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Abstract. Depth map extraction or estimation is very important for
many computer vision applications. However, this process involves
high cost. Hence, it is interesting to find new approaches, which
could yield faster implementations, when very accurate results are
not necessary. These new implementations can be built up for the
stereovision problem, taking advantage of the specific geometrical
constraints of this kind of problem. The problem is solved by searching
pixel-by-pixel matching in horizontal lines. In this article, we propose
a novel approach to this problem, providing measurements of the
processing time and accuracy achieved, as well as a qualitative
comparison with other methods available in the literature. The results
obtained could reach speeds around one order of magnitude faster
than those proposed in other classical implementations. Thus, the
proposed algorithm can run on cheap and low-performance hardware
achieving real-time processing rates. dc 2013 Society for Imaging
Science and Technology.
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INTRODUCTION
Depth map estimation consists of extracting the distances of
every single pixel of an image to the camera. A depthmap of a
scene can be computed by means of several approaches. This
task has been solved using both passive and active methods,
but we will focus only on passive methods.

We find several solutions in this approach with several
cameras pointing to the scene to be computed.1,2 Among
them, we find the stereovision approach, in which two
cameras point to the scene, slightly displaced.

We chose stereovision because this approach has two
important advantages: the possibility of absolute depth mea-
surements, and the fact that some geometrical assumptions
can be made, simplifying the problem. These simplifications
of the generalized problem allow faster implementations, as
we propose in this article.

In stereovision, there is a mandatory task, referred
to as matching, which consists of identifying the same
physical points within different images.1 With the found
correspondence, the disparity between both images can be
computed and, hence, the depth map can be extracted.

This approach solves the problem with four main
strategies: local, cooperative, dynamic programming, and
global approximations.

Received Mar. 13, 2012; accepted for publication Nov. 16, 2013; published
online Jan. 3, 2014. Associate Editor: Miguel Lopez-Álvarez.
1062-3701/2014/57(6)/060501/7/$25.00

The first option takes into account only disparities
within a finite window or neighborhood, which presents
similar intensities in both images.3 The value of a matching
criterion (sum of absolute differences (SAD), sum of squared
differences (SSD), or any other characterization of the
neighborhood of a pixel) in one image is compared with
the value computed in the other image for a displacing
window. These windows are of k × k pixel size. Then, this
sum is optimized and the best match pixel is found. Finally,
the disparity is computed from the abscissa difference of
matched windows.

The results of this kind of algorithm are not very
accurate, as is shown, for example, in Ref. 4. The main
disadvantage can be clearly seen: the number of operations
needed gives a global order of the algorithm ofO(n)= N3

·k4

for an N×N image with windows of k× k pixels. This order
is very high, and these algorithms are not very fast; the fastest
one found in the literature is around 1 and 5 fps.4

Another possibility for local matching is implemented
by means of point matching. The basic idea consists of
identifying important points (relevant information) in both
images. After this process, all relevant points are identified.
Results of these algorithms are more accurate than those
presented previously, and sometimes faster, as shown in
Ref. 5. Once again, we find that these algorithms are not
very fast, achieving processing times of a few seconds.6 In
the case of Lui, he gives time measures to obtain these results
with a Pentium IV (2.4 GHz): 11.1 and 4.4 s for the Venus
and the Tsukuba pairs, respectively. Another drawback is
the necessity of interpolation, since point matching does
not provide, by definition, a dense matching, i.e., a disparity
estimate at each pixel.7 Only matched points are measured.
After that, an interpolation of the non-identified points is
mandatory, slightly increasing the processing time. Another
important disadvantage is the disparity computation on
untextured surfaces.

Cooperative algorithmswere first proposed byMarr and
Poggio,8 and the method was implemented by trying to sim-
ulate how the human brain works. A two-dimensional neural
network iterates with inhibitory and excitatory connections
until a stable state is reached. Later, some other proposals in
this group have been given.9

Global algorithms make explicit smoothness assump-
tions converting the problem into an optimization one.
They seek a disparity assignment that minimizes a global
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cost or energy function that combines data and smoothness
terms.7,10

Another possibility of global algorithms is those of belief
propagation,11 modeling smoothness, discontinuities, and
occlusions with three Markov random fields and itinerates
finding the best solution of a maximum a posteriori (MAP).

Some of the best results with global strategies have been
achieved with the so-called graph cuts matching. A graph
cutmatching extends the one-dimensional (1D) formulation
of the dynamic programming approach to two dimensions,
assuming a local coherence constraint, i.e., for each pixel,
neighborhoods have similar disparity. This approximation is
widely explained in Ref. 10.

A final family of global algorithms to be studied
is segment-based algorithms. This group of algorithms
segments the image into regions tomatch the regions instead
of pixels. An initial pair of images is smoothed and segmented
into regions (see Ref. 12 and Eq. (1) of this article). The
aim of this family of algorithms addresses the problem of
untextured regions:

�=

K∑
k−1

Sk, (1)

� being the whole image and Sk the kth non-overlapping
region.

These algorithms have the advantage of producing
a dense depth map, thus avoiding interpolation. This
algorithm also performs a k × k window pre-match, and
a plane fitting, producing a high computational load (and
computation time of tens of seconds), and inhibiting its use
in real-time applications.12

Combinations of segment-based and graph cuts algo-
rithms have also been implemented.13

The dynamic programming strategy consists of assum-
ing the ordering constraint as always true.10 The scan line
is assumed, then, to be horizontal and unidimensional. The
independent match of horizontal lines produces horizontal
‘‘streaks’’. The problem with the noise sensitivity of this
proposal is smoothed with vertical edges14 or ground control
points.15

The specific advantage of this last approach is the well-
known position of cameras, which allows a simplification
of the problem, as mentioned earlier. Its correlation in the
matching process is the simplification of the problem from
2D to 1D matching. This is also the case of some studies
available5,16. This idea is exploited in our proposal.

The main problem with most of the proposed ap-
proaches to the stereovision problem, even those of 1D
matching, is the use of quite complex operators to find the
relevant points (see Refs. 17–20, for example). Additional
algorithms taking advantage of a time analysis have been
proposed as well.21,22 The calculations required for depth
mapping of images have been studied in detail, and a
complete review of algorithms performing this task bymeans
of stereovision can be found in Ref. 7.

We propose in this article a novel approach to depth
map estimation, sacrificing accuracy to achieve a very low
complexity and, hence, high processing rates, significantly
over real-time constraints.

This article is organized as follows. Following this in-
troduction, we describe the problem and the corresponding
assumptions. The same section explains in detail how our
proposal works, the post-processing, and main features. The
Results section gives examples of the depth maps extracted
from some standard pairs of images, which will be discussed
and comparedwith other results found in the literature in the
following sections. Finally, a Conclusion section summarizes
the main aspects of this study.

MATERIALS ANDMETHODS
As mentioned above, the matching problem applied to
stereovision can be simplified if the appropriate approach is
considered.

The geometrical assumptions used are explained in de-
tail in Ref. 1, themost important one being the fronto-parallel
hypothesis: ‘‘the retinal planes of the cameras are identical and
the scene is an assembly of planes parallel to them’’.1 More-
over, taking into account the idea first proposed in Ref. 23,
we can arrive at the following geometrical assumption: We
assume that the scan lines for point extraction and matching
are horizontal. Since the fronto-parallel hypothesis is taken
into account, and the cameras setup fits with this constraint,
we can assume that every physical (and not occluded) point
in one image must be found at the same height in the other
image. The horizontal displacement will be used to compute
the depth. The next assumption to be made is that every
neighboring pixel has similar disparity, which we call the
local coherence constraint.10 Of course, this constraint is not
true in edges and occluded pixels, but it allows us to perform
a pixel-by-pixel matching assuming this constraint until a
comparison threshold is surpassed.

A final hypothesis is assumed: both images (and, hence,
cameras) have the same photogrammetric parameters, so no
brightness correction (or white balance if color images are
used) is performed. This is a key point of the algorithmwhen
working in real-life situations, but given that in this study we
will use standard stereo pairs of images, the assumption is
fulfilled.

In this scenario, we propose the following solution to
depth map estimation.

(1) Finding a first relevant point for each scan line by means
of a horizontal and unidimensional gradient operator.

(2) Finding the corresponding point in the other image with
the same operation.

(3) Trying to match pixel by pixel, defining an acceptance
threshold and allowing some outliers (to reduce the
effect of impulsive noise).

The proposed algorithm works with rectified gray-scale
images.
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The first task to be implemented is the relevant point
extraction. This is done with a horizontal differential mask
of size 1 × 3, with the following structure: {−1, 0, 1}. The
horizontal size of the window allows one to reduce the effect
of the Gaussian blur. The convolution over this mask is
compared with a threshold to decide whether it is a relevant
starting point or not.

Every comparison is performedwith the sumof absolute
difference approach shown in Eq. (2) for two arbitrary values
V1 and V2, and compared with a pre-defined threshold T :

abs(V1 − V2) < T (2)

Once two corresponding pixels are found in one line,
pixel-by-pixel matching is implemented for each line i, with
L and R referring to the left and right images, j being the
columnnumber and point(x, y)X a specific point in the left (if
X = L) or right (if X = R) image, at the coordinates x and y:

In this scheme, the fourth line comparison is done by
comparing values of the examined pixels in both images, as
well as those of the sides and those at the bottom, i.e., for
a point (i, j), points (i, j − 1), (i, j + 1), and (i + 1, j)
are also compared in both images to minimize the error of
takingwrongmatches. This decisionmakes this first disparity
measurement stronger. Although arbitrary, it is as simple as
possible to allow high speed rates without threatening the
accuracy.

The seventh line comparison is a single value difference
of both points. No mask is used in this step, strongly
improving the performance of the algorithm.

Given that we are comparing points which are, theoret-
ically, the same (i.e. have the same brightness assuming the
equal photogrammetric parameters), any difference should
be interpreted as a discontinuity. However this does not
work. Small differences appear in any pair of real images,
and the algorithm must present some degree of tolerance.
This is implemented with TH2 and the outliers. TH2 is the
maximum allowed difference in the brightness of two points
to be treated as the same one. However, salt and pepper noise
may overpass this value, although it is not an occlusion or a
disparity edge. This is the reason why there is a number of
outliers allowed. With this tolerance, the algorithm ignores

Table I. Performance of the algorithm for different number of scan lines in the
Tsukuba pair of images. Threshold for the error estimation is 2.

Number of scan
lines (%)

Time
(ms) fps

Non-occluded
Errors (%) All (%) Disc (%)

(c) 100 17.8 56 8.34 8.81 27.2
(d) 50 8.8 114 7.45 7.93 29.0

some pixels even though they are not the same. If there
is indeed a discontinuity, after four pixels the algorithm
understands that it is a discontinuity, and looks for the new
disparity value. This flexibility makes the algorithm accurate
enough with respect to the time performance.

We have, then, the possibility of scanning or not every
line of the original pair of images. When not every row of
the image is scanned, the algorithm deals with subimages of
L×M, L being the number of scan lines. Thus, the final image
is a stretched version of the estimated depth map and must
be resized to its original size N ×M. This allows managing a
simplified version of the images, where any other processing
will be much lighter than in the original size image.

We find three degrees of freedom in this algorithm:

• percentage of horizontal lines scanned;

• threshold for pixel acceptance as non-outlier;

• number of allowed outliers.

The number of scanned lines can vary, taking all of them
or a subset. This possibility opens the door to a better op-
timization between accuracy and processing speed, finding a
specific agreement between these two factors depending on
the final application.

The threshold tolerance to accept or not a new pixel
(the SAD between this and the previous one) is an important
parameter in the algorithm speed, as will be shown in the
Results section. Moreover, this parameter is related to the
number of accepted outliers before searching a newmatching
condition.

The main post-process implemented over the stretched
image in our proposal is a vertical median filter, processing
the estimated stretched depth map before resizing it, when
not every line has been examined.

RESULTS
The algorithm was implemented in C using the OpenCV
library over a 1.6 GHz PC. It was tested over standard sets of
images used in stereovision from the Middlebury test bed.24

On processing the Tsukuba pair of images, we obtained
the results shown in Figure 1 for 100 and 50% of scanned
lines, for a threshold of 8, and three allowed outliers.

As explained earlier, the results sacrifice accuracy to
achieve high processing speed.

The time delay caused by the algorithm shown in
Table I considers the scanning, the matching, and the
post-processing median algorithm with 3× 3 window.
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Table II. Performance of the algorithm for different number of scan lines in the
Teddy pair of images.

Number of scan
lines (%)

Time
(ms) fps

Non-occluded
errors (%) All (%) Disc (%)

(c) 50 26.3 38 23.9 28.1 36.1
(d) 100 52.6 19 23.1 27.4 31.7

Table III. Performance of the algorithm for different number of scan lines in the
Venus pair of images.

Number of scan
lines (%)

Time
(ms) fps

Non-occluded
Errors (%) All (%) Disc (%)

(c) 50 17.8 56 9.69 10.1 29.6
(d) 100 35.7 28 9.77 10.2 30.5

In the table, All means all pixels, and Disc only pixels
in discontinuities. These results are obtained automatically
from the Middlebury algorithm tester.

The image obtained with half of the scan lines has been
interpolated (each line is doubled) to achieve the original size
and allow an automatic comparison with the depth truth.

As usually happens in the dynamic programming
approach, ‘‘streak’’ lines appear, which cannot be completely
removed by the median vertical filter without important
information loss.

Figure 2 shows the results for the Teddy pair of images.
The size of each image is 375 × 450 pixels, and the median
filter size used in the post-processing is 5× 5.

The time analysis is given in Table II.
Finally, the pair of Venus images was processed, and the

results are shown in Figure 3. These images have a resolution
of 383 × 434 pixels, and a median filter of 5 × 5 was
implemented before presenting.

The time analysis is given in Table III.
It is important to note that the last two examples are very

rich in texture, where algorithms dealingwith edges or region
growing used to have several problems.

DISCUSSION
Nowadays, the proposed algorithms achieves accurate depth
map estimations investing a huge amount of computational
resources and time.

Figure 4 presents some results in (color-based) depth
map estimations from the same pairs of images of (a)
a real-time correlation-based algorithm from Ref. 4, (b)
a segment-based algorithm from Ref. 13, and (c) also a
segment-based algorithm fromRef. 25. These algorithmswill
be used for time performance comparisons.

The quality of these depth map estimations is higher
than that proposed in this article, but, regarding the time
performance, we find interesting results. Hirschmüller et al.
obtain this result over a 450MHz processor at 4.7 fps (notice
that the image size is 240 × 320 in this setup).4 Hong and
Chen get the image in Fig. 4(b) with a 2.4 GHz PC after

3 s (image size 288 × 384). In the case of Klaus et al., the
computation time required is higher than 14 s on a 2.21 GHz
machine25 (the size is not specified in this study). We can
easily see the improvement in terms of performance of our
algorithm, since our results for the same image achieve a
frame rate of 56 fps in slower processors and the best case
(except the case of Hirschmüller et al.). This is the new deal
achieved between accuracy and time and, hence, the main
contribution of our proposal.

Regarding the complexity of the algorithm, we can
appreciate linearity in the computation time as a function of
the number of lines. Moreover, the order of the algorithm
we present and analyze in this article is O(M · L), M being
the number of columns in the image and L the number of
lines to be scanned.No dependency of the height of the image
was found. Just for comparison purposes, we can take the
example given in Ref. 26. The algorithm proposed in this
article matches points for fingerprint identification. It has a
complexity of O(n2k2 log n), k being the operator size and n
the size of the image.

This essential difference is due to the highly specific
approach adopted in this study: we do not deal with rotation
or scale-variant images, as is done in Ref. 26. We can assume
that the epipolar lines are horizontal and identical in both
images and, hence, we do not have to search the feature
points in a 2D space. This constraint reduces the complexity
of the problem to one dimension. We can exploit all these
specifications of a specific stereovision problem to adjust the
searching and matching algorithm to make it as simple as
possible. Then, its complexity falls down dramatically, and
although the final results are not very accurate (it depends
on the final application, as said), we find it interesting as a
new way to solve the stereo matching problem.

These constraints are taken into account in the presented
dynamic processing algorithms with temporal comparison.
In the case of Ref. 22, the time analysis with a dual core
2.1 GHz PC and images of 512 × 512 pixels reports delays
between 104 and 188 ms. The main reason for the increment
of the processing time is the use of more complex operators
(as the Canny edge) and, of course, the time comparison
between consecutive frames.

We can clearly see the arrangement between complexity
and accuracy. In fact, the goodness of each algorithm
depends on the final application of the algorithm. What we
have searched is a light way to estimate the depth map when
accuracy is not critical.

Finally, we found some unexpected results: the half-line
definition depth estimation had, in some cases, lower errors
than the full-line definition depth estimations. As can be
appreciated from Fig. 1 (the one with largest differences
concerning this issue), image (c) (full-line definition) has
more streaky lines than image (d) (half-line definition, which
is smoother, as happens with every other half-line definition
depth estimation). This result is arbitrary: for the same
couple of contiguous lines, one algorithm may produce an
important error (creating a streak) in one of them and no
error in the other one. The half-line process will just process
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(a) (b)

(c) (d)

Figure 1. (a) Original Tsukuba left image and (b) ground truth, and depth map estimation with (c) 100% and (d) 50% of scan lines.

(a) (b)

(c) (d)

Figure 2. (a) Original Teddy left image and (b) true depth map. Teddy depth map estimation with (c) 187 and (d) 375 scan lines.

one of them, and it may take the line producing errors (and
so, when interpolating, would produce the double of error

pixels) or the best one (with no error generation). We can
affirm that it is not a theoretical effect of the algorithm but
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(a) (b)

(c) (d)

Figure 3. (a) Original Venus left image and (b) true depth map. Venus depth map estimation with (c) 191 and (d) 383 scan lines.

(a) (b) (c)

Figure 4. (a) Real-time correlation-based result taken from Ref. 4, (b) segment-based result from Ref. 13, and (c) another segment-based result from Ref. 25.

a random effect of the lines selected. Thus, it should not be
taken as relevant (but the time required in each case is).

CONCLUSIONS
Depth map estimation is a complex computation task.
Because of this, we have to find a balance between time and
accuracy. In this scenario, we have proposed a fast algorithm
to compute dense depth maps that work between 6 (worst
case) to 100 times faster thanmore accurate options found in
the literature, achieving rates from 20 to hundreds of fps in
general-purpose PCs depending on the required definition.

To get that result, we have approximated the general
matching problem by means of several geometrical con-
straints, which allow us to simplify the problem to that of
scanning horizontal lines implementing a 1D differential
filter to find relevant points at the beginning of each line.

Another interesting result found was the linearity of
the order of the proposed algorithm, which depends on the
number of lines to be scanned and the width of the image,
since the scanning lines are horizontal.

Some problems in repetitive patterns and untextured
areas were found, which have to be treated separately in
further studies.

ACKNOWLEDGMENT
We would like to acknowledge the student grant offered by
the Universidad Carlos III deMadrid and Spanish Center for
Subtitling andAudiodescription (CESyA), which has allowed
this research work to be performed.

REFERENCES
1 J.-P. Pons and R. Keriven, ‘‘Multi-view stereo reconstruction and scene
flow estimation with a global image-based matching score,’’ Int. J. Com-
put. Vision 72, 179 (2007).

J. Imaging Sci. Technol. 060501-6 Nov.-Dec. 2013

http://dx.doi.org/10.1007/s11263-006-8671-5
http://dx.doi.org/10.1007/s11263-006-8671-5


Revuelta Sanz et al.: Fast and dense depth map estimation for stereovision low-cost systems

2H. K. I. Kim, K. Kogure, and K. Sohn, ‘‘A real-time 3D modeling system
usingmultiple stereo cameras for free-viewpoint video generation,’’ LNCS
Image Anal. Recog. 4142, 237 (2006).

3M. S. Islam and L. Kitchen, ‘‘Nonlinear similarity based imagematching,’’
Int. Federation Inform. Process. 228, 401 (2004).

4H.Hirschmüller, P. R. Innocent, and J. Garibaldi, ‘‘Real-time correlation-
based stereo visionwith reduced border errors,’’ J. Comput. Vision 47, 229
(2002).

5 B. Liu, H.-B. Gao, and Q. Zhang, ‘‘Research of correspondence points
matching on binocular stereo vision measurement system based on
wavelet,’’ Int’l Conf. on Machine Learning and Cybernetics, 2006, 3687,
(2006).

6 J. C. Kim, K. M. Lee, B. T. Choi, and S. U. Lee, ‘‘A dense stereo matching
using two-pass dynamic programming with generalized ground control
points,’’ IEEE Computer Society Conf. on Comput. Vision Pattern Recognit,
2005 (CVPR 2005), 2, 1075 (2005).

7D. Scharstein and R. Szeliski, ‘‘A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,’’ Int. J. Comput. Vision 47,
7 (2002).

8H. Marr and T. Poggio, ‘‘Cooperative computation of stereo disparity,’’
Science 194, 283 (1976).

9H. Mayer, ‘‘Analysis of means to improve cooperative disparity estima-
tion’’, ISPRS Conf. on Photogrammetric Image Analysis XXXIV (2003).

10 J. Käck, ‘‘Robust stereo correspondence using graph cuts,’’ Master Thesis
(2004).

11 J. Sun, H.-Y. Shum, and N.-N. Zheng, ‘‘Stereo matching using belief
propagation,’’ European Conf. on Comput. Vision, 510, (2002).

12M. Bleyer and M. Gelautz, ‘‘A layered stereo matching algorithm using
image segmentation and global visibility constraints,’’ J. Photogrammetry
& Remote Sensing 59, 128 (2005).

13 L.Hong andG.Chen, ‘‘Segment-based stereomatching using graph cuts,’’
Proc. 2004 IEEE Computer Society Conf. on Computer Vision and Pattern
Recognition, 2004 (CVPR 2004), 1, I-74 (2004).

14 Y. Ohta and T. Kanade, ‘‘Stereo by intra- and inter-scanline search using
dynamic programming,’’ IEEE Trans. Pattern Anal. Mach. Intell. 7, 139
(1985).

15A. Bobick and S. Intille, ‘‘Large occlusion stereo,’’ Int. J. Comput. Vision
33, 181 (1999).

16 Z. Wang and Y. Quan, ‘‘An improved method for feature point matching
in 3D reconstruction,’’ International Symposium on Information Science
and Engineering, 2008 (ISISE ’08), 1, 159 (2008).

17K. Li, S. Wang, M. Yuan, and N. Chen, ‘‘Scale invariant control points
based stereo matching for dynamic programming,’’ The Ninth Int’l
Conf. on Electronic Measurement & Instruments (ICEMI’2009) (2009),
pp. 3–769.

18 J. Zhao, H.-J. Zhou, and G.-Z. Men, ‘‘A method of sift feature points
matching for image mosaic,’’ International Conference on Machine Learn-
ing and Cybernetics, 2009, 4, 2353 (2009).

19 F. Tiesheng, N. Bing,W.Qingsong,W. Tao, andQ.Dapeng, ‘‘Novel stereo
matching method on multi-scale Harris corner points,’’ International
Symposium on Computer Science and Computational Technology, 2008
(ISCSCT’08)1, 167 (2008).

20 S. Bereg, N. Mutsanas, and A. Wolff, ‘‘Matching points with rectangles
and squares,’’ Comput. Geometry 42, 93 (2009).

21M. El Ansari, S. Mousset, and A. Bensrhair, ‘‘Temporal consistent
real-time stereo for intelligent vehicles,’’ Pattern Recognit. Lett. (2010).

22A. Mazoul, M. El Ansari, K. Zebbara, and G. Bebis, ‘‘Fast spatio-temporal
stereo for intelligent transportation systems,’’ Pattern Anal. Appl. (2012).

23 Y. Zhang andY. J. Gerbrands, ‘‘Method formatching general stereo planar
curves,’’ Image and Vision Computing 13, 645 (1995).

24D. Scharstein, Middlebury Database, http://vision.middlebury.edu/
stereo/ (2010).

25A. Klaus, M. Sormann, and K. Kraner, ‘‘Segment-based stereo match-
ing using belief propagation and a self-adapting dissimilarity measure,’’
18th International Conference on Pattern Recognition, 2006 (ICPR 2006)
15 (2006).

26A. Bishnu, S.Das, S. C.Nandy, andB. B. Bhattacharya, ‘‘Simple algorithms
for partial point set patternmatching under rigidmotion,’’ Pattern Recog-
nit 39, 1662 (2006).

J. Imaging Sci. Technol. 060501-7 Nov.-Dec. 2013

http://dx.doi.org/10.1007/s11263-006-8671-5
http://dx.doi.org/10.1007/s11263-006-8671-5
http://dx.doi.org/10.1007/s11263-006-8671-5
http://dx.doi.org/10.1023/A:1014554110407
http://dx.doi.org/10.1023/A:1014573219977
http://dx.doi.org/10.1126/science.968482
http://dx.doi.org/10.1016/j.isprsjprs.2005.02.008
http://dx.doi.org/10.1016/j.isprsjprs.2005.02.008
http://dx.doi.org/10.1109/TPAMI.1985.4767639
http://dx.doi.org/10.1023/A:1008150329890
http://dx.doi.org/10.1016/j.comgeo.2008.05.001
http://dx.doi.org/10.1016/j.comgeo.2008.05.001
http://dx.doi.org/10.1016/j.comgeo.2008.05.001
http://dx.doi.org/10.1016/0262-8856(95)97290-3
http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/
http://dx.doi.org/10.1016/j.patcog.2006.01.003
http://dx.doi.org/10.1016/j.patcog.2006.01.003

	E1
	E2
	T1
	T2
	T3
	F1
	F2
	F3
	F4
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26

