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Abstract. In this article, two Bayesian kernel methods, namely the
Gaussian process regression (GPR) and relevance vector machine
(RVM) techniques, are used to estimate illumination chromaticity and
predict the reliability of the estimation process, which is not accessible
for most machine learning techniques that have been used for color
constancy. More than seven kinds of GPR covariance function and
their combinations, and an RVM method using Gaussian, Laplace and
Cauchy kernel functions, have been used on two real image sets. The
experimental results show that the GPR method outperforms those
based on RVM and ridge regression using stationary covariance func-
tions, and GPR can almost achieve the same performance as support
vector regression (SVR). The performance of the RVM for regression
is almost the same as that of GPR using the dot product covariance
function. The influence of outliers on the data with Gaussian noise
is analyzed in detail via using heavy-tailed Laplace and Student-t
kernel functions when GPR and the RVM are used for color constancy.
©2013 Society for Imaging Science and Technology.
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INTRODUCTION
The color of an object varies under different illuminants in
most circumstances. Color constancy is used to recognize the
object color regardless of the light source, which is important
for many computer vision applications, such as image
retrieval, image classification, color object recognition, and
video tracking.

For a Lambertian reflectance model, a color image
f = (fr.fG,fB) is composed of the multiplication of three
terms, i.e. the color of the light source e(A, x), the surface
reflectance properties s(A,X) and the camera sensitivity
function ¢(A):

f=mb/ e(h, x)s(A, x)e(L)dr (1)
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where my, is the scale factor for shading, w is the visible
spectrum, ¢(1) = (R(A), G(A), B(})), A is the wavelength
of the light and x is the spatial coordinate in the image.
Both the intrinsic property of a surface s(A, x) and the color
of the illuminant e(X, x) have to be estimated, while only
the product (i.e. the actual image f) is known. This implies
that illuminant estimation is an under-constrained problem.
To obtain an object’s color feature irrespective of the light
source, some assumptions must be made or constraints
imposed as regards the light source or object surface feature.
There have been many techniques used in addressing the
color constancy problem. They can be categorized into three
kinds: low-level feature based methods, ™ statistics based
methods®™!* and machine learning based methods.!!~!8
Most methods can achieve good estimation of illumination
chromaticity, but none of them can predict the reliability of
the estimation process. The latter is very important for video
tracking and video surveillance for unknown light scenes.
Bayesian kernel methods'® ™22 have been proved to be
effective tools for regression and classification. In this article,
Bayesian kernel methods, including Gaussian process®>!”
and relevance vector machine (RVM)?°~22 ones, are used for
the color constancy problem. The purpose of using Bayesian
kernel methods for color constancy is rooted in three
aspects. The first is that the Bayesian approach allows for an
intuitive incorporation of prior knowledge into the process
of estimation, and it not only can achieve illumination
chromaticity estimation but also can make predictions
about the reliability of the estimation process. The second
aspect is that a cross-validation procedure must be used
to avoid over-fitting for most machine learning methods,
which is wasteful of both data and computation. The fully
probabilistic framework is adopted for both methods and a
prior over the model is governed by a set of hyperparameters;
therefore, cross-validation is not needed. The third aspect is
that kernel functions provide a powerful way of detecting
the nonlinear relations alluded to above in relation to the
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Figure 1. lllustration of the algorithm for color constancy.

color constancy problem. The approach decouples the design
of the algorithm from the specification of the feature space,
which not only increases the flexibility of the approach but
also makes both the learning algorithms and the kernel
design more amenable to formal analysis.>*

In this article, the procedure of the Bayesian kernel
based method for color constancy is described, see Figure 1.
Firstly, all the images are preprocessed to remove dark pixels
and filtered to reduce noise. Secondly, the color image is
converted into the chromaticity space (r, g), sampled into
N x N bins, and binarized to form the input. After that, the
estimation of illumination chromaticity is implemented on
the training image set to select the best model. Finally, the
estimation of the illumination chromaticity of an unknown
image is obtained using the selected best model and image
correction is implemented. From Fig. 1, we can see that
the Bayesian kernel method uses all the images with light
ground-truth in the data set for training without the wasteful
validation data needed by most machine learning methods.

The performances of both Bayesian kernel based
methods—ridge regression (RR)?® and support vector re-
gression (SVR)?°—are evaluated on two real image sets from
Shi%” and Bianco.?® On the basis of the experimental results,
it is shown that GPR outperforms RVM for regression when
stationary covariance functions are used, and can almost
achieve the same performance as SVR. The performance of
RVM is almost the same as that of GPR when dot product
covariance functions are used. The performance of the ridge
regression method is poorer than those of three kernel based
methods (the support vector machine is also kernel based).
Finally, the outlier influence on the data with Gaussian noise
is analyzed in detail when GPR and RVM are used for color
constancy.
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The rest of this article is organized as follows. An
overview of related work is given in the second section. The
third section outlines the algorithms of GPR and RVM for re-
gression and the fourth section gives the data representation
for regression based methods of color constancy. Two real
image sets and error metrics are described in the fifth section.
The sixth section gives experimental results, analysis of both
methods, and comparisons with other methods. Seventh
section gives some sample results from various methods
applied to images with light ground-truth and unseen images
without light ground-truth using optimized parameters. The
outlier influences on GPR and RVM are discussed in detail
in the eighth section. Finally, conclusions are drawn in last
section.

RELATED WORKS
There have been a lot of techniques suggested for addressing
the color constancy problem. Techniques of the first kind
are based on low-level features of the image. The white
patch (WP) method! assumes that the maximum response
in an image is caused by a perfect reflectance and the
maximum response in each channel is the color of the light
source. The gray world (GW) method? assumes that the
average color in a scene is achromatic while the gray edge
(GE)? algorithm assumes that the derivative of the image
rather than the pixel is achromatic. A general framework
which unifies WP, GW, the general gray world (GGW)
method,* and the GE method is proposed by Van De Weijer.?
Some higher-order statistical methods, like the Gamut
mapping method>~” and the Bayesian color constancy
method,? ™10 use statistical models to quantify the probability
of each illuminant and then make an estimation from these
probabilities. The third category for addressing the color
constancy problem is that of the machine learning based
methods, which learn the dependence between the object
color and illuminant color from the training data. Cardei
etal.'l>12 firstly used a multi-layer neural network to recover
the illumination chromaticity given only an image of the
scene and showed that neural networks achieved better color
constancy than the color-by-correlation algorithm.'? Other
authors!'*~1¢ used SVR for color constancy. Agarwal et al.!®
explained that the linear machine learning methods, such
as ridge regression'®17 and kernel regression,'® outperform
nonlinear machine learning methods such as SVR and neural
networks. Excellent reviews concerning color constancy can
be found in Refs.??~%2

The Gaussian process and RVM are probabilistic in-
stances of extended linear models. Many popular machine
learning methods, such as ridge regression, kernel regression,
neural networks and SVR, can all be considered as special
cases of GPR with certain covariance functions to some
extent as implied in Refs.'*>*3 and some of the above methods
have gained excellent results for color constancy. The most
compelling feature of RVM? is its equivalent generalization
performance as compared with support vector machines
(SVM).3*3°> However, the number of relevance vectors is, in
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most cases, dramatically smaller than that of support vectors
used by SVM to solve the same problem.

ALGORITHMS

In this section, two Bayesian kernel methods, namely the

Gaussian process and RVM for regression, are discussed.
Given a data set D consisting of N input vectors

X = {x1,x2,...,xy}T and corresponding noisy outputs

t = {t1, 12, ..., ty}7, the regression task is to estimate an

underlying function y(x) to satisfy

i =y%) + e e~ NO,07), )
i.e. from this training set, to learn a target model depending
on the inputs for making accurate predictions of ¢ for
previously unseen values of x.

For a linear regression problem, this is generally based
on finding a parameter vector w and an offset ¢ such that we
can predict y for an unknown input x € R:

y(X, W) = wix+c (3)

where w = (w1, wa, ..., wy)T, and M is the dimension of x.
In practice the offset ¢ is usually incorporated into w.

If there is a nonlinear relationship between x and vy,
a basis function ¢ (x) can be used to implement nonlinear
mapping, so Eq. (3) can be expressed as

M
Y W) =) wigi(x) =W p(x), (4)

i=0

where ¢ (X) = (¢, ¢1, ..., ¢u) " and ¢ = 1. For notational
clarity, the bias item will not be considered explicitly in the
following sections.

A classical treatment of non-Bayesian regression such as
SVR seeks a point estimate of the unknown parameter vector
w. By contrast, in a Bayesian approach, the uncertainty of
W is characterized through a probability distribution p(w).
The prediction is made by integrating with respect to the
posterior distribution of w given the data set D.

Gaussian Process Regression

The Gaussian process assumes that any functional values
y = {y1,y2,...,yn}T of y(x) are multivariate Gaussian
distributed with zero mean such as

pyIX) =N (0, K) (5)
where K is the covariance (or Gram) matrix, which can be
expressed as Kj; = K(x;, X;) = Ely;y;] and K(x;, X;) is the

covariance function. Evidently the likelihood of the noise
model is

p(tly, X) = N(y, o°D). (6)
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Integrating over the function variables, we can get

P(EX) = / pitly. XpyIX)dy = N0, K +6°D).  (7)

If we have N training input sets and 7 prediction input sets,
evidently

p(yv YT|X) - N(Ov KN+T)7 (8)

Ky KNT]

where KN+T = [KTN Ky

If we include noise for 7, we can get that

p(t, t71X) = N(0, Kyy1 + 1)
p(tr|t, X) = N(ur, 1), 9)

where

nr = Kry[Ky + o117t (10a)
Yr =Ky — Koy[Ky + 021 'Kyr + 021 (10b)

It can be shown that the GPR model not only provides
fully probabilistic predictive distributions, but also includes
estimates of the uncertainty of the predictions, which is
in contrast to the case for many other commonly used
regression techniques, only providing the best estimation.
Furthermore, the Gaussian process predictor is based on
priors over functions, rather than on priors over parameters;
i.e. GPR is a nonparametric method, and therefore, it can
be rigorously used to let the data speak more clearly for
themselves without cross-validation.

One uses the training data to optimize the parameters
to avoid over-fitting in most machine learning methods.
However, covariance functions in GPR tend to have a small
number of hyperparameters; therefore, over-fitting does
not tend to be a problem. Secondly, the hyperparameter
optimization takes place at a higher hierarchical level. It does
not directly optimize the function variables themselves, but
rather integrates over their uncertainty as in (7). A com-
monly used method is to minimize the negative log marginal
likelihood L£(8) with respect to the hyperparameters of the
covariance 0:

L = —logp(t|6)

1 1 N
= zlogdetC(O) + EtTC*‘rJr 5 log27)  (11)

where C = Ky + oL

Equation (11) is a non-convex optimization task, which
can be obtained using a gradient based method such as the
conjugate gradient or quasi-Newton method. There may
exist local minima for GPR, particularly when there is a small
amount of data; therefore, it is often worth making several
optimizations from random starting points and investigating
the different minima.

Sep.-Oct. 2013



Zhao et al.: lllumination chromaticity estimation using Bayesian kernel methods

The Relevance Vector Machine for Regression
Assuming that noise follows an independent, identical
Gaussian distribution, the likelihood of w is

N
ptlw, o?) = [ [V Gily(xis w), 0%)

i=1

_ 2
= (27102)_% exp <—M> , (12)

202

where @ is the N x (M + 1) design matrix with
D = Om(Xn), Ppo = 1. With as many parameters in the
model as training examples, the maximum likelihood esti-
mation for w and o2 from (12) leads to severe over-fitting.
To avoid this, the parameters are constrained by defining an
explicit prior probability distribution over w:

pwila)) = N (wil0, e "), (13)

where o = [ag, a1, &2, . . ., ay]T, L.e. an individual hyperpa-

rameter «; is associated with each weight w;. This implies

M M 1 2
— -1\ _ Qi \2 _OliWi
p<w|a>—g/v(o,a,» =11(52) exp( =t )

=

Given a new test point X, predictions are made for
the corresponding target ., in terms of the predictive
distribution:

p(tlt) = / pltlw. @, 0*)p(w, @, o [)dwdado?. (15)
The first item on the right hand side is
Pltlw, &, o) = p(t:lw, 0%) = N (t:ly(x,; W), o) (16)
and the second item on the right hand side is
216y 2 2

In (17), the posterior distribution over weights is given by

p(tlw, o2)p(wle)

Dt o?) (18)

p(Wit, &, 0%) =
Using (16) and (14), the denominator is given by

ptla, 0?) = / p(tIw, o2)p(Wla)dw

N t'Q-1t
=Q2r) 2|2 2exp| — 7 . (19
So Eq. (18) can be re-expressed as

p(Wit, o, 02) = 2m) "2 |32

— )y lw—
xexp<(w W E W M)> (20)

-2
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where
=020 Tp+A)"! (21a)
pw=0c"xoTt (21b)
Q=0 21+dA T (21¢)

and A = diag(ag, a1, - - ., apy)-

Having obtained the first item on the right hand side
of (17), the second term p(a, o2|t) can be represented by a
delta function at its mode, and then the prediction can be
re-expressed as

ptlt)= / p(telw, @, a2)p(wit, &, 62)p(a, o2 |ty dwdado?
~ / p(tlw, o, aP)p(Wit, &, 72)8 (amp, op)dWdado?
= / P(tlW, amp, oFp)p(WIL, anp, ogp)dw  (22)

where (aMp,oﬁ[p) = argmaxa’azp(a,azlt). Because
Egs. (20) and (16) are all Gaussian, Eq. (22) can be
re-expressed as

Ptalt) = N (tlys, 02), (23)

where
ye = 1T (xs) (24a)
o} =oyp + d(x) TP (x,). (24b)

It can be shown that the RVM model not only provides
fully probabilistic predictive distributions, but also includes
estimates of the uncertainty of the predictions, like GPR.

To obtain (apmp, O’I\Z/IP), we can use

pla, o?|t) o p(tler, o H)p(a)p(a?) (25)

and ignore p(a) and p(c?) for the case of uniform hyper-
priors, so only maximizing p(t|a, %) i.e. Eq. (19). This can
be obtained by taking derivatives of (19) and setting them to
zZero:

new yl

i Mg

i
It — opul?
N-Zy

(26)
(UZ)new —

where p; is the ith posterior mean weight from (21b0) and
vi=1—a;Z;.

The learning algorithm thus proceeds by repeated
application of (26), concurrently updating the posterior
statistics 4 and X from (21b) and (21a), until some suitable
convergence criteria have been satisfied. In practice, it can be
found that most of them go to infinity when maximizing the
evidence with respect to these hyperparameters, and the cor-
responding weight parameters have posterior distributions
that are concentrated at zero. The basis functions associated
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with these parameters play no role in the predictions and are
effectively pruned out, which results in a sparse model.??

DATA REPRESENTATION

The regression task is to set up the relationship between input
vectors and their corresponding outputs. Thereby, the first
step is to construct input X and corresponding noisy outputs
t. For color constancy, the image intensity is often ignored,
so we use the chromaticity space (r, g) as expressed in (27),
which is commonly adopted in previous articles'?>!#16:3¢ on
color constancy. The advantage of using the chromaticity
space (7, g) is that it reduces the dimensionality of the data
set from 3D RGB space to 2D (r, g) space:

r=R/(R+G+B) (27
g=G/(R+G+B). )
Before the image is converted to the chromaticity space
(r, g), those pixels whose values are under a threshold value
of 7 (on a 0-255 scale) in any of the three RGB color
channels are removed. However, this will eliminate far more
pixels than just the dark pixels. For instance, saturated
colors can have high values for one or two of the color
channels, but low values for the third channel. In most
cases, saturated colors are also removed. After removing
the dark pixels, the image is averaged using a 5 x 5 local
filter to reduce the noise. Finally, the color image is con-
verted into the chromaticity space (r, g) and sampled into
N x N bins. Because the color constancy method commonly
neglects the intensity of the image, N x N bins are binarized
to obtain a 2D binary chromaticity histogram of 1s and
0s. 1s represent the presence of illumination chromaticity
in the bins and Os represent the absence of illumination
chromaticity in the bins. The 2D N x N binary histogram
is represented as a vector of dimensions 1 x N2: an input
vector X;, and all the vectors of the real image set make up
the input vectors X. The corresponding output comes from
light ground-truth information. In terms of illumination
chromaticity estimation, the setting of N = 32 as the bin
width is empirically selected, and provides the best results.
Other larger bin width selections (48 and 64) do not improve
the results much, but slow the process drastically, while
smaller bin width selections (8 and 16) perform poorly.'®

THE REAL IMAGE SET AND ERROR MEASURES

Two Real Image Sets

To validate the performances of both Bayesian kernel
methods, two real image sets are selected. The first image set
was extracted by Bianco et al.,® a representative subset of
1135 images that are much less correlated from the Ciurea
and Funt®’ image set. The latter was extracted from 2 h
of video clips recorded in many places: indoor, outdoor,
desert, cityscape, etc.; the ground-truth was acquired using
a gray ball mounted before the camera. Another image set
was obtained from Shi.?” The image quality of this image set
is high and the ground-truth is accurate, using the Macbeth
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Table I Optimized values of SVR free parameters on two image sefs.

Bianco®® image set Shi?7 image set

r-SVR g-S\R r-SVR g-S\R
Cost 0.0625 0.0156 0.1250 0.1250
y 0.0156 0.0156 0.0156 0.0156
€ 0.0078 0.0010 0.0008 0.0039

Table II. Optimized kernel width on two image sets.

Gauss Laplace Cauchy
ShiZ7 image set 50 5.0 40
Bianco®® image set 9.0 11.0 8.0

color-checker, which must be excluded during validating the
algorithm. The disadvantage of the image set is that it only
includes 568 images.

Error Measures

The commonly accepted measure for evaluating the perfor-
mance of color constancy algorithms is angular error, which
correlates reasonably well with the perceived quality of the
output image.?’ Given pixel illuminant estimation e, and the
actual light source (ground-truth) e., the angular error is

ey, e.) =cos™! (M) . (28)

llewllecl

The less the angular error, the better the performance of the
algorithm.

RESULTS

Optimized Parameters for SVR, RVM and RR

To compare three kernel based methods, SVR for color
constancy is also presented in this article. The optimized
parameters of SVR are listed in Table I using the radial
basis function as the kernel function, an e-insensitive error
function, and K -fold cross-validation.

The kernel width for RVM directly influences the result.
The width is set from 1 to 100 and the median angular error of
each width on two image sets is calculated. The relationships
between the kernel width and median angular errors on two
image sets are shown in Figure 2. From Fig. 2, we can see
that the Laplace kernel width has less influence on the result
than the Gaussian and Cauchy kernels. The optimized width
parameters for each RVM kernel are listed in Table II.

To compare linear regression approaches and nonlinear
regression approaches, ridge regression is conducted on two
image sets. The optimized parameter of ridge regression in
channel (r, g) on Bianco’s image set*® is (1764, 1688) and it
is (622, 304) on the Shi?” image set.

Covariance Function Selection for GPR

The covariance function is the crucial ingredient in GPR.
Compared with other methods, GPR has the advantage of
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Figure 2. Relationships between the kernel width and median angular
error for RVM on two image sefs.

directly selecting covariance hyperparameters from the train-
ing data rather than using a scheme such as cross-validation.
To find the most suitable covariance function for color
constancy, four stationary covariance functions of x — X/,
three dot product covariance functions which only depend
onx - X' and combinations of these covariance functions are
selected.

e The diagonal squared exponential covariance function
(SEiso):

1
K(x,X) = o’exp (—

ﬁ(x —xHT(x — x’)) . (29

SEiso is probably the most widely used kernel within the
kernel machines field.

e The rational quadratic covariance function (RQiso):
l —
Kx,x)=c?(1+ —x-x)Tx-x) (30)
202
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with o, I > 0 can be seen as a scaled mixture of squared
exponential covariance functions with different length
scales.

e The piecewise polynomial covariance with compact
support:

K(x,X) =0’max(0,1—71) - f,, (31)
where f, is a piecewise polynomial and r = ”X_ZX,”.
Because the covariances between points become exactly
zero when their distance exceeds a certain threshold,
the covariance matrix will become sparse, which leads
to the possibility of computational advantages. Compact
support polynomials of degree 2 (PPiso2) and degree 3
(PPiso3) are selected.

e The Matérn class covariance function:

, , 217V 2o\ 2vr
Kx,x)=0"——|—| K . (32
NOREE A

where r = |x — X/|| and K, is a modified Bessel
function. We select v = 1/2, which corresponds to a
Laplace function (Maternl), and v = 3/2, as a covariance
function (Matern3).

e The polynomial covariance function:

K(x, x)=xx + ) (33)

A linear polynomial (Polyl), which is equivalent to that
of Bayesian linear regression, a quadratic polynomial
(Poly2), and a cubic polynomial (Poly3) are selected.

e The squared exponential covariance function (SEisoU):

1
K(x,x) =exp (—ﬁxTx) . (34)

e The neural network covariance function (NNone):

T A2/
K(x,X)=0c%sin"! <XA—X> , (35)
V(X))

where f(x) = 1 + x' A">x and A is the diagonal matrix.

Kernel Function Selection for RVM

Three kernel types are used in this article for RVM. The
Gaussian kernel (RvinG) and the Laplace kernel (RvmL) are
the same as SEiso and Maternl of GPR, and the Cauchy
kernel (RvimC) is

1

B EETeE )

(36)

Experimental Results

To evaluate the performances of different machine learning
methods, all algorithms are trained using the same setting,
based on K-fold cross-validation. Here K is set to 15,
i.e. training is performed by dividing the image set into 15
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Table Ill.  Angular errors of GPR, using different covariance functions and several
other methods on the ShiZ/ image set.

Table IV.  Angular errors of GPR, using different covariance functions and several
other methods on the Bianco?® image set.

Median Mean Best-25% Worst-25% Median Mean Best-25% Worst-25%
Matern] 2.3841 3.1927 0.8695 6.7977 Matern] 3.0842 4.0195 0.8610 8.7608
Matern3 2.4524 3.2188 0.9029 6.8424 Matern3 3.0309 3.9945 0.8622 8.7660
PPiso2 2.4794 3.2285 0.9091 6.8542 PPiso2 3.0295 3.9957 0.8731 8.7755
PPiso3 2.4789 3.2353 09124 6.8018 PPiso3 3.0452 3.9977 0.8781 8.7827
SEiso 25163 3.2598 0.9238 6.8890 SEiso 3.0408 40124 0.8903 8.8111
RQiso 2.4379 3.2055 0.8861 6.8725 RQiso 3.0324 4.0014 0.8807 8.7948
NNone 25165 3.2529 0.9086 6.8933 NNone 3.2895 41307 09170 8.9049
SEisoU 27781 34525 1.0028 7.1565 SEisoU 3.5952 4.3881 1.0586 9.2141
Poly1 27827 3.4529 1.0014 7.1607 Poly1 3.5919 4.3874 1.0551 9.21192
Poly2 2.6353 3.3488 0.9354 7.0521 Poly2 3.2978 4.2263 0.8948 9.1399
Poly3 2.6445 3.3320 0.9344 7.0094 Poly3 3.2774 4.1896 0.8618 9.1281
RvmG 2.5967 34527 0.9809 7.4165 RvmG 3.1859 41499 0.9392 8.8410
Rvml 2.5764 3.4103 1.0043 7.1658 Rvml 3.2498 4.2084 1.0038 8.9294
Rvm( 2.6716 3.4103 0.9787 7.1934 Rvm( 3.1906 4.1681 1.0086 8.8604
SVR 2.4882 3.2300 0.9091 6.8048 SVR 3.0350 3.9653 0.8095 8.6863
RR 2.6911 34397 1.0253 7.0765 RR 3.6596 4.4383 1.0334 9.2306
(4] 6.2632 6.3504 23351 10.5997 oW 6.1732 1.2764 1.9699 14.4307
Wp 5.7963 7.6060 1.4872 16.2017 wp 6.3479 7.8873 1.0583 17.6045
GeW 3.5974 5.2970 1.0049 12.2437 Gew 6.2485 7.1625 1.8322 14.2608
GEl 4.5764 5.3276 1.8641 10.0140 GEl 5.2715 6.2498 1.6448 12.4847
GE2 4.5829 53273 1.9409 9.8195 GE2 54248 6.3011 1.6912 12.5822

parts, and the method is trained on 14 parts of the data and
tested on the remaining part. This procedure is repeated 15
times, so every image is in the test set exactly once and all
images from the same scene will either be in the training set
or in the test set at the same time.

Four criteria, namely the median and mean angular
error, the mean of the best 25% of the image set with the
smallest angular error, and the mean of the worst 25% of
the image set with the largest angular error, are evaluated on
two image sets. Tables III and IV show the performances of
GPR under different covariance functions and RVM under
different kernel functions on two selected real image sets. To
compare the differences, the results from SVR, RR and the
traditional methods GW, WP, GGW, GE1 (first-order GE),
and GE2 (second-order GE) are also listed. All the results
from the machine learning based method are obtained using
optimized parameters in fifth subsection. The commonly
accepted parameters for the traditional methods GW, WP,
GGW, GEl, and GE2 used in this article were obtained from
Van De Weijer.® The additive combinations of the different
covariance functions perform less well than each separately,
so the results from GPR obtained using combinations of
covariance functions are not listed.

Besides using the K-fold cross-validation method to
evaluate the performances of algorithms, we also conduct
experiments on the Bianco®® image set using the Shi*” image
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Table V.  RMSE of the algorithms on two image sets using different cross-validation
methods.

Bianco?® image set ShiZ7 image set

K-fold  Shi?” (training set) K -fold

Bianco®® (training sef)

Maternl ~ 0.0316  0.0695 0.0257  0.0748
SEiso 0.0317  0.0760 0.0258 0.0749
RvmG 0.0322  0.0926 0.0277  0.0741
RvmlL 0.0068 0.0829 0.0269  0.0743
SVR 0.0313  0.0665 0.0256  0.0752
RR 0.0339  0.0716 0.0265 0.0790

set as the training set and vice versa. The root mean square
errors (RMSE) of the algorithms are listed in Table V.

Analysis
From Tables III and IV, we can see that there exist small
differences of median angular error for some methods, so the
difference may not be statistically significant. The Wilcoxon
signed-rank test is used to evaluate whether a difference is
statistically significant. Here, the error rate for accepting or
rejecting the null hypothesis is always set to 0.05. Table VI
summarizes the Wilcoxon test, among several algorithms.
On the basis of the results shown in Tables III, IV and
VI, we can see that, for GPR using different covariance
functions:
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e All the dot product covariance functions perform less well
than stationary covariance functions for color constancy
problem.

e The Matérn class covariance function achieves better per-
formance on both image sets than most other covariance
functions.

e The Polyl covariance function performs less well than any
other covariance function.

For the first item, we can explain that under the Gaussian
process view, points with inputs x which are close are likely
to have similar target values y, and thus training points that
are near to a test point should be informative as regards the
prediction at that point. Therefore, the stationary covariance
function of x — x’ has more similarity for prediction than
the dot product covariance function of x - x’ for the color
constancy problem, which mostly results from the light
estimation depending much more on the difference of
adjacent pixels than their product. For the second item,
as noted by Stein,”® the SEiso covariance function may be
strongly smooth and unrealistic for modeling many physical
processes; in addition, RQiso with «, [ > 0 can be seen as a
scaled mixture of squared exponential covariance functions
with different length scales; thereby, the Matérn class is an
alternative.

The performances of RVM using different kernel func-
tions are almost the same as regards the standard deviations
(listed in Table VII) for each kernel method. The weak
difference can be described as follows:

e On Shi’s image set, the performance of the RVM method
is better than those of other kernels regardless of whether
one considers the median or worst-25% angular error
when the Laplace kernel is used.

e On Bianco’s image set, the performance of the RVM
method is better than those of other kernels regardless of
whether one considers the median or worst-25% angular
error when the Gaussian kernel is used.

Compared with SVR, RR, and traditional methods:

e GPR outperforms RVM for regression on two real image
sets and can achieve almost the same results as SVR when
the stationary covariance function is used.

e The performance of GPR is almost the same as that of
RVM for regression when the dot product covariance
function is used.

e The performances of the three kernel based methods are
better than that of ridge regression.

e All the machine learning based methods perform better
than any other traditional methods, which is self-evident.

The performance histogram of the different algorithms
based on the results shown in Table V is shown in Figure 3.
We can see that:

e The RMSE when using the Laplace kernel for GPR and
RVM is smaller than that when using the Gaussian kernel
on two image sets.
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Figure 3. RMSE for the algorithm on two image sefs.

e On Bianco’s image set, the RMSE when using the Laplace
kernel for RVM is the smallest among those for the four
machine learning methods.

e On Shi’s image set, the RMSE of GPR is smaller than that
of RVM.

e The performances of all algorithms using K-fold cross-
validation are much better than those using other image
sets as the training set.

So we can conclude that, for images without light
ground-truth, the best performance can be achieved by using
traditional methods to get their initial light estimations,
incorporating them into the training image set to get
optimized k-fold cross-validation parameters, and then using
aregression based method with optimized parameters to get
the best light estimations of them.

The Reliability of the Estimation Process

As noted above, both GPR and RVM models not only
provide fully probabilistic predictive distributions, but also
include estimates of the uncertainties of the predictions.
These distributions provide a useful way to quantify the
uncertainty in model estimates, and to exploit our knowledge
of this uncertainty in order to make more robust predictions
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Table VI. Comparison of the different algorithms via the Wilcoxon signed-rank test on two image sefs. A ‘+' means that the algorithm listed in the corresponding row is better than
the one in the corresponding column; a '—" indicates the opposite; an ‘=" indicates that the performances of the respective algorithms are statistically equivalent.
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on new test points. On the basis of the prediction variance
of the estimations in (10b) and (24b) separately, we can
predict the confidence interval of illumination chromaticity
estimation e, is e, & 1.96./(var(e,)) for a confidence level of
95%.

With the noise level given as 0.2, the standard deviations
of the algorithm are as listed in Table VII. It can be seen
that the mean of all the predictive standard deviations of the
image set using different GPR covariance functions is around
2.2% on Shi’s image set and 2.7% on Bianco’s image set,
with little difference. The mean of all the predictive standard
deviations of the image set using different RVM kernels is
around 1.5% on Shi’s image set and 2.2% on Bianco’s image
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set, with little difference. Moreover, the standard deviation
of RVM is less than that of GPR.

IMAGE CORRECTION

On obtaining the chromaticity information from all algo-
rithms, diagonal transformation>? is used to correct the color
image. Figure 4 shows some example results from various
methods applied to the Bianco®® image set.

In general, it is necessary to use the training image set
to obtain the best model for light prediction for the unseen
image (e.g. web images). We can choose the best kernel
covariance function with the least median angular error

based on the analysis in fifth subsection and the least variance
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Figure 4. Some sample results from various methods applied to the Bianco

28

image sef. The angular error is shown in the bottom right corner of the

image. The methods used are, from left to right: perfect color constancy using ground+ruth, ridge regression, support vector regression using the radial
basis function, GPR using SEiso and Matern1 covariance functions, and RVM for regression using Gaussian and Laplace kemels.

Figure 5. Some sample results from various methods applied to web images. The leftmost image is the source image. The methods used are, from left
fo right: ridge regression, support vector regression using the radial basis function, GPR using SEiso and Matern1 covariance functions, and RVM for

regression using Gaussian and Laplace kemels.

Table VII. Standard deviations of the algorithm on two image sefs.

ShiZ7 image set Bianco® image set

Matern] 0.0220 0.0270
Matern3 0.0222 0.0265
PPiso2 0.0223 0.0264
PPiso3 0.0223 0.0264
SEiso 0.0225 0.0263
RQiso 0.0222 0.0263
NNone 0.0219 0.0277
SEisol 0.0227 0.0287
Poly1 0.0227 0.0287
Poly2 0.0231 0.0274
Poly3 0.0237 0.0275
RvmG 0.0165 0.0228
RvmlL 0.0140 0.0222
Rvm( 0.0150 0.0222

analyzed in sixth subsection. Some sample results from the
web are shown in Figure 5. Here, the Bianco?® image set is
selected as the training image set because of it having less
correlation among images.

THE OUTLIER INFLUENCE FOR GPR AND RVM
The data set with Gaussian noise leads to poor results if the
data are prone to outliers due to the light tails of the noise
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distribution when GPR and RVM are used. We assume that
the images with large angular error can be thought of as
outliers among test images. The mean angular error of the
worst 1% and 5% of all the image sets with the largest angular
error are used to evaluate the outlier influence. Heavy-tailed
Laplace and Student-t distributions (with v = 1 selected,
also named as the Cauchy distribution) are used as the
likelihood function for GPR or the kernel function for RVM
against outliers. Because exact inference is only tractable
for Gaussian likelihood, the variational Bayesian inference
method is used for the three likelihood functions to maintain
consistency among them.

Tables VIII and IX show angular errors, using three
different likelihood functions with the Maternl covariance
function for GPR via leave-one-out cross-validation on Shi’s
image set and 15-fold cross-validation on Bianco’s image set
separately.

From Tables VIII and IX, we can see that the median,
mean, and average angular errors of the worst 5% and
1% increase when Laplace and Student-¢ distributions are
used as likelihood functions compared with a Gaussian
distribution, which implies that heavy-tailed distributions
cannot enhance the performance of GPR for color constancy.
Among the three likelihood functions, the Gaussian distri-
bution performs the best, whereas the Laplace and Student-¢
distributions are computationally expensive. Using a Gaus-
sian distribution as the likelihood function assures the best
median angular error and the smallest outlier influence.
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Table VIIL. - Angular errors of GPR, using different likelihoods on the ShiZ/ image set.

Likelihood Median Mean Worst-1% Worst-5%
Gauss 2.4437 3.2075 16.6449 11.4277
Laplace 2.6281 3.2691 17.2114 11.4379
Cauchy 27724 3.6563 18.4166 13.2057

Table IX. Angular errors of GPR, using different likelihoods on the BiancoZ®

image set.
Likelihood Median Mean Worst-1% Worst-5%
Gauss 3.0758 4.0108 17.5956 13.5710
Laplace 3.5545 4.9095 17.9537 15.7990
Cauchy 3.5465 4.3236 177222 13.6743

Table X. Angular errors of RVM, using different kernels on the ShiZ/ image set.

Kernel Median Mean Worst-1% Worst-5%
Gauss 2.5967 34527 17.5775 12.4885
Laplace 2.5764 3.4103 17.4340 11.9952
Cauchy 2.6716 3.4103 17.3602 12.0775

Table XI. Angular errors of RVM, using different kernels on the BiancoZ® image set.

Kernel Median Mean Worst-1% Worst-5%
Gauss 3.1859 4.1499 17.6866 14.3565
Laplace 3.2498 4.2084 17.6069 14.3056
Cauchy 3.1906 4.1681 17.6052 14.3081

Tables X and XI show angular errors using three differ-
ent kernel functions for RVM with 15-fold cross-validation
on two image sets. All the results are obtained via using the
optimized kernel width listed in Table IL.

From Tables X and XI, we can see that the average
angular errors of the worst 5% and 1% decrease when Laplace
and Student-t kernel functions are used, which implies that
heavy-tailed distributions can enhance the performance of
RVM for color constancy, but with large median and mean
angular errors.

CONCLUSION

Two Bayesian kernel methods, namely GPR and RVM
for regression, are used for addressing color constancy.
More than seven kinds of covariance functions and their
combinations for GPR and three kernel functions for RVM
are used on two real image sets to find the best kernel
function for color constancy.

Experimental results show that GPR using Matérn class
covariance functions performs better than other covariance
functions. Among the three kernel based methods, GPR out-
performs RVM when using stationary covariance functions
and can almost achieve the same performance as SVR. The
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performance of RVM is almost the same as that of GPR using
a dot product covariance function. However, the predictive
standard deviation of RVM is less than that of GPR on the
same image set. The performances of the three kernel based
methods are better than that of ridge regression. The analyses
of the influence of outliers on data with Gaussian noise show
that using heavy-tailed Laplace and Student-z likelihood
functions cannot achieve better performance than using a
Gaussian form for GPR. However, Laplace and Student-¢
kernels can decrease the average angular errors of the worst
5% and 1% for RVM, at the risk of large median and mean
angular errors.
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