diffusion. The reason
is that at 50%, ED will result in a checkerboard structure,
resulting in very high dot gain. The modified error diffusion
has, on the other hand, a more symmetrical dot gain curve.
Another observation is that ED (J) results in a lower dot gain
than ED (FS). The reason is, as discussed in Section 3.1, that
ED (J) behaves more like a second-order FM halftone.

4. QUALITY ASSESSMENTS
In this section, we analyze the quality of the halftones
created by point-by-point IMCDP method. Four different
such halftones are studied, including first-order FM, and
second-order FM with small, medium, and large clustered
dot size obtained by (σ2 = 0.5), (σ2 = 0.6), and (σ2 = 0.7),
respectively. Besides comparing these four halftones with
each other, their quality is also compared with four error

J. Imaging Sci. Technol. 010506-8 Jan.-Feb. 2022



Gooran: A comprehensive halftone image quality evaluation of first- and second-order FM halftones

Figure 9. The mean squared error is defined as the average squared difference between ge and bp,e .

diffusion halftones, including non-modified error diffusion
using Floyd–Steinberg filter (ED (FS)), and Jarvis, Judice,
and Ninke filter (ED (J)), and a simple modification of
error diffusion, discussed in Section 3.1, using these two
filters. These two modified approaches are abbreviated as
MED (FS) and MED (J) in the text. In order to give a
better indication of the obtained quality values, we also study
clustered and dispersed dot ordered dithering, using 8× 8
and 16× 16 threshold matrices, representing 82

+ 1 = 65
and 162

+ 1= 257 levels of gray, respectively. The clustered
dot ordered dithering using a 16 × 16 threshold matrix,
although resulting in many gray levels, will create large
halftone dots. Consequently, this halftone will mostly result
in quite poor quality values, but it is still studied to give a
better understanding of the quality values when compared
with other halftones. For the dispersed-order dithering,
Bayer’s approach to create threshold matrices is used [20].
The clustered and dispersed dot order dithering are referred
to as clustered dot ordered dithering (8× 8 or 16× 16) and
Bayer (8× 8 or 16× 16), respectively. Four important quality
measures for monochromatic and three measures for color
halftones are being used to evaluate the halftones.

4.1 Similarity
In most applications, one of the most important goals of
the reproduction process is to achieve a reproduction that
resembles the original image as much as possible. In this
section, mean squared error is used to study how close
the printed monochromatic halftones are to the original
image. For the color halftones, spatial-CIELAB1E is used to
calculate the perceived difference between the printed color
halftone and the original image.

4.1.1 Mean Squared Error
One of the measures to asses halftone image quality is to
calculate the squared error between the original con-tone
image and the halftone image as defined in Ref. [9]. As
discussed in Section 1, there are two important models that
should be taken into account when calculating the squared
error between a con-tone and a halftone image. The first one
is the printer model to simulate how a digital halftone image
will look like after being printed. The second model is the
human eye model, which should also be taken into account
because it is the human observer that will judge the quality.

Figure 9 shows the procedure we propose for calculating the
mean squared error between the original and the halftone
image. In this figure, g and gc are the original image and
the dot gain compensated original image, respectively. As
discussed in Section 3.2, the original con-tone image is
supposed to be compensated for dot gain prior to halftoning,
which is performed using the corresponding dot gain curve.
In Fig. 9, b and bp denote the halftone image and the halftone
image after the printer model has been applied, respectively.
The mean squared error is then defined as the average
squared difference between the perceived original and the
perceived printed halftone image, i.e., ge and bp,e, by

ε=
1

MN

M−1∑
m=0

N−1∑
n=0

(ge(m, n)− bp,e(m, n))2, (9)

where M and N are the number of the pixels in the height
and the width of these images. If the image pixels are
represented by 8 bits, the largest mean squared error will
be 2552

= 65,025, which, for instance, occurs between a
completely white and a completely black image. Note that,
the quality measure we propose here is a bit different than
the one suggested in Ref. [9]. In their strategy, they do not
compensate the original image prior to halftoning, as it is
supposed to be taken into account inside the halftoning
algorithm. In Ref. [9], it is stated that the error criterion used
in the least square model-based halftoning can be used to
evaluate the quality of any halftoning algorithm. Since the dot
gain is different for different halftones, we believe that this
quality measure cannot be used for all halftoning algorithms
without involving the dot gain compensation and therefore
proposing the modification presented in Fig. 9. The printer
model used is the dot-overlap model shortly described in
Section 1.1. In this study, two different print parameters
are used, namely; ρ = 1.1 and ρ = 1.2. Since our proposed
halftoning method operates point-by-point, we believe that
it is more suitable for high resolution prints, and therefore
we use the following two print resolutions, namely; R= 600
dpi for the printer parameter ρ = 1.1 and R= 1200 dpi for
ρ = 1.2. The eye model is the filter described in Section 1.2,
using the viewing distance of D= 15 inches.

Figure 10 shows the mean squared error for twenty-one
512× 512 pixels constant/uniform patches at 5%–95% in a
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Figure 10. Mean squared error for constant patches between 5% and 95% with a step of 5% for ρ = 1.1, R = 600 dpi, and D = 15 inches. (a) Proposed
first- and second-order FM. (b) Error diffusion and modified error diffusion with FS and J filters. (c) Comparing the best halftone in (a) and (b) and dispersed
dot ordered dithering (Bayer 16×16).

Figure 11. Mean squared error for constant patches between 5% and 95% with a step of 5% for ρ = 1.2, R = 1200 dpi, and D = 15 inches. (a) Proposed
first- and second-order FM. (b) Error diffusion and modified error diffusion with FS and J filters. (c) Comparing the best halftone in (a) and (b) and dispersed
dot ordered dithering (Bayer 16×16).

step of 5% coverage. The print parameters are ρ = 1.1 and
R= 600 dpi and the viewing distance is 15 inches. In (a), the
proposed first- and second-order FMhalftones are compared
with each other. As seen in this figure, the second-order
FM with σ2 = 0.5 results in slightly smaller error. In (b),
ED and MED methods with FS and J filters are compared
with each other, and in general ED (J) is better, although in
the mid-tones ED (FS) is slightly better. In (c), we compare
the best method among our proposed methods with the
best method among the error diffusion methods with the
best ordered dithering method, which is the dispersed dot
ordered dithering (Bayer 16× 16). The clustered dot order
dithering (16× 16) resulted in very large errors compared to
the others. As can be seen in (c), second-order FM (σ2 = 0.5)
is better for most of the patches and Bayer (16× 16) is the
worst.

Figure 11 shows the mean squared error for the same
patches with ρ = 1.2, R = 1200 dpi, and the same viewing
distance. As seen in (a), all four methods among our
proposed FM halftones result in almost the same errors, and
the second-order FM (σ2 = 0.6) results in slightly smaller
errors. As seen in (b), MED (FS) is the best method among
the error diffusion methods. Note that, ED (J) that was the
best method for ρ = 1.1 is the worst one for ρ = 1.2. The
error for ED (J) was around 900 for a patch at 95%, and
therefore its graph has been clipped in Fig. 11. A look at ED
(J):s dot gain curve in Fig. 8(b) reveals that 95% coverage

will be compensated to approximately 50%. Since ED at
50% results in a checkerboard structure, its dot gain has
a rapid change at 50%. As ED halftones at, for example,
49% and 50% behave very differently with regards to the
dot gain, small changes in reference coverage around 50%
might cause large errors. In (c), it can be seen that the
second-order FM (σ2 = 0.6) results in slightly smaller error
than MED (FS), while both of them result in much smaller
error than Bayer (16 × 16), which was the best among
the ordered dithering methods. The clustered dot order
dithering, again, resulted in very large errors. In order to
make a better comparison between the halftoning methods,
we also halftoned eight different 512 × 512 pixels test
images and calculated the mean squared errors for (ρ = 1.1,
R = 600 dpi, D = 15 inches) and (ρ = 1.2, R = 1200 dpi,
D = 15 inches). The test images are called Sari1, Sari2,
Contrast, Ramp, Curve, Lena, Glass, and Kids. The halftone
images of the first four test images are shown in Section 5.
The test image Curve is a grayscale image containing curvy
stripes of various width with two gray tones; 0.1 and 0.9.
The test image Lena is the grayscale version of the famous
image Lena used in image processing. The test images Glass
and Kids are both demo images in MATLAB, being squared
and resized to 512 × 512 pixels. The mean squared error
for (ρ = 1.1, R= 600 dpi) and (ρ = 1.2, R= 1200 dpi) are
shown in Tables I and II, respectively. In the next to the last
column, titled Av. 1, the average value of each row is shown.
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Table I. Mean squared error for eight test images (ρ = 1.1, R = 600 dpi, D = 15 inches).

Sari1 Sari2 Contrast Ramp Curve Lena Glass Kids Av. 1 Av. 2

FM-1st 49.5 72.6 53.9 38.0 58.3 49.9 38.3 20.4 47.6 43.2
FM-2nd (0.5) 42.4 69.3 51.2 32.0 62.1 41.7 32.4 14.6 43.2 37.7
FM-2nd (0.6) 49.1 74.8 57.1 35.4 64.1 48.0 38.2 17.2 48.0 41.7
FM-2nd (0.7) 65.1 88.7 68.1 43.5 72.7 60.5 48.2 21.9 58.6 51.5
ED-FS 27.3 57.1 42.4 32.7 64.7 35.5 23.4 28.7 39.0 37.6
MED-FS 51.0 69.3 56.4 50.9 66.4 48.0 45.6 18.8 50.8 54.6
ED-J 50.3 76.5 64.0 35.4 111.3 60.8 36.9 32.8 58.5 45.6
MED-J 98.1 100.4 86.4 78.9 95.5 85.1 78.5 28.2 81.4 83.8
Clustered-8 2281 1564 1455 1499 559 1864 1633 624 1435 1538
Clustered-16 7275 5086 4870 5165 2318 6195 5453 2363 4841 5263
Dispersed-8 80.8 90.8 65.9 51.7 55.4 79.6 55.3 30.5 63.8 61.3
Dispersed-16 78.3 90.1 68.2 51.1 51.1 79.6 54.0 29.3 62.7 59.7

Table II. Mean squared error for eight test images (ρ = 1.2, R = 1200 dpi, D = 15 inches).

Sari1 Sari2 Contrast Ramp Curve Lena Glass Kids Av. 1 Av. 2

FM-1st 16.4 21.0 18.5 9.8 23.2 17.2 13.0 7.9 15.9 13.3
FM-2nd (0.5) 13.5 19.2 19.0 8.3 28.6 14.9 11.1 6.2 15.1 12.0
FM-2nd (0.6) 13.4 20.4 18.9 8.3 32.1 15.1 11.6 6.0 15.7 12.0
FM-2nd (0.7) 15.2 22.1 20.2 8.0 36.4 15.4 12.4 6.5 17.0 12.6
ED-FS 17.9 14.6 17.0 9.2 25.8 21.4 18.6 10.7 16.9 17.1
MED-FS 12.8 12.1 13.4 8.8 17.6 14.1 11.6 6.6 12.1 12.0
ED-J 36.0 30.5 38.8 18.3 55.4 41.9 35.2 15.3 33.9 63.2
MED-J 21.7 20.2 19.9 13.5 32.1 22.7 18.4 7.4 19.5 18.7
Clustered-8 65.9 65.4 47.2 35.4 45.6 62.4 52.3 20.9 49.4 47.1
Clustered-16 2442 1667 1593 1632 687.5 2018 1776 671 1561 1682
Dispersed-8 43.8 34.6 25.1 18.0 32.0 35.5 26.4 17.8 29.2 26.2
Dispersed-16 33.0 28.7 24.2 14.7 22.4 30.3 24.1 14.7 24.0 20.6

In the last column, titled Av. 2, the average also includes
the squared error of halftoning the constant patches, whose
results were already shown in Figs. 10 and 11. As shown
in these tables, among our proposed methods, second-order
FM (σ2 = 0.5) is best in average at both print resolutions.
Among the error diffusion methods, ED (FS) is better for
R = 600, but MED (FS) is better for R = 1200. Among
the ordered dithering methods, Bayer (16× 16) is the best
method. In average, among all halftones, ED (FS) is the
best method for R = 600 while MED (FS) is the best one
for R = 1200. For the three test images Sari1, Sari2, and
Contrast, ED (FS) is much better than second-order FM
(σ2 = 0.5) for R = 600. This seems to be valid for images
containing most of the details in the mid-tones. When the
test image contains big areas of highlights and/or shadows,
ED (FS) loses its superiority, and sometimes it is even worse
than its modified version and our proposed methods, for
instance, for test images Curve and Kids. As for the print
resolution R= 1200, second-order FM (σ2 = 0.5) is slightly

better than ED (FS), and slightly worse thanMED (FS). Note
that, although ED (J) was the best error diffusion method for
constant patches printed at R = 600, it is quite poor when
it comes to regular test images. According to the results, it
can be concluded that the error diffusion methods behave
quite differently for different types of images. While one of
the error diffusion methods is much better for a specific type
of image, it is much worse for other types of images. Among
our proposed methods, second-order FM (σ2 = 0.5) is best
for most of the test images, and whenever it is not the best,
the difference to the best one is not huge. All four ordered
dithering methods are worse than others, as expected, and
clustered dot ordered dithering (16× 16) always results in
the largest mean squared error. Another observation is that
Bayer (16× 16) is only slightly better than Bayer (8× 8),
although the former one is able to represent 257, and the
latter one only 65 gray levels. This shows that the number
of gray levels being represented does not affect the mean
squared error considerably. It is worth mentioning that we
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Table III. S-CIELAB1Eab for eight test color images (ρ = 1.1, R = 600 dpi, D = 15 inches).

Sari1 Sari2 Contrast Ramp Curve Lena Greens Peppers Av.

FM-1st 10.8 8.0 9.1 14.3 13.6 18.1 11.8 15.7 12.7
FM-1st (dot off dot) 10.8 8.0 9.1 14.3 13.5 18.0 11.7 15.6 12.6
FM-2nd (0.5) 11.6 8.6 10.0 15.8 14.9 20.2 13.1 17.8 14.0
FM-2nd (0.6) 12.3 9.0 10.6 16.8 16.0 21.6 14.0 18.9 14.9
FM-2nd (0.7) 12.9 9.4 11.4 17.8 16.9 22.7 14.7 20.0 15.7
ED-FS 10.0 7.5 7.9 13.1 13.4 16.5 10.7 14.1 11.7
MED-FS 10.5 7.8 8.7 13.9 13.0 17.2 11.1 14.8 12.1
ED-J 11.1 8.6 9.0 14.7 15.3 20.1 13.2 16.6 13.6
MED-J 11.6 8.6 9.8 15.6 15.5 20.0 13.1 17.1 13.9
Clustered-8 17.2 12.5 15.6 24.7 23.6 32.0 20.0 27.4 21.6
Clustered-16 20.7 15.1 24.3 26.4 25.9 55.4 25.2 39.2 29.0
Dispersed-8 12.3 9.1 9.8 15.9 16.1 19.9 13.1 17.5 14.2
Dispersed-16 11.7 8.6 9.6 15.2 14.3 19.1 12.5 16.7 13.4

have also used the structural similarity (SSIM) metric to
compare different halftones to the corresponding original
image. The obtained results were very much in line with the
results of mean squared error, and therefore we chose not to
report them here.

4.1.2 Spatial-CIELAB1E
Section 1.3 provided a short summary of S-CIELAB filtering.
By this approach, one can convert a color image into an
image in CIELAB color space, taking into account the human
visual system’s three sensitivity functions. It is possible then
to use this method to compare two different color images,
for example, the reference/original and the printed halftone
image. The result will then be a two-dimensional matrix,
the same size as the images, where each pixel holds the
1E color difference value between the corresponding pixels.
The average of the pixel values of this matrix gives a 1E
value, indicating the color difference between the original
and the printed halftone image. As the sensitivity functions
of HVS have been included in the calculations, this1E value
represents the perceived difference between the two images.
In order to compare different halftoning methods, we have
chosen eight test color images and compensated them for
dot gain. Here, we assumed that all three color channels, i.e.,
C, M, and Y channels, have the same dot gain, represented
by the printer model that has been employed in this article.
However, we are aware that dot gain might be different for
different colorant inks, but this difference will have the same
impact on all halftones, and therefore, we believe this will not
change the final conclusion. The compensated color channels
are then halftoned by the halftoning methods, and thereafter
the printer model is applied to each halftone channel, as has
been done before for grayscale images. The simulation of
the printed halftones together with the original image are
used as the inputs to S-CIELAB metric, resulting in a 1E
value for each halftone and test image. Smaller 1–E value

indicates that the printed color halftone and the original
image are more perceptually similar. The eight test color
images are Sari1, Sari2, Contrast, Ramp, Curve, Lena,Greens,
and Peppers. The color halftone images Sari1 and Sari2
are shown in Section 5. The color image called Contrast
is the blue–yellow contrast image in Section 5. The image
called Ramp is a color ramp only consisting of cyan and
magenta, in which the C and M channels are identical.
The test color image Curve is a color image containing
curvy stripes of various width with two different colors,
light blue and dark blue. The test color image Lena is the
famous image Lena used in image processing. The test images
Greens andPeppers are both demo images inMATLAB, being
squared and resized to 512× 512 pixels. Table III shows the
1E values between these eight test color images and their
corresponding halftones. The print resolution is R = 600
dpi and the print parameter and the viewing distance are
ρ = 1.1 andD= 15 inches, respectively. The color difference
is calculated using the CIE1976 color difference formula
1Eab, which is the Euclidean distance between two colors
in the CIELAB color space. The color differences have also
been calculated using 1E94. Although 1E94 values were
different than 1Eab, they did not affect the conclusion
on the color halftone image quality. In Table III, besides
the previous twelve halftones, we also added first-order
FM using dot-off-dot printing, as explained in Section 2.2.
In this dot-off-dot method, only C and M channels have
been halftoned using dot off dot and the Y channel has
been halftoned independent of the two others. The last
column in this table, titled AV., contains the average color
difference value for each row. Note that, these halftones
have also been examined disregarding the compensation and
application of the printer model and all halftones (except
for ordered dithering) gave very close 1Eab, and therefore
we chose not to include those results. Note also that, the
1Eab difference between a completely black image and a
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Table IV. Absolute error in gray level (%) (ρ = 1.1, R = 600 dpi).

Mean Max Std

FM-1st 0.067 0.26 0.056
FM-2nd (0.5) 0.058 0.34 0.052
FM-2nd (0.6) 0.058 0.22 0.049
FM-2nd (0.7) 0.067 0.26 0.055
ED-FS 0.21 4.77 0.51
MED-FS 0.075 0.39 0.076
ED-J 0.25 10.4 0.74
MED-J 0.095 0.70 0.12
Clustered-8 0.70 2.57 0.54
Clustered-16 0.16 0.53 0.12
Dispersed-8 0.84 2.75 0.67
Dispersed-16 0.27 1.57 0.28

completelywhite image is 100.We also studied the S-CIELAB
1E for ρ = 1.2 and R = 1200, and the obtained color
differences for different halftoning methods were very close
to each other. Therefore, we decided not to include them in
this article.

To conclude the similarity measures, among our pro-
posed halftones, second-order FM (σ2 = 0.5, i.e., small
clustered dot size) is the best halftone for monochromatic
images printed at both R= 600 and R= 1200. This halftone
is best for all types of monochromatic images, except for
the test image Curve. When it comes to the color images,
this halftone is only slightly worse than first-order FM,
which is the best among our proposed halftones for color
images. As for the error diffusion methods, we observed
much more variations in quality. While ED (J) was best for
monochromatic constant images printed at R = 600, MED
(FS) was best for the same images printed at R = 1200.
For regular test images, ED (FS) was best when printed at
R= 600, but MED (FS) was best for the same images printed
at R = 1200. For color images, ED (FS) is slightly better
than MED (FS), while both of them are better than ED (J)
and MED (J). The final conclusion is that our proposed
halftones are more stable in terms of quality for different
types of images, and second-order FM (σ2 = 0.5) is the best
halftoning between all of the studied halftones in general. The
reason is that, this halftone is either better or slightly worse
than the best error diffusionmethod considering all different
types of monochromatic and color images.

4.2 Gray Level Representation
It was discussed in Section 4.1.1 that the number of gray
levels was not directly reflected in the calculated mean
squared error. Here, we want to examine how accurate and
how fast each halftone reacts to the change of gray level.
Therefore, we created a grayscale ramp in which the gray
levels were varied from 0 to 255, where each gray level
being 32 pixels wide. Thirty-two pixels mean 1.35 mm when
printed at R= 600 dpi and 0.68 mm at R= 1200 dpi, which
corresponds to f = 4.91 and f = 9.82 cycles/degree for the

Table V. Absolute error in gray level (%) (ρ = 1.2, R = 1200 dpi).

Mean Max Std

FM-1st 0.081 0.30 0.068
FM-2nd (0.5) 0.063 0.31 0.057
FM-2nd (0.6) 0.073 0.28 0.060
FM-2nd (0.7) 0.084 0.33 0.066
ED-FS 0.21 3.67 0.37
MED-FS 0.085 0.45 0.090
ED-J 0.28 12.5 0.84
MED-J 0.12 0.86 0.15
Clustered-8 0.79 2.95 0.65
Clustered-16 0.18 0.61 0.13
Dispersed-8 1.02 3.21 0.78
Dispersed-16 0.32 1.91 0.31

viewing distance of D= 15 inches, respectively (see Eq. (3)).
This ramp was then compensated for dot gain using the
dot gain curve specified to each halftoning method and
print resolution. Afterward, the compensated grayscale ramp
was halftoned by the corresponding halftoning method. The
printer model was then applied to the halftone ramps, using
ρ = 1.1 for R= 600 and ρ = 1.2 for R= 1200. The absolute
value of the difference in gray level between the input ramp
and the output ramp over each 32 pixels wide area was then
calculated, giving a gray level error array of size 1 × 256
for each halftone. There are different ways to illustrate
the results, such as plotting these gray level error arrays.
However, we noticed that, as the error could be quite different
for different halftones, plotting them in the same graph
would not give useful information. Therefore, we found it
more relevant to report the results by showing themean,max,
and standard deviation of each gray level error array in two
tables. Tables IV andV show these statistical data for (ρ = 1.1
forR= 600) and (ρ = 1.2 forR= 1200), respectively. First of
all, there is no significant difference between the two tables
and both show the same trend. As seen in both tables, our
four proposed halftones behave very similarly and there is
no significant difference between them. Among the error
diffusion methods, ED (FS) and ED (J) result in quite large
errors, especially largemaximumerrors. Themaximumerror
for ED (FS) and ED (J) occurs around the reference coverage
that is compensated to around 50%. Let us look at one of
these maximum values. As seen in Table V, the maximum
error for ED (J) is 12.5% and this occurs at the gray level of
242, corresponding to 242/255= 94.9% reference coverage.
In the dot gain curve for ED (J) in Fig. 8(b), we see that
the dot gain changes very rapidly at 50% coverage, and
the dot gain at 50% is slightly over 45%, meaning that the
coverage after print will be slightly over 95%. Consequently,
the reference coverage of 242/255= 94.9% is compensated
to around 49%. The original ED halftone patches at 49%
and 50% behave very differently in terms of dot gain, and
thus small changes in reference coverage around 50% might
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Figure 12. Graininess for constant patches between 5% and 95% in a step of 5% for ρ = 1.1, R = 600 dpi, and D = 15 inches. (a) Proposed first- and
second-order FM. (b) Error diffusion and modified error diffusion with FS and J filters. (c) Comparing the best halftone in (a) and (b) and dispersed dot
ordered dithering (Bayer 16×16).

cause large errors. The error for MED methods are much
smaller but still slightly larger than our proposed methods.
Not surprisingly, ordered dithering using 16× 16 threshold
matrices result in smaller error than using 8× 8 threshold
matrices, because they representmore gray levels. The reason
for clustered dot order dithering being better in representing
gray levels is that their dot gain is much smaller compared
to dispersed dot ordered dithering. We have also carried out
the same calculations on a rampwhere each gray level was 16
pixels wide and noticed that the error is a bit larger but still
very low for our proposed and MED methods.

In order to investigate how the gray levels are preserved
in regular test images, we also examined the halftoning
methods on the eight test images presented in Section 4.1.1.
These test images were first compensated for dot gain and
then halftoned. The printer model was thereafter applied to
the halftone images. These images were afterward divided
into 256 sub-images of size 32 × 32 pixels. The absolute
value of the difference between the average value of each
32× 32 pixels sub-image and its corresponding sub-image
in the original test image was calculated. We studied the
mean and max value of these differences for all eight test
images and all halftoning methods. The average error in
gray level of all 32× 32 pixels sub-images in all eight test
images was around 0.4% for our proposed methods. The
same average error was around 0.4% even for ED (FS),
while it was around 0.3% for MED (FS) which was the best
among all halftoning methods. We can now conclude that
our proposedmethods preserve the gray levels quite well and
much better than ordered dithering methods. In comparison
to the error diffusion methods, the point-by-point IMCDP
methods perform similar or slightly better than ED (FS) and
MED (FS), which are both better than ED (J) and MED (J).

4.3 Graininess
Another important quality attribute that halftoning methods
have an impact on is graininess. In this article, the employed
graininess metrics for monochromatic and color halftones
are based on measuring the intensity variation on an overall
uniform area caused by halftoning.

4.3.1 Graininess: Monochromatic
In this subsection, different monochromatic halftones are
compared to each other in terms of graininess by studying
how smooth the perceived printed halftone patches are. For
this purpose, patches from 5% to 95% coverage in a step
of 5% were created. The patches were then compensated
for dot gain and then halftoned. The printer and the eye
model were thereafter applied to the halftones. This means
that the graininess of the image bp,e in Fig. 9 is studied.
Since the original image has been a constant patch, less
variation in the pixel values means smoother (less grainy)
printed halftones. Therefore, the standard deviation of the
pixel values of bp,e is used as the graininess measure. The
larger this standard deviation, the more grainy the halftone
patch is. The graininess valuewas computed for each halftone
using (ρ = 1.1 and R= 600), and (ρ = 1.2 and R= 1200),
and the viewing distance of D = 15 inches. The calculated
graininess values using ρ = 1.2 and R = 1200 were, as
expected, smaller than using ρ = 1.1 and R = 600 for all
halftones, but they followed the same pattern. Therefore, in
Figure 12, we only show the graininess values using ρ = 1.1,
R = 600 dpi, and D = 15 inches. Note that, the images
were scaled between 0 and 255, meaning that the largest
graininess value for an image would be 255/2 = 127.5.
As can be seen in (a), there is no significant difference in
graininess values between our proposed methods, but the
second-order halftones (σ2 = 0.5) are slightly better than the
others. Among the error diffusion methods, ED (FS) results
in lower graininess, and there is quite big difference between
ED (FS) and MED (J), which is the worst one among them.
Among ordered dithering methods, Bayer (16× 16) was the
best. In (c), the best halftone from each class are compared
to each other. Bayer (16× 16) results in quite low graininess,
which was expected. The reason is that, the dispersed dots
are placed in a grid with equal distance and as far apart as
possible, which will result in smoother halftones. The ED
(FS), which is the second best method, behaves differently
for different patches. The graininess is higher for lighter ED
(FS) halftones, but suddenly drops to small values at around
40%. Note that, 40% coverage is compensated to around 20%
at which ED (FS) behaves more like a dispersed dot order
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Figure 13. Graininess for 216 CMY color patches. The coverage for C, M, and Y varies from 0% to 100% in a step of 20%. (Top row) No dot
gain compensation and printer model has been applied. (Bottom row) Dot gain compensation and printer model have been applied, using ρ = 1.1
(R = 600 dpi and D = 15 inches).

dithering than a ‘‘stochastic’’ first-order FM. Note also that,
ED (FS) was quite bad and much worse than MED (FS) in
representing the gray levels, as shown in Tables IV and V,
while it is better than MED (FS) in terms of graininess. On
the other hand, second-order FM (σ2 = 0.5) that has most
of the times created the best halftone among our proposed
halftones, is still quite good in reproducing smooth printed
halftones.

4.3.2 Graininess: Color
In order to study the graininess of color halftones, we apply
the S-CIELAB filtering. The inputs are the color halftones
converted to the CIEXYZ color space and the cycles per
degree and the output is an image in the CIELAB color
space, see Section 1.3. The graininess can then be defined
as the sum of the standard deviation of the CIEL*, a*,
and b* channels of the output image [21]. The lower this
graininess value, the less grainy the color halftone. For
this purpose, we have created color halftone patches with
coverage for C, M, and Y channels, varying from 0% to 100%
in step of 20%, i.e., six coverage for each channel. It will
therefore be 63

= 216 combinations and thereby 216 test
color patches. We have studied the graininess once without
involving dot gain compensation and printer model and
once with them being taken into account. In the first study,
the test color patches have been halftoned as they were
and then converted into the CIEXYZ color space. Besides
the halftoning methods that have been analyzed before, the
graininess for our proposed halftones utilizing dot-off-dot
printing is also studied. Note that, since different halftones
behave differently, these resulting halftones might end up
having different colors, although the input to all of them is
exactly the same color patch. Figure 13 (top row) shows the
results using R= 600 and D= 15 (i.e., 157.1 cycles/degree).
In the top-left graph, only the graininess values for first-order
FM independent and dot off dot are illustrated, because

second-order FM halftones (independent) resulted in very
similar graininess as first-order FM (independent). Note
that, in order to be able to see the difference between the
graphs more clearly, the graininess of the first-order FM (dot
off dot) has been sorted in the ascending order, and the
other graph has been rearranged accordingly. As expected,
the dot-off-dot printing results in less grainy halftones. In
this study, dot off dot has been used only between C and
M channels. The biggest differences between independent
and dot off dot occur when the sum of cyan and magenta
coverage is 100%. In the top-middle graph, the graininess for
ED (FS),MED (FS), and ED (J) are shown. The graininess for
MED (J) wasmuch larger. The graininess of ED (FS) has been
sorted in the ascending order, and the other graphs have been
rearranged accordingly. Like before, the diversity among
the error diffusion methods are much larger than among
our proposed methods. In the top-right figure, we compare
first-order FM (independent) with ED (FS), which was the
best among the error diffusion methods, together with Bayer
(16× 16). The graininess of first-order FM (independent)
has been sorted in the ascending order, and the other graphs
have been rearranged accordingly. As seen in this graph,
ED (FS) color halftones are less grainy and dispersed dot
order dithering is the grainiest. It would, however, be more
realistic to compare different halftones if we involve the
dot gain compensation and the printer model. The same
test color patches were, therefore, first compensated for dot
gain. Although different colorant inks might have different
dot gain, CMY color channels are still compensated using
the same ρ value. The compensated color patches were
then halftoned and the printer model was applied to its
CMY channels, before being converted into the CIEXYZ
color space. Fig. 13 (bottom row) shows the results using
R= 600, ρ = 1.1, and D= 15. In general, the graininess of
different color halftones are closer to each other than in the
top row. The graininess of our proposed halftones are very
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Figure 14. Frequency gain as defined in Eq. (10). (Top row) No dot gain compensation and printer model has been applied. (Bottom row) Dot gain
compensation and printer model have been applied using ρ = 1.1.

close to each other, where second-order FM (σ2 = 0.5 and
σ2 = 0.6) are slightly better than others and there were no
noticeable difference between independent and dot-off-dot
halftoning in this case. Notice that, it is not completely
correct to compensate the CMY channels the same way for
both independent and dot off dot, which has been done
here. The same amount of cyan and magenta being printed
independently and dot off dot might result in different
colors [7, 15]. Among the error diffusionmethods,MED (FS)
was best, and the graininess for ED (J) was much higher than
the others, and therefore not plotted in the bottom-middle
figure. As seen in the bottom-right figure, second-order FM
(σ2 = 0.6) is better than the best error diffusion method and
Bayer (16× 16).

To conclude, our proposed halftones behave quite
similarly, with dot off dot being better in terms of graininess.
Among the error diffusion methods, ED (J) andMED (J) are
quite poor in terms of graininess, and they are alsoworse than
all of our proposed halftones. For monochromatic halftones,
Bayer (16 × 16) is the best halftone. For color halftones,
our proposed halftones and ED (FS) and MED (FS) behave
quite similarly, with ED (FS) being slightly better when no
dot gain compensation is performed, and second-order FM
(σ2 = 0.6) is slightly better when dot gain compensation is
performed. As for the independent halftoning, second-order
FMwith small ormediumclustered dot size are slightly better
than first-order FM.

4.4 Sharpness
The last quality attribute employed in this article is to
examine how different halftones affect the sharpness of
an image. The most straightforward approach to obtain
a sharpness metric is to calculate a sharpness value in
frequency domain. In Ref. [22], an approach is proposed
that returns a sharpness/blurriness value assessing the total
sharpness/blurriness of an image calculated in the Fourier
domain. In this article, we aremore interested in studying the

sharpness at different frequencies (cycles/degree), therefore
proposing another approach to evaluate the sharpness of
monochromatic and color halftones in the Fourier domain.

4.4.1 Sharpness: Monochromatic
In order to obtain a measure evaluating the sharpness
of monochromatic halftones, we propose the following
approach. Consider an M × N pixels image with, for
example, vertical stripes of two different gray tones, each
being P/2 pixels wide, meaning a period of P . Since all rows
in such an image are identical, there will be three dominant
peaks in the Fourier spectrum of the image appearing on
the horizontal axis. One of these three peaks corresponds
to the dc-term, being located at the center of the spectrum,
assuming that the zero-frequency has been shifted to the
center. The other two dominant peaks correspond to the
frequency of the stripes, and are located on the horizontal
axis equally far from the center of the spectrum. The smallest
possible period in a digital image is P = 2 pixels, implying
the highest possible frequency of f = 1/2 cycles/pixel. This
means that the two dominant peaks will appear at the
furthest point on each side of the center, i.e., each being
N/2 pixels away from the center on the horizontal axis.
Note that, in a digital image of size M × N , the position
of the center is (floor(M/2), floor(N/2)), assuming the
top-left pixel has the position of (0, 0). The function
floor( ) returns the largest integer less than or equal to its
argument. For simplicity, from now on, we refer to the
position of the center discarding floor( ). As an example, if
the stripes are 2 pixels wide each, the period will be P = 4,
corresponding to f = 1/4 cycles/pixel, implying that the two
dominant peaks will appear exactly half-way between the
center and ends on the horizontal axis of the spectrum [23].
This means that the dc-term will appear at the center, i.e.,
(M/2,N/2), and the other two peaks at (M/2,N/2+N/4)
and (M/2,N/2− N/4). Hence, for a general period of P ,
the two dominant peaks will appear at (M/2,N/2+N/P)
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Figure 15. Comparing the sharpest halftones from each halftoning method class. (a) No dot gain compensation and printer model has been applied.
(b) Dot gain compensation and printer model have been applied using ρ = 1.1.

Figure 16. Comparing ED (J) and second-order FM (σ2 = 0.6) in terms of sharpness based on the contrast. (a) On the upper half of the Contrast test
image where the contrast is higher. (b) On the lower half of the Contrast test image where the contrast is lower.

and (M/2,N/2 − N/P). Notice also that a period of P
corresponds to the visual angle of τ = (P/RD)(180/π)
degrees or f = πRD/180P cycles/degree, where R and D are
the print resolution (dpi) and the viewing distance (inches),
respectively. For this purpose, we have created an image
with vertical stripes of two gray tones. In this image, the
period of the stripes (one darker and one lighter) is varied
from 88 pixels down to 4 in a step of 4, representing 22
different periods and thereby 22 frequencies. We call this
image Contrast. A part of this image is shown in Section 5.
Note that, in the Contrast image, the contrast varies slowly
along the vertical axis, being highest at the top and lowest
at the bottom. However, this small change of intensity along
each column will not affect the Fourier spectrum on the
horizontal axis. For a print resolution of R = 600 and the
viewing distance of D = 15, the corresponding frequency
will change from 1.785 to 39.27 cycles/degree, which is high
enough as the eye is not sensitive to frequency higher than 40,
see Section 1.2.We define a so-called frequency gainmeasure
as

Fgain=
|Fout(M/2,N/2+N/P)|
|Fin(M/2,N/2+N/P)|

, (10)

where |Fout| and |Fin| denote the Fourier spectra of the
input and the output image, respectively. Note that, if N/P
is not an integer, the value of the spectrum at that specific
position could be either taken from its nearest neighbor or
being calculated by an interpolation between two or more

of its nearest neighbors. In this article, we use the nearest
neighbor interpolation whenever N/P is not an integer.
The frequency gain is then calculated for all 22 different
frequencies. A frequency gain larger than 1 at any frequency,
indicates that the output image is sharper than the original
at that specific frequency. In order to study how different
halftones behave in terms of sharpness, we halftoned the test
Contrast image by different halftoningmethods, first without
involving the dot gain compensation and printer model.
Therefore, in this case, Fout in Eq. (10) is the Fourier
transform of each halftone. Figure 14 (top row) shows the
frequency gain for all studied halftones without involving
the dot gain compensation and printer model. As the eye
is most sensitive at 8 cycles/degree and not so sensitive to
frequencies higher than 20, see Fig. 2, we shouldmostly focus
on frequencies around 8 and lower than 20 cycles/degree.
We can see in the top-left graph that our proposed halftones
behave very similarly and do not sharpen the original image,
as the gain is very close to 1. The second-order FM halftone
(σ2 = 0.6) is slightly sharper than the others. In the
top-middle graph, we can see that ED halftones behave
quite differently, but all of them have a sharpening effect
on the original image, with ED (J) resulting in the sharpest
halftone. This was already shown in other studies that error
diffusion methods have a sharpening effect and the larger
the error filter, the sharper the halftone [24]. In the top-right
graph, the frequency gain for ordered dithering methods
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Figure 17. Frequency gain for ρ = 1.1, R = 600, and D = 15. (a) Red–Green contrast image and Red–Green channel. (b) Blue–Yellow contrast image
and Blue–Yellow channel.

Figure 18. Frequency gain for ρ = 1.1, R = 600, and D = 15. The test image is the Cyan–Magenta Contrast image. (a) Luminance channel.
(b) Red–Green channel. (c) Blue–Yellow channel.

are shown. Bayer (8× 8) and Bayer (16× 16) behave very
similarly, and have a gain very close to 1. The clustered
dot ordered dithering methods result in large peaks, coming
from the frequency created by their threshold matrices. The
threshold matrices of size 8× 8 and 16× 16, correspond to
f = πRD/(180 · 8)= 19.63 and f = πRD/(180 · 16)= 9.82
cycles/degree, respectively, which are actually the frequencies
where the peaks occur. Figure 15(a) shows the frequency
gain of the sharpest halftone among our proposed methods,
i.e., second-order FM (σ2 = 0.6), together with that of the
sharpest halftone among the error diffusionmethods, i.e., ED
(J), and Bayer (16× 16). As can be seen in this graph, ED (J)
generates much sharper halftones and our proposed method
and dispersed dot ordered dithering generates equally sharp
halftones. The reason is that, in the iterative method called
IMCDP, the goal was to obtain a halftone similar to the
original image as much as possible, and since generating
the threshold matrices follow the same strategy, they will
result in halftones that are as sharp as the original. Another
point worth noting here is that, adding the eye filter will
not change the results, because it will amplify/attenuate
the original image and the halftones equally, and thus the
ratio will remain the same. This was also verified by our
experiment. We have already discussed in previous sections
that the effect of dot gain has to be taken into account.
Therefore, in our next study, the test Contrast image is first
compensated for dot gain and then halftoned and finally, the
printer model is applied. Hence, in this case, Fout in Eq. (10)

is the Fourier transform of each halftone after printer model
has been applied, i.e., bp in Fig. 9. Fig. 14 (bottom row) shows
the frequency gain for all studied halftones. The dot gain
compensation and the printermodel have been applied using
ρ = 1.1, as always have been used in this article for R= 600.
As can be seen in these graphs, all halftones are less sharp
than before and the frequency gain for the halftones aremuch
closer to each other now. Fig. 15(b) shows the frequency gain
of the same halftones as in Fig. 15(a), but this time with
dot gain taken into account. As can be seen, ED (J) is not
much sharper than our proposed second-order halftone, but
it still keeps the halftone at least as sharp as the original
image, while second-order FM and dispersed dot ordered
dithering are slightly attenuating the original image. Another
study we have conducted is to see how much different
halftones sharpen the original image based on the contrast
between the stripes. As seen in the Contrast test image,
the contrast is varied from maximum at top to minimum
at the bottom. If one wants to know the sharpening effect
of the halftones for a specific contrast between the stripes,
one can calculate the frequency gain, not on the whole
image, but in the area corresponding to that specific contrast.
Here, we just illustrate the difference in the frequency gain
between the upper half and the lower half of the Contrast
test image. Figure 16(a) and (b) show the frequency gains for
second-order FM (σ2 = 0.6) and ED (J), in the upper half
and the lower half of the Contrast test image, respectively.
As can be seen, in general, the halftones behave quite similar
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Figure 19. The test image is Sari1 used in Section 4.1.1. These are binary halftones and no dot gain compensation or printer model has been applied.
From top to bottom and left to right: (First row) First-order FM, second-order FM (σ2 = 0.5), second-order FM (σ2 = 0.6), and second-order FM (σ2 = 0.7).
(Second row) ED (FS), MED (FS), ED (J), and MED (J). (Third row) Clustered (8×8), Clustered (16×16), Bayer (8×8), and Bayer (16×16).

when the contrast is low and very much different when the
contrast is high. It is worth pointing out that, in order to
make sure that our test image is a good test image in this
context, we also created 22 test images having vertical stripes,
each representing periods of P = 80 down to 4, in a step
of 4. The contrast in each test image was varied as explained
above. These twenty-two test images were then halftoned and
the frequency gains at these 22 frequencies were calculated,
separately. The results showed a similar trend between the
halftones, and although the frequency gains were not exactly
the same as shown in Fig. 14, they were quite close, and
more importantly, the difference between the halftones in
terms of sharpness were almost identical. Therefore, we can
conclude that our proposedContrast image is an appropriate
test image for studying the sharpness of halftones.

4.4.2 Sharpness: Color
As discussed in Section 1.3, the human visual system is
represented by three sensitivity functions in the opponent

color space, one luminance and two chromatic channels, i.e.,
red–green and blue–yellow. The function for the luminance
channel is a band-pass filter, and the other two are low-pass
filters with different cut-off frequencies. In order to study
the sharpness of color halftones, we calculate the frequency
gain, as defined in Section 4.4.1, in these three channels.
For the frequency gain in the red–green channel, we use
a similar contrast image as in Section 4.4.1, but instead
of having different gray tones, different shades of red and
green are used in different vertical bars. This test image will
be referred to as the Red–Green Contrast image. A similar
test image using blue and yellow is created to study the
sharpness in the blue–yellow channel. We refer to this test
image as the Blue–Yellow Contrast image. The test images
are compensated for dot gain by compensating their CMY
channels for dot gain. The compensated images are then
halftoned by the halftoning methods before the printer
model being applied. For the red–green frequency gain
calculation, Fin in Eq. (10) is the Fourier transform of the
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Figure 20. The test image is Sari2 used in Section 4.1.1. These are not binary halftones. In order to obtain them, the test image has been first compensated
for dot gain and then halftoned before the printer model being applied, using ρ = 1.1. These images are supposed to represent a magnified version of
the printout. From top to bottom and left to right: (First row) First-order FM, second-order FM (σ2 = 0.5), second-order FM (σ2 = 0.6), and second-order FM
(σ2 = 0.7). (Second row) ED (FS), MED (FS), ED (J), and MED (J). (Third row) Clustered (8×8), Clustered (16×16), Bayer (8×8), and Bayer (16×16).

red–green channel of the Red–Green Contrast image, and
Fout is the Fourier transform of the red–green channel of the
corresponding printed halftones. The red–green channel of
an image is obtained by O2 in Eq. (4). For the blue–yellow
channel, Fin is the Fourier transform of the blue–yellow
channel of the Blue–Yellow Contrast image and Fout is
the Fourier transform of the blue–yellow channel of the
printed halftones. The results of halftoning a part of the
Blue–Yellow Contrast image are illustrated in Section 5. The
blue–yellow channel of an image is obtained byO3 in Eq. (4).
Figure 17(a) and (b) show the frequency gain for ED (FS),
ED (J), first-order FM, and second-order FM (σ2 = 0.6) in
red–green and blue–yellow channels, respectively. At a first
glance, one can see that all methods create halftones sharper
than the original test image. As discussed in Section 1.3,
the eye is most sensitive in low frequencies in both color
channels, but with different cut-off frequencies. Therefore,
the main focus should be on the frequencies lower than
20 cycles/degree in the red–green channel and lower than

10 cycles/degree in the blue–yellow channel. As seen in
both graphs, opposite to grayscale images, our proposed
methods result in sharper halftones in both chromatic
channels. The MED methods, which are not shown in this
figure, opposite to the monochromatic images, are slightly
sharper than their corresponding ED methods. We had also
a look at the frequency gains in the luminance channel of
these two test images and the frequency gains of all four
methods were very close to each other, with second-order
FM (σ2 = 0.6) being slightly sharper. Therefore, we do not
show the frequency gains in the luminance channel for
these two test images. Instead, we created another contrast
image and studied the frequency gains in all three channels.
The test image is very similar to previous contrast images,
but in different bars different shades of cyan and magenta
are used. We refer to this test image as the Cyan–Magenta
Contrast image. This test image is compensated for dot gain
as before. The compensated image is then halftoned by the
halftoning methods prior to the printer model application.
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Figure 21. The test image is Contrast used in Section 4.1.1. These are not binary halftones. In order to obtain them, the test image has been first
compensated for dot gain and then halftoned before the printer model being applied, using ρ = 1.1. These images are supposed to represent a magnified
version of the printout. From top to bottom and left to right: (First row) First-order FM, second-order FM (σ2 = 0.5), second-order FM (σ2 = 0.6), and
second-order FM (σ2 = 0.7). (Second row) ED (FS), MED (FS), ED (J), and MED (J). (Third row) Clustered (8×8), Clustered (16×16), Bayer (8×8), and
Bayer (16×16).

The frequency gain in all three channels, i.e., luminance,
red–green and blue–yellow, for the Cyan–Magenta Contrast
image using first-order FM, second-order FM (σ2 = 0.6),
ED (FS) and ED (J) are shown in Figure 18. This graph
verifies our previous conclusion that the second-order FM
is sharpest and ED (FS) is the least sharp in all three
channels. One explanation to why the conclusion drawn for
the sharpness of color halftones is almost the opposite to the
conclusion drawn for monochromatic images could be that
the ED techniques being applied to different channels will
create sort of a dot-on-dot structure. Consider three identical
channels being halftoned by the same ED method; the dots
on different channels will be placed on top of each other. In
the MEDmethods, this dot-on-dot printing will not occur at
all positions and in our proposed methods the channels are
halftoned completely independent of each other. This could
be the reason for our proposed andMEDmethods generating

sharper color halftones than ED methods. We also studied
the dot-off-dot halftones, and they behave very similarly to
their counterpart using independent halftoning in terms of
sharpness.

We can conclude that the error diffusion methods, as
expected, generate sharper monochromatic halftones than
our proposed methods. Non-modified ED halftones are
generally sharper than their correspondent MED methods.
It was also shown that ED (J) generated monochromatic
halftones are sharper than ED (FS) halftones. The difference
between our proposed monochromatic halftones and ED
and MED halftones in terms of sharpness, becomes more
considerable as the contrast increases. For color halftones, on
the other hand, our proposed color halftones were generally
sharper than ED generated halftones in all three opponent
color channels.
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Figure 22. The test image is Ramp used in Section 4.1.1. These are binary halftones and no dot gain compensation or printer model has been applied.
From top to bottom and left to right: (First row) First-order FM and second-order FM (σ2 = 0.5). (Second row) Second-order FM (σ2 = 0.6) and second-order
FM (σ2 = 0.7). (Third row) ED (FS) and MED (FS). (Fourth row) ED (J) and MED (J). (Fifth row) Clustered (8×8) and Clustered (16×16). (Sixth row) Bayer
(8×8) and Bayer (16×16).

5. HALFTONE RESULTS
In this section, several monochromatic and color halftone
images are illustrated. All illustrated images are 256× 256
pixels, except for the grayscale and color ramps, which are
59 × 512 pixels. All halftones are displayed at 150 dpi in
order to clearly show the halftone structures. This means
that the halftone images are magnified by four considering
600 dpi. Note that, the test images used in Section 4.1 and
listed in Tables I, II, and III are a larger version (512× 512)
of those illustrated in this section. Some of the illustrated
images are the actual halftones, i.e., binary images. They were
obtained by directly halftoning the test image by different
halftoning methods. Some of the illustrated images are not
binary. In order to obtain those, the test image has been
first compensated for dot gain by each halftoning method’s
specific dot gain curve. The compensated images have then
been halftoned and thereafter the printer model has been
applied. This means, given an original image g in Fig. 9,
it is first compensated for dot gain to obtain gc , which
is then halftoned to achieve the halftone image b. The
printer model is thereafter applied to this halftone image
to obtain the representation of the printout, called bp in
Fig. 9. The dot gain compensation process and the printer
model were applied using ρ = 1.1. Consequently, these
images are not bitmaps any more and they are supposed
to represent a magnification of the printouts. Four of the
illustrated halftoning methods are our proposed methods,
namely; first-order FM, second-order FM with (σ2 = 0.5),
(σ2 = 0.6), and (σ2 = 0.7). For three of the color halftones,
the dot-off-dot versions of our proposed methods are also
illustrated. Note that the dot off dot has only been applied
to the C and M channels, and the Y channel is halftoned
independent of the two others. Four of the illustrated
methods are different error diffusion methods, namely; ED

(FS), MED (FS), ED (J), and MED (J). There are also four
ordered dithering methods illustrated, namely; Clustered
dot (8× 8 and 16× 16 threshold matrices), and Dispersed
dot (Bayer 8× 8 and 16× 16 threshold matrices) ordered
dithering.

Figure 19 is the halftone results (binary images) of the
image called Sari1 in Tables I and II. In Figures 20 and 21, the
representation of the printouts for the images called Sari2 and
Contrast are illustrated. As can be seen in these results, they
are not binary anymore. Figure 22 illustrates the halftones of
a grayscale ramp without dot gain compensation and printer
model application.

There are also four color images that have been
halftoned. In Figure 23, the representation of the printouts for
the color image called Sari1 in Section 4.1.2 and Table III are
illustrated. All three channels have been compensated using
ρ = 1.1 before being halftoned and the printer model being
applied. The dot-off-dot versions of our proposed halftones
are shown in the second row. Figure 24 is the halftone results
(binary) of the color image called Sari2 in Section 4.1.2 and
Table III. The dot-off-dot versions of our proposed halftones
are shown in the second row. Figure 25 illustrates the halftone
results (binary) of a part of the Blue–Yellow Contrast used
in Section 4.4.2. Finally, Figure 26 shows the halftone results
(binary) of a color ramp only consisting of cyan andmagenta,
in which the C and M channels are identical. This is the
same image being referred to as Ramp in Section 4.1.2 and
Table III. The dot-off-dot versions of our proposed halftones
are shown right under their corresponding independent
version. As can be seen in the dot-off-dot halftones in this
figure, there is no dot overlap between cyan and magenta up
to the middle of the ramp, where the sum of the coverage is
less than or equal to 100%.
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Figure 23. The test image is the color image Sari1 used in Section 4.1.2. These are not binary halftones. In order to obtain them, the CMY channels
of the test image have been first compensated for dot gain and then halftoned before the printer model being applied, using ρ = 1.1. These images are
supposed to represent a magnified version of the printout. From top to bottom and left to right: (First row) First-order FM, second-order FM (σ2 = 0.5),
second-order FM (σ2 = 0.6), and second-order FM (σ2 = 0.7). (Second row) The dot-off-dot version (only C and M channels) of the halftones in first row.
(Third row) ED (FS), MED (FS), ED (J), and MED (J). (Fourth row) Clustered (8×8), Clustered (16×16), Bayer (8×8), and Bayer (16×16).

6. SUMMARY AND CONCLUSION
As we have studied twelve different halftoning methods
employing several quality measures for monochromatic and
color halftones, it is not easy to put the final conclusions
into words. Therefore, we have decided to present all
results in two different tables in order to make it easier
to draw a final conclusion. In one of the tables, all twelve

halftones are compared, and in the other one, the ordered
dithering halftones are discarded, and only eight halftones
are compared. Besides the sharpness, there have been
eight quality measures and print situations studied and
illustrated in this article, namely; Mean Squared Error
(ρ = 1.1, R = 600), Mean Squared Error (ρ = 1.2, R =
1200) (Section 4.1.1), S-CIELAB 1E (ρ = 1.1, R = 600)
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Figure 24. The test image is the color image Sari2 used in Section 4.1.2. The CMY channels are all binary halftones and no dot gain compensation or
printer model has been applied. From top to bottom and left to right: (First row) First-order FM, second-order FM (σ2 = 0.5), second-order FM (σ2 = 0.6),
and second-order FM (σ2 = 0.7). (Second row) The dot-off-dot version (only C and M channels) of the halftones in first row. (Third row) ED (FS), MED (FS),
ED (J), and MED (J). (Fourth row) Clustered (8×8), Clustered (16×16), Bayer (8×8), and Bayer (16×16).

(Section 4.1.2), Gray level representation (ρ = 1.1, R= 600),
Gray level representation (ρ = 1.2, R= 1200) (Section 4.2),
Graininess (monochromatic) (Section 4.3.1), Graininess
color (no dot gain compensation), andGraininess color (with
dot gain compensation) (Section 4.3.2). For each of these
quality measures, we rank the twelve (or eight) halftones
from the best (rank 1) to the worst (rank 12 or 8) based on the

obtained quality value for each quality measure. Besides the
rank, each halftone is also assigned a score. The score is scaled
between 0 and 100, with 0 being the worst and 100 being the
best. Let us illustrate that with an example. In Table I, there is
an average value (titled Av. 2) specifying the mean squared
error for each halftone. According to this table, ED (FS)
gets rank 1, second-order FM (σ2 = 0.5) rank 2, and finally
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Figure 25. The test image is a part of the Blue–Yellow Contrast used in Section 4.4.2. The CMY channels are all binary halftones and no dot gain
compensation or printer model has been applied. From top to bottom and left to right: (First row) First-order FM, second-order FM (σ2 = 0.5), second-order
FM (σ2 = 0.6), and second-order FM (σ2 = 0.7). (Second row) ED (FS), MED (FS), ED (J), and MED (J). (Third row) Clustered (8×8), Clustered (16×16),
Bayer (8×8), and Bayer (16×16).

clustered dot ordered dithering (16× 16) receives rank 12.
The quality value for ED (FS) having rank 1 is 37.6, and that
for clustered (16× 16) having rank 12 is 5263. We linearly
scale these quality values such that 5263 (the worst) becomes
0 and 37.6 (the best) becomes 100. This way all halftones are
assigned a rank and a score for each quality measure.

Table VI shows the rank and the score (inside the
parentheses) for the twelve halftones and eight quality
measures. Table VII illustrates the rank and the score
for our proposed and error diffusion halftones. For mean
squared error (titled MSQ1 and MSQ2 in these tables), the
last column titled AV. 2 in Tables I and II, respectively,
have been used. For S-CIELAB 1E (titled 1E), the last
column titled Av. in Table III has been used. For gray
level representation using (ρ = 1.1, R= 600) and (ρ = 1.2,
R= 1200) titled GL (1.1) and GL (1.2), respectively, we have
used the Mean values in Tables IV and V, respectively. For
the three columns representing graininess (titled GR-mono,

GR-col, and GR-col2), we have used the sum of the values of
the curves shown in Figs. 12, 13 (top row), and 13 (bottom
row), respectively. In the next to the last column in Tables VI
andVII, titledAverage, the average score is shown. In the last
column, titled Final, the final ranks and scores are shown,
which were calculated by the same strategy using the average
ranks and scores. Note that, we are aware of the fact that these
scores might not have the same weight and impact because,
for instance, a difference of 5 score in 1E is probably not
qualitatively equal to the same score difference in graininess.
However, we believe that these scores together with the ranks
can give a better indication of the halftone quality than only
the ranks. Note also that, there are some halftones that get
exactly the same average rank and are therefore assigned
the same final rank. As seen in both tables, second-order
FM (σ2 = 0.5) is ranked the best of all twelve halftones.
The same halftone, however, does not have the best score
in any of the two tables and is worse than MED (FS) in
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Figure 26. The test image is a color ramp only consisting of cyan and magenta, in which the C and M channels are identical (used in Section 4.1.2).
The CM channels are all binary halftones and no dot gain compensation or printer model has been applied. From top to bottom and left to right: (First row)
First-order FM and second-order FM (σ2 = 0.5). (Second row) The dot-off-dot version of the halftones in first row. (Third row) Second-order FM (σ2 = 0.6)
and second-order FM (σ2 = 0.7). (Fourth row) The dot-off-dot version of the halftones in third row. (Fifth row) ED (FS), and MED (FS). (Sixth row) ED (J) and
MED (J). (Seventh row) Clustered (8×8) and Clustered (16×16). (Eighth row) Bayer (8×8) and Bayer (16×16).

Table VI. The rank and the score (inside parentheses) for all twelve halftones.

MSQ1 MSQ2 1E GL (1.1) GL (1.2) GR-mono GR-col GR-col2 Average Final

FM-1st 4 (99.9) 5 (99.9) 3 (94.1) 3 (98.8) 3 (98.1) 7 (96.6) 5 (98.2) 8 (98.1) 98.0 5 (99)
FM-2nd (0.5) 2 (100) 1 (100) 7 (86.5) 1 (100) 1 (100) 6 (96.7) 8 (98.0) 4 (98.9) 97.5 1 (98)
FM-2nd (0.6) 3 (99.9) 2 (100) 9 (81.3) 1 (100) 2 (99.0) 8 (96.0) 9 (97.9) 2 (99.3) 96.7 4 (97)
FM-2nd (0.7) 6 (99.7) 4 (100) 10 (76.6) 3 (98.8) 4 (97.8) 9 (94.8) 10 (97.7) 7 (98.5) 95.5 6 (96)
ED-FS 1 (100) 6 (99.7) 1 (100) 8 (80.6) 8 (84.6) 3 (98.8) 1 (100) 6 (98.7) 95.3 3 (96)
MED-FS 7 (99.7) 3 (100) 2 (97.2) 5 (97.8) 5 (97.7) 5 (96.7) 2 (99.5) 3 (99.2) 98.5 2 (100)
ED-J 5 (99.8) 11 (96.9) 5 (89.0) 9 (75.4) 9 (77.3) 4 (97.3) 4 (98.4) 11 (92.5) 90.8 9 (90)
MED-J 10 (99.1) 7 (99.6) 6 (87.1) 6 (95.3) 6 (94.0) 10 (94.0) 6 (98.1) 10 (96.3) 95.4 10 (96)
Clustered-8 11 (71.3) 10 (97.9) 11 (42.5) 11 (17.9) 11 (24.0) 11 (49.4) 11 (91.9) 9 (96.4) 61.4 11 (52)
Clustered-16 12 (0) 12 (0) 12 (0) 7 (87.0) 7 (87.8) 12 (0) 12 (0) 12 (0) 21.9 12 (0)
Dispersed-8 9 (99.5) 9 (99.1) 8 (85.2) 12 (0) 12 (0) 1 (100) 3 (99.0) 1 (100) 72.9 8 (67)
Dispersed-16 8 (99.6) 8 (99.5) 4 (89.7) 10 (72.9) 10 (73.1) 2 (99.5) 7 (98.1) 5 (98.7) 91.4 7 (91)

terms of the score. Taking into account both the rank and
the score of the halftones, we can conclude that among our
proposed halftones, second-order FM (σ2 = 0.5) is the best
and first-order FM and second-order FM (σ2 = 0.6) are also
quite good. Among the error diffusion methods, ED (FS)
and MED (FS) are both good and much better than ED (J)
and MED (J). Bayer (16× 16) performs similar to or slightly
better than ED (J) and MED (J). Comparing our proposed

halftones with error diffusionmethods, we can conclude that
first and second-order FM (σ2 = 0.5) generate halftones of
almost the same quality as ED (FS) and MED (FS).

As you might have noticed, the sharpness has not
been included in these two tables, because we actually did
not present any value grading the sharpness, and sharper
halftones do not necessarily mean better halftones. It was,
however, shown that error diffusion methods generate
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Table VII. The rank and the score (inside parentheses) for our proposed and error diffusion halftones.

MSQ1 MSQ2 1E GL (1.1) GL (1.2) GR-mono GR-col GR-col2 Average Final

FM-1st 4 (87.9) 5 (97.5) 3 (74.6) 3 (95.3) 3 (91.7) 5 (55.0) 4 (22.3) 6 (81.8) 75.8 5 (86)
FM-2nd (0.5) 2 (99.8) 1 (100) 6 (42.1) 1 (100) 1 (100) 4 (56.1) 6 (13.1) 3 (93.8) 75.6 1 (86)
FM-2nd (0.6) 3 (91.1) 2 (100) 7 (20.2) 1 (100) 2 (95.4) 6 (42.5) 7 (9.2) 1 (100) 69.8 3 (75)
FM-2nd (0.7) 6 (69.9) 4 (98.8) 8 (0) 3 (95.3) 4 (90.3) 7 (18.0) 8 (0) 5 (87.9) 57.5 6 (52)
ED-FS 1 (100) 6 (90.0) 1 (100) 7 (20.8) 7 (32.3) 1 (100) 1 (100) 4 (90.6) 79.2 2 (92)
MED-FS 7 (63.2) 3 (100) 2 (88.2) 5 (91.1) 5 (89.9) 3 (57.6) 2 (78.5) 2 (98.1) 83.3 3 (100)
ED-J 5 (82.7) 8 (0) 4 (53.0) 8 (0) 8 (0) 2 (68.6) 3 (32.1) 8 (0) 29.6 7 (0)
MED-J 8 (0) 7 (86.9) 5 (44.8) 6 (80.7) 6 (73.7) 8 (0) 5 (17.0) 7 (56.0) 44.9 8 (28)

sharper monochromatic halftones than our proposed meth-
ods, while the opposite was concluded for color halftones.
Regarding the blue- and green-noise characteristics, it
was shown in Section 3.1 that all of our proposed first-
and second-order halftones have very good blue- and
green-noise characteristics, respectively. Non-modified error
diffusion methods, however, did not show any blue-noise
characteristics, whereas MED methods were slightly better,
but still not as good as our proposed halftones. By studying
the quantization noise spectra for different halftones, it was
shown that ED (J) behavesmore like a second-order FM than
first-order FM.

One of the main goals of this study has been to figure
out whether or not second-order FM halftones perform
better than first-order FM in high print resolutions. The
study in this article verifies that second-order FM with small
clustered dot size is better than first-order FM in almost
all quality aspects examined in this article. The only metric
where this halftone was slightly worse than first-order FM
was S-CIELAB 1E, but if we interpret these values as 1Eab
values, then the difference between these two halftones,
which is 1.4 1Eab in average, is only slightly over the just
noticeable difference (JND) of1Eab = 1.

As discussed in Section 1, since the generated threshold
matrices are image-independent, the only operation required
to halftone an image is a comparison per pixel. Just to
give an indication, assume a large format print of size
40× 60 inches2 (approximately 1× 1.5m2) at R= 1200 dpi.
Thus, the image to be halftoned is 48 000× 72 000 pixels.
Halftoning such a large image only took 3 sec in MATLAB
on a MacBook Pro (Processor: 3.1 GHZ andmemory: 16 GB,
2133MHz), without using any parallel processing.Hence, the
speed of the proposed halftoning methods and their good
quality make them feasible to be used in printing industry,
especially for large format prints at high resolutions.
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