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Abstract. A novel method is presented for evaluating the efficacy
of object recognition algorithms on occluded images, called the
occluded image function (OIF). The OIF describes system behavior
in occluded environments and thus gives qualitative insight into
their mechanisms; derivative metrics from OIF can also be used
to quantitatively compare classifiers. To showcase the utility of the
OIF, an experiment is performed by obstructing optical gait images
from two biped robot models and using four binary machine learning
classifiers to distinguish between them. The OIF diagrams are
created from each experiment, and the resulting insights about the
classifiers are discussed. Using the OIF, it is shown that the primitive
classifiers can sometimes perform better under occlusion conditions,
possibly due to pre-filtering of gait data by uniform occlusions. This
result serves to demonstrate that the OIF is a useful tool for classifier
evaluation. c© 2022 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.1.010501]

1. INTRODUCTION
In this article, a novel method for assessing the efficacy and
behavior of classification algorithms for occluded images
is presented. Occluded images can be found in many
places, such as optical forensic or biometric applications.
In some of these applications, such as Iris biometrics
and facial recognition, where glasses and reflections are
common occlusions, having an incomplete image is expected
and accurate classification in occlusion conditions becomes
especially important [1–4]. Though there has been much
research into object recognition and other imaged-based
machine learning application in occlusion conditions, there
is no universal measure available that specifically lends
insights into the comparative efficacy of these algorithms in
a variety of conditions [5–7]. There is a similar measure,
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however, that is very commonly used in the field of optics,
called the optical transfer function (OTF) and the more
common subset of theOTF, themodulation transfer function
(MTF) [8]. These two measures describe how well an optical
system can resolve high contrast sinusoidal frequencies
in an image. The OTF and MTF are determined for
increasingly thinner color bars, and the results are plotted
as OTF/MTF vs bar thickness. The resulting curve’s shape is
insightful in evaluating the behavior of optical systems and
thus, comparing them directly [9]. The method presented
here applies the concepts of an OTF curve to the field
of forensic cybersecurity and biometrics in the form of
the occluded image function (OIF). This function arises
from a plot of classification accuracy versus percent image
occlusion. Similarly to the OTF or MTF curves, the shape
and character of the OIF prove to be insightful into the
efficacy of classification algorithms, even in cases where
the algorithm is not intended to be used with occluded
images. An example of the utility that the OIF provides
can be seen in the works of Huang [10], Min [11], and
Budzinskiy [12]. These representative studies all compare
variations in different elements of an optical system in how
they affect either theOTF orMTF. This allows them to isolate
and compare the effects of subsystem variation scientifically,
without resorting to system-level effectiveness test, which
can often be expensive and open to distortion by subsystem
interactions. This same form of behavior description and
subsystem isolated comparison was not previously feasible
for the occluded image recognition problem.

This study aims mainly to develop and describe the op-
tical image function, and to demonstrate its utility. Namely,
it provides a much-needed measure for system behavior in
occluded conditions. This is important particularly to ensure
robust classification solutions in situationswhere the amount
of occlusion may not be known or expected. The OIF is a
tool for understanding the efficacy of model behavior itself,
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Figure 1. Bipedal robot configurations A (left) and B (right), which are used to simulate two bipedal subjects [24]. Note the difference in servo positions
around the hips. Type A used an extra servo and adds the ability for leg adduction and abduction.

as opposed to the effectiveness of a model on a particular
data set, as many others have already in the field of iris
biometrics [13, 14].

To demonstrate the potential utility of this method, it
is applied to an experiment in which two bipedal robot
models are biometrically recognized. The robots, which
simulate human models, are pinned with various visual
markers, and are recorded walking along a stretch. The x
and y coordinates of the markers over time act as the raw
input data, and several engineered features are derived. Four
primitive binary classifiers are trained and tested on this data.
The level of visible obstruction is varied both physically and
virtually, and the accuracy of these binary classifiers with
respect to percent obstruction defines the OIF curve. The
resulting behavioral insights are discussed.

In addition to the primitive classifiers, which lend
themselves well for demonstrative purposes due to their
low computation requirements, a classifier based convolu-
tional neural network (CNN) architecture is compared for
context in the physical obstruction case. The fields of deep
learning and neural networks have been prolific in image
processing [15, 16] and recognition [17, 18], with much
advancement and focus on the classification task [19, 20].
As such, this proposed measure will have many applications
in comparing these classification engines, though they are
not discussed in depth here. The CNN used here is based on
AlexNet [21], which won first place in ImageNet Large-Scale
Visual Recognition Challenge in 2010, and has since been
one of the gold standards for two-dimensional (2D) image
recognition [22, 23].

This study first describes the high-level methods of
generating the OIF curve, then walks through the details of
the experimental set up used to demonstrate and validate this
measure. Resulting OIF curves are then presented and their
behaviors are discussed, as well as the overall utility of the
OIF in describing and comparing these behaviors. Finally, a
broad summary, known issues, and potential future work is
included in the conclusion.

2. MATERIALS ANDMETHODS
2.1 Plotting OIF
Occluded image function (OIF) is plotted based on data
collected from the biped robot using the method described
in the following section. This function uses the percent
occlusion as the independent variable and the cross-validated
F1-score as the dependent variable. These are plotted against
each other to form a curve. For all curves except the physical
tests, the plots shown aremildmoving average the rawdata to
remove low-level noise. The general shape, trends, and other
features of this curve can provide insight and information
on the efficacy of these classifiers with respect to occluded
images.

2.2 Biped Robot Subject
For this experiment, gait analysis will be used to classify two
bipedal robot gaits. The robot used in this experiment was
the Bioloid Premium, which can be reassembled in three
different configurations that each result in a slightly different
walking style by rearranging the servo motors that constitute
his hips and legs, which results in three distinct gaits. The two
configurations that appeared to be most different, A and B,
were chosen for comparison (Figure 1). The gait data will be
derived from video footage of the robots walking to imitate
security camera biometrics.

2.3 Computer Vision Tracking
Colored markers were fixed to the head, foot, and upper
and lower legs of the robots (Figure 2). Alternating red
and blue markers were used in pairs for each location to
simplify differentiation and downstream data processing.
Finally, green markers are placed in two locations along
the walking area for use as coordinate positions and length
scaling. To gather the raw data, a digital camera was placed
at a fixed location to record footage of the robots walking.
The footage was processed usingOpenCV [25] by generating
an HSV binarization mask and three-stage erosion–dilation
algorithm. After filtering, the geometric mean center of a
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Figure 2. Robot B is shown with red and blue marker pairs attached. The
pairs allow the calculation of tilt and joint angle. The four pairs are head,
upper leg, lower leg, and foot. The markers are in the same locations in
Robot A.

minimum encompassing circle is calculated to avoid partial
occlusion effects on the centroid and used for the final
Cartesian coordinates for each marker. This method is
repeated on each frame for a total of 30 times per second.

All x and y coordinates are first scaled within the
boundaries of the green table markers. As is shown in bold
red lines in Figure 3(a), a straight line is drawn between
green markers 1 and 2, G1 and G2, respectively, then two
perpendicular lines are drawn which go through the two
markers, thus making a universal bounding box that can
adjust for tilt and any irregularities in the camera position
between recordings. G1 is then used as the coordinate axis
origin, and all other data points are scaled relative to this. The
bounding box also allows for universal starting and ending
lines to be established. This can also be seen in Fig. 3(a),
where all the tracing lines start together. The actual distance
between G1 and G2 is 90 cm.

2.4 Physical and Virtual Occlusions
Two methods were used and compared to simulate occluded
footage: physical and virtual occlusions. The physical occlu-
sions consisted of evenly spaced cardboard slats resembling
a picket fence (Figure 4). The physical slats are uniformly
5 cm wide and are spaced evenly to construct four arbitrary
occlusion percentages: approx. 25%, 33%, 50%, and 67%.

To perform the virtual occlusions, the data from the
non-occluded footage is used, and an algorithm removes
data in predefined geometrical pattern, so as to create
virtual obstructions. A number of different virtual occlusion
patterns are used. It is important to note that the virtual

occlusions were applied to the marker signals extracted
from the footage and not the footage itself; in other words,
the virtual occlusions were applied downstream of the CV
processing.

(1) Constant-width slats: this pattern mimics the physical
occlusions used in this study. It uses a scaled, constant-
width occlusion. No partial occlusions are used. As the
percent occlusion is increased, whole slats are added.
To compare directly with the physical occlusion footage,
slats of five centimeters are simulated. In addition to this,
slats of 1.25, 2.5, 5, and 10 cmare simulated for a total of 4
virtual slatwidths. To eliminate any phase-shift variables,
10 phase-shifted versions of each percent occlusion are
simulated, and the mean values of the classification
outcomes are used as the final metrics.

(2) Expanding-width slats: this pattern simulates evenly
spaced slats as well, but the slats are not a constant
width. Instead, the total number of slats is constant, with
constant center points. They expand pixel by pixel from
2% occlusion through 96% occlusion. For this study, 3, 6,
and 9 total slats were simulated using this pattern. Phase
shift is accounted for in the same way as described for
the constant-width slats pattern.

(3) Random: this pattern generated random slat widths and
spacings. For each percent occlusion, 1000 trials were
performed and the mean scores were used. Since the
spacing is entirely random, no accounting for the phase
was made. This attempts to show a generalized trend
with respect to percent occlusion, regardless of the size
or pattern of the actual occlusions.

2.5 Object Recognition
The robot was filmed walking across the stage 24 times in
both configurations and for each occlusion setting. After
all of the physically and virtually occluded images were
gathered, video samples were assigned 50/50 to training and
test sets, so as to provide a large enough test set for validation.
The robots did not always walk exactly straight across the
table, frequently drifting to one side. This drift toward or
away from the camera resulted in odd 2D features such
as fixed markers appearing to grow closer or further apart
throughout the video. Another inconsistency in the gathered
data is due to the fact that the slats were not always perfectly
upright, sometimes leaning slightly one way or another. No
upstream effort was made to account for this; instead, the
introduced error was incorporated into the learning model.

Four primitive machine learning models—support vec-
tor machine (SVM), K-nearest neighbors (KNN), binary
decision tree, and an ensemble method—were used for
binary classification, where the system tried to correctly
sort footage from robots A and B. In addition to the
primitive classifiers, a CNN based on AlexNet was used on
the experimental data for context. This classifier used the
one-dimensional (1D) signals of the marker positions and
maps them into 2D images before training on the image
with AlexNet. Nakano et al. [26] noted the potential of
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Figure 3. CV-based tracking of bipedal robot gait. (a) shows the green markers creating absolute boundaries and coordinates, and (b) shows the
calculation of joint angles using lines drawn through adjacent markers. Blue markers are labeled with B#, red with R#, and green with G#.

Figure 4. Physical occlusions. Each slat is 5 cm wide. Shown is a 33%
occluded footage.

converting 1D signals to other forms for the purpose of
improved classification, as techniques for data reduction and
ease of visualization are needed for accurate classification.
Representing time series data as images, therefore, is an
interesting and attractive method for potential value in 1D
signal classification.

Cross-validation classification was performed to deter-
mine the F1-score of the system (defined as the harmonic
mean of precision and recall [27]), and thus how effective
the system is as distinguishing between robot A and robot
B based on marker-assisted video footage. The classifiers
were trained using a targeted set of engineered features
as shown in Table I. The classifiers used for SVM, KNN,
binary decision tree, and an ensemble method were the
MATLAB proprietary fitcsvm [28], fitcknn [29], fitctree [30],
and fitcensemble [31] functions, respectively. MATLAB’s
automatic optimization algorithm was employed, which de-
termines hyperparameters based on fivefold cross-validation
loss [32]. The resulting hyperparameters are recorded in

Table I. Engineered feature set used by the classifiers.

Feature name Description Number of features

Mean Mean value for horizontal (x) 16
and vertical (y) coordinates of
each marker

Median Median value for horizontal (x) 16
and vertical (y) coordinates of
each marker

Step count Total number of local 8
maximums for timeseries
horizontal (x) coordinates

Step width Mean horizontal distance 8
between local maxima
in timeseries horizontal (x)
coordinates

Step height Mean vertical distance between 8
local maxima in timeseries
horizontal (x) coordinates

Slope Slope of the best-fit line for 8
timeseries horizontal (x)
coordinates

Total number of features: 64

Table II. F1-score is used as the primary outcome metric
when evaluating these classifiers.

2.6 Runtime
The efficiency of generating theOIF for a classifier, expressed
as the computation runtime, is a linear function of training
runtime, the base classifier being used, and the chosen
fidelity of the OIF in question. The time it takes to
populate an obstructed image function plot can therefore
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Table II. Optimized hyperparameters and efficiency in terms of average training runtimes on a typical engineering laptop for the primitive machine learning classifiers.

Classifier Parameter 1 Value 1 Parameter 2 Value 2 Parameter 3 Value 3 Training
runtime (s)

SVM Function Linear Box 0.031486 Kernel 0.98824 107
constraint scale

KNN Distance Seuclidean Number of 1 — — 62
neighbors

Decision Minimum 11 Minimum 18 Maximum 23 36
tree leaf size parent splits

Ensemble Method Bag Number of 498 Minimum 4 291
learning leaf size
cycles

CNN* Number of 6 Initial 1 e-4 — — 35
epochs learning seconds

rate

*Not trained with a grid search.

Figure 5. OIF for physical occlusion results. Measurements were taken at
0, 25, 33, 50, and 67% occlusion. This plot is scaled out to 100%
occlusion for consistency with the virtual occlusion results. [R2 values:
SVM = 0.776; KNN = 0.597; Tree = 0.754; Ensemble = 0.674;
CNN = 0.047.]

be approximated by t = r ∗ f , where t is the total time,
r is the runtime of the base classifier, and f is the
fidelity, in terms of number of iterations, number of tested
obstruction layers, or both. So, for instance, the time to
generate the curve for SVM in Figure 5, using the values in
Table II, would be t = 107 s ∗ 5 obstruction ratios= 535 s.
Likewise, the OIF curve generation time for the KNN
method on even spaced virtual obstructions would be
t = 62 s ∗ 100 obstruction ratios ∗ 10 phase iterations =
62000 s= 17.2 h. These runtimes were recording on typical
engineering laptop, with an Intel Core i7-8550U CPU
running at 1.99 GHz.

3. RESULTS
The results from the physical occlusion tests are shown in
Fig. 5. Unexpectedly, the data shows a steep and significant
increase in classification accuracy for all primitive classifiers
as occlusion increased. At 67% occlusion, all primitive
classifiers demonstrated 100% accuracy. In addition, all
primitive classifiers showed a local maximum at 33%
occlusion. Thus, the two maxima occur at complementary
occlusion percentages, with the first maximum occurring
when the signal is twice as occluded as the second. The CNN
demonstrated distinct behavior compared with the primitive
classifiers, as it was nearly straight, sitting between an F-score
of 0.9 and 1.0 regardless of the level of obstruction.

The OIF from virtual occlusions with constant-width
slats is shown in Figure 6. All four slat widths used showed
an overall increase in classification accuracy as occlusions
increased, which largely confirms the results found in the
physical experiments. A similar pattern is noted, especially
with the wider slats like 5 cm, where there is a quick increase
in classification accuracy until around 20–30% occlusion, at
which point it seems to plateau.

The next virtual experiment was to keep a constant
number of evenly spaced slats and increase their thickness, as
opposed to increasing the number of identical slats. TheOIFs
from these tests are shown in Figure 7. The trend from these
experiments is, overall, a decrease in classification accuracy
as percent occlusion increases.

The OIF results for the random virtual occlusions are
shown in Figure 8. This curve is by far the smoothest, which
suggests that the large number of random iterations helped
capture the overall trend.

It is worth noting that the variance within these data sets
is fairly high. The error bars shown in the figures represent
±1 standard deviation within each percent occlusion set. For
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Figure 6. OIF for constant-width slats virtual occlusions. These virtual occlusions most closely match the physical occlusions. The virtual slat widths are
(a) 1.25, (b) 2.5, (c) 5, and (d) 10 cm. Each datum shown is a mean value of 100 phase-shifted versions of the same percent occlusion. The error bars
represent plus and minus 1 standard deviation within each set. [R2 values: (a) SVM = 0.712; KNN = 0.734; Tree = 0.564; Ensemble = 0.459 | (b)
SVM = 0.289; KNN = 0.441; Tree = 0.309; Ensemble = 0.174 | (c) SVM = 0.002; KNN = 0.146; Tree = 0.009; Ensemble = 0.146 | (d) SVM
= 0.179; KNN = 0.702; Tree = 0.195; Ensemble = 0.074.]

most plots this refers to the distribution of F1-scores among
the 100 different phased-shifted versions of each percent
occlusion. For Fig. 8, however, it represents the distribution
among the 1000 different randomly generated occlusion
widths and spacing for each percent occlusion. Often the
standard deviation was in the range 0.05–0.1. This means
that small changes in phase or even in the order of occlusion
could result in fairly large changes in classification accuracy
with the classifiers and features used here. In the mean, the
SVM had the lowest variation, and the binary decision tree
had the highest.

4. DISCUSSION
The results of the various experiments in this study serve
to illustrate the potential utility of the OIF in comparing
biometric or other classification algorithms when occlusions
are present. Using this function, an unusual behavior pattern
appeared where the classification accuracy increased with
occlusion in some circumstances, as seen in Figs. 5 and 6,
which show the OIFs for physical and virtual constant-width
slats, respectively. This behavior seems counterintuitive
since it would be expected that more data (less occlusion)

would result in higher classification accuracy, but the
reverse appears to be true with both the physical and
virtual constant-width slats. This increasing accuracy with
occlusion (R2 > 0.7) pattern did not show up in any
other occlusion configurations, which indicates that the
specific configuration was likely the cause of the unexpected
behavior. Since many of the features used in this study
reflected the gait cycle, it is possible that the constant-width
slats actually performed some level of pre-filtering, removing
relatively more noise than data (i.e. improving SNR) for
the chosen features and classifiers to analyze. This seems
plausible, because the constantwidths of the slats consistently
obstruct the same percentage of the gait cycle, as opposed
to the random or pseudo-random breakup of gait cycles that
take place in all the other occlusion scenarios. This behavior,
then, may reflect the behavior of a true ‘‘picket-fence’’
scenario, such as trying to biometrically identify footage of
a person walking, occluded by a literal fence. However, this
pattern would likely not be found with more sophisticated
features and/or classifiers and may instead simply indicate
that these features and classifiers and particularly non-ideal
for this occlusion type. This is an insight that the OIF
makes abundantly clear. It is worth noting that the ensemble
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Figure 7. OIF for expanding-width slats virtual occlusions. The number of slats present is (a) 12, (b) 6, and (c) 4. Each datum shown is a mean value
of 100 phase-shifted versions of the same percent occlusion. The error bars represent plus and minus 1 standard deviation within each set. [R2 values:
(a) SVM = 0.277; KNN = 0.581; Tree = 0.178; Ensemble = 0.399 | (b) SVM = 0.471; KNN = 0.286; Tree = 0.350; Ensemble = 0.449 | (c)
SVM = 0.590; KNN = 0.328; Tree = 0.487; Ensemble = 0.637.]

Figure 8. OIF for random virtual occlusions. Each datum shown in the
mean of 2400 randomly generated occlusion widths and spacings. The
error bars represent plus and minus 1 standard deviation within each
percent occlusion set. [R2 values: SVM = 0.861; KNN = 0.275; Tree
= 0.934; Ensemble = 0.939.]

classifier performed markedly better than the other three
classifiers with 0% occlusion (Fig. 5). Based on this visual
function measure, it would be reasonable to conclude that
using the ensemble method would be the best choice among
the four primitive classifiers investigated.

The results from the CNN on the experimental data
further illustrate the utility of the OIF. Whereas the efficacy
of the primitive classifiers all appear to have a direct
relationship (R2

max = 0.77) with the amount of obstruction,
the CNN seems unrelated to the obstruction levels used
(R2
= 0.05). This suggests that the CNN algorithm used here

is not affected by cyclical pattern obstruction in nearly the
same was that the primitive algorithms were. Interestingly,
the best results from the primitive algorithms are better
than the best results from the deep learning algorithm, but
the mean F1-score from the five obstruction ratios CNN
(0.94) was on par with the highest mean of the primitive
classifier, the ensemble method (0.94). The CNN’s accuracy
in distinguishing the two robots is relative unaffected by even
large amounts of obstruction.

Another helpful case study to demonstrate the utility of
the OIF is found by evaluating the results of the randomized
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trials, shown in Fig. 8. A few notable observations can be
made. First, there appear to be two curve shapes, one which
is shared by the ensemble and decision tree methods, and
a second which is shared by the SVM and KNN methods.
This suggests a similarity in the underlying classification
mechanisms. A second notable observation is made by
directly comparing the accuracy of each classifier. The
SVM is clearly the most accurate classifier in the mean
if the percent occlusion is below about 20%, after which
the ensemble classifier is consistently the most accurate.
In addition, the KNN classifier is the least accurate at all
occlusion levels. Based on information provided by analyzing
the OIFs, one can make an informed decision about which
classifier to use. Namely, if there is little expected occlusion
inmost cases, the SVMmaybe the optimal choice, but if there
is a considerable amount of occluded footage (or other image
types) expected, the ensemblemethodmay bemost effective.

Thanks to the OIF, all of these observations were made
possible, as there is no similar visual functionmeasure, which
so clearly offers insight into occluded image classification
behavior. This metric is envisioned to be used in two main
ways: as an objective comparison with standardized tests,
and as a case-by-case tool for evaluating specific situations.
Several potential standardized tests have been shown in
this report, any of which could be used as a standard. The
randomized test, with a sufficient number of random trials,
seemed to give the most consistent data. Secondary metrics
could be derived from a standardized test as well, such as
the average slope of a best-fit line, or the total area under
the curve. It is worth noting that all the experiments in
this study, such as OIF can also be used as a case-by-case
evaluation tool for applications such as forensic biometrics.
If a known occlusion pattern is present, for instance, in a
security camera footage of a harbor or across a street with
mailboxes and street lamps in the way, the exact pattern
could be mimicked virtually, and the best classifier and
features could be determined for that specific application as
a pre-flight test for occlusion. This kind of test could use
standardized images, such as the ones used in this study or
any other publicly available optical gait database. As such,
the optimal biometric classification algorithm for a specific,
occluded, security camera feed could be determined entirely
virtually, without the need for any physical experimentation
on site. This means that this method would be effective at
evaluating systems that aremounted onmoving objects, such
as drones, satellites, and other UAVs.

5. CONCLUSIONS
This study described the OIF curve metrics and presented
various examples that demonstrate its utility. In doing so,
an interesting phenomenon was also observed in which
evenly spaced, constant-width slat occlusion improved the
classification accuracy of the simple classifiers used in
this study. This means that the classification algorithm
was not taking full advantage of the available data and
might be improved by incorporating better image features
or some form of pre-filtering. Thus, even if an image

processing algorithm is not intended to be used for occluded
images, generating as OIF may still prove to be insightful.
Here, we proposed the OIF as a method for classifier
assessment in occluded conditions. In addition, this OIF
study demonstrates the differences in behavior between
primitive and deep learning algorithms in how they are
affected by obstructions. The CNN’s behavior appeared to
have no relationship with the amount of visual obstruction
in the images.

The experiments here serve to illustrate this measure,
how itworks, and the value it adds.Muchmore can be done to
showcase this function with various other machine learning,
deep learning, and neural network-based classifiers. Though
the utility of this method was explored here, a universal
standardization of assessment for this metric is still needed
and could be further developed in future work. Any or all of
the virtual occlusion experiments used in this study could be
incorporated into that standard. For such a standard to be
widely accepted, an efficacy versus effectiveness study may
have to be done so as to link comparisons made with OIF
to the actual performance of these classifiers in real world
scenarios. In addition,more derivedmetrics fromOIF can be
created and standardized to provide a means of quantitative
comparison. Though this metric was developed primarily
with forensic and biometric applications in mind, it may be
useful anywhere occluded signals are found, such as a faulty
long-range radio connection.
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