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Abstract. Electro-optical devices are used for military applications
to detect, identify and track targets. Typically, video information is
presented to an operator. With an increasing availability of such
devices data volumes are becoming large, and the need for auto-
mated analysis is becoming more urgent. In a military setting, this
typically involves detecting and identifying targets as early as possible,
i.e., when little visual information is available. The identification can be
facilitated by combining the video stream into single enhanced images
that provide more information for the operator. Using simulated and
basic experimental images the authors study alignment in the afore-
mentioned context and find that basic correlation is a potentially useful
technique. Problems with background variation can be overcome and
good alignment can be obtained even with severe noise. The authors
illustrate how alignment quality responds to various parameters, which
will help in the development of practical applications. dc 2013 Society
for Imaging Science and Technology.
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INTRODUCTION
The application of electro-optical imaging devices such as
video is a developing field. In particular,military applications
have long been dominated by radar and sonar although night
vision and infrared play an important role. At present, how-
ever, electro-optical sensors are becoming more significant,
also in the visible region, for example to identify objects
that have been detected by other means or to detect objects,
such as sea-skimmingmissiles, that can escape other sensors.
Optical devices are essentially passive and do not betray one’s
presence to other parties. With the increasing availability of
high volumes of optical image data there is an increasing
opportunity as well as an increasing need for automated
detection and recognition of objects.4,6

Early warning, which is often a priority in military
surveillance, leads to special considerations for image ac-
quisition and analysis techniques. There is a need to detect
potential targets as early as possible, before they may become
a threat. Also, it is important to rapidly identify and
characterize a detected target. The sooner information is
available, the better an appropriate response can be prepared.
In such cases very little optical information is typically
available either because the object is at a large distance
(detection or identification may be attempted when the
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object spans only a few pixels) or because detection is
hindered, e.g., by atmospheric conditions or the background.

To facilitate early identification of an object one may
combinemultiple images into a single enhanced image. Even
when a rapid identification is required, at least a few seconds
of video streamwill be available. Combiningmultiple images
can help to distinguish an object from the background,
remove coverage by foreground features and reduce noise.
It may even be used to obtain an image of an object
moving behind an extensive foreground such as foliage.
When both the object and the conditions are very steady, the
image quality can be enhanced simply by a longer exposure.
Otherwise it is essential to align the object within the set of
images before combining them into a single enhanced image.
Image registration and restoration may even be considered a
joint process.14,17

Combination of multiple images is not by itself a
new technique. Perhaps best known is the combination
of images into a mosaic panorama2 or the application
to motion analysis.13 Multiple images are also used to
obtain super-resolution,14,19 e.g., for satellite images or
even conversion of TV signals to HDTV. The alignment or
registration of these images is often carried out with the
help of (multi-scale) features.3,11 Typically these applica-
tions involve registration and stitching of large sections or
entire images. Correlation is also used especially to correct
for small alignment errors or when feature extraction is
not possible.7,10,23,24 Refinements have been developed to
prevent erroneous alignment of background or illumination
features.1,18 Optical flow detection uses gradients to detect
displacements down to the sub-pixel level.7,20

As described above, early identification implies that the
object’s image is relatively featureless. Also, the target will
typically bemeters to tens ofmeters in size andwill be located
at a distance of several kilometers or more. Thus, it will span
a relatively small angle of the order of 1 to at most 10 mrad.
Enlarged images may be obtained with a telephoto lens or
a detection algorithm may extract sub-images that contain
the object for further analysis. In many applications, there
will be no other objects within that range that may confuse
alignment. Also, many backgrounds such as sea or sky can
be relatively constant on this scale. Due to the above, it may
be useful to consider the basic correlation algorithm to align
these images and present an enhanced image to the human
observer.
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Figure 1. Left: gray-scale histogram of the test image (without margin). Right: illustration of a typical enhancement procedure (see text) with (left to right)
the original image (50 × 200 pixel object surrounded by a 50 pixel margin), one of the test images (object displaced and noise added) and the final
enhanced result (the dark areas are an artifact of the procedure caused by the fact that the blank areas in the aligned images were filled with black).

In this article we mainly investigate correlation align-
ment and how it is affected by various parameters. Particular
in our approach is the type of long range early identification
image for which correlation alignment could work well.
Using simulated images we investigate how the quality of
the alignment is affected by parameters for noise, resolution,
background, etc. We study the underlying mechanisms
which will help in the acquisition and analysis of exper-
imental images. After describing the method we will first
study a basic artificial image and white noise, then consider
variability of the background and finally analyze simple
experimental images.

METHODS
In this article we consider a basic correlation alignment.
Briefly, the correlation of two gray-scale images is obtained
by displacing one image with respect to the other, multi-
plying the values of corresponding pixels and summing the
result over all pixels. If the two images are identical, it can
be shown that the correlation is maximal when they are
aligned. Therefore, we shall define the optimal alignment as
the displacement for which the correlation is maximal. Note
that this is not always correct. Images may be constructed
that are obviously misaligned to the human eye while still
satisfying the above criterion. By determining when and how
these cases occur it may be possible to prevent them.

Numerically, the correlation is defined as follows. Each
image is represented by an N × M array A(x, y) of gray
levels, typically between 0 (black) and 255 (white). With
two images A and B of the same size, their correlation is
C(dx, dy)=

∑
x
∑

yA(x, y)B(x+dx, y+dy). The summation
is carried out over all pixels, while dx and dy define the
displacement between the images. We assume periodicity
(B(x±N, y)= B(x, y±M)= B(x, y)) so that the correlation
is efficiently calculated with fast Fourier transforms. With
a sufficiently constant background the assumed periodicity
will not affect results. The correlation may be refined by
subtracting the average from each image and/or normalizing
the images. This reduces the sensitivity for global variation in
background or illumination.7Wedo not do this here because

subtracting a constant from an image and/or division by
a fixed number has no effect on the displacement for
which correlation is maximal. We only need to worry about
background or illumination variation within each window.
This will be considered below.

Note that we consider only translational displacement.
Rotational alignment may be carried out with rotated copies
of the reference, selecting the one that aligns best. While
this requires much computation compared to translation,
it is not a practical problem especially with low-resolution
images. The reason that we have not done this is that in
order to obtain quantitative statistics we had to align many
thousands of image pairs. Since the errors for rotational
alignment are likely to be qualitatively similar to those for
translationwe considered only the former. Since we are using
small sub-images, more complex alignment that includes
resizing or even deformation7,10 has not been considered
here.

The basis of our test image is a gray-scale top view
drawing of a navy vessel (w × l = 50 × 200 pixels), as
shown in Figure 1. As indicated by the histogram, a few
distinct gray-scale levels were used in this case. The level 64
corresponds to background pixels at the bow of the ship. A
margin is added around the original test image, also with the
same gray level. While most features in the object are of the
order of tens of pixels wide, some narrower features are also
included. For instance, the rotor blades of the helicopter are
only one pixel wide in this image.

Test images are generated by making a randomly
displaced copy of the above and then introducing noise. This
may come in the form of, e.g., additive or salt and pepper
noise,3 clutter,8 turbulence5,9 or blurring.4 Preliminary re-
sults with additive noise showed that a very large magnitude
was often needed to see any effect. Therefore, we switched to
salt and pepper noise which is created by resetting a random
fraction of the pixels. Unless stated otherwise the value of
the reset pixels is randomly set to 0 (black) or 255 (white)
with equal probability. This type of noise occurs under very
low light conditions. However, it essentially models that the
information in a fraction of the pixels is lost. It may also
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Figure 2. Obscuring by noise (see text). Top (left to right): distribution of noise induced shifts (in pixels), one of the experimental images (90% of the pixels
obscured by noise) and the original (reference) image (50 pixel margin). Bottom: images of rms displacement against noise fraction showing the effects of
(left to right) contrast levels (at 50% (thick), 20% (thin) or 10% (dotted), margin width (100 (thin), 50 (thick) or 25 (dotted) pixels) and image blurring (using
a Gaussian point spread function with rms width of 0 (thick), 3.5 (thin) or 10.6 (dotted) pixels). In all images, the error bars represent 3–10 runs of 100
individually simulated images.

represent clutter, e.g., by precipitation or even foreground.
The probability at which each pixel is reset, i.e., the fraction
between 0 and 1, defines the amount of noise.

While the main focus of this article is the alignment,
Fig. 1 shows one example of the image enhancement that
can be obtained with a set of aligned images. The details
have been presented elsewhere.16 In this case twenty-four
test images were created by randomly placing the object
within the image and creating noise by resetting 90% of
the image. As shown, all but the largest features have
been obscured by noise. After aligning all test images to a
reference, their average image was obtained. The resulting
enhanced average image not only shows a finer grained
noise with lower amplitude but also many finer details
of the original image, including the helicopter rotors.
While the circumstances were rather ideal, using identical
images, a constant background and random noise, this result
shows that considerable enhancement can be obtained by
correlation alignment even in the presence of severe noise.

ALIGNMENTWITHNOISY IMAGES
Figure 2 presents the alignment results and its dependence on
various parameters for the image and noise. To obtain these
results we created a large number of displaced noisy copies
of the reference as described above and used correlation to
estimate the displacement. The difference between the actual
and the estimated displacement is shown. The top frame
shows a typical case where the rms error is 1.4 pixels vertically
and 7.5 pixels horizontally. A number of outliers are also
observed. If these stand out from a set of images it may be
possible to remove them and thus improve the alignment

quality. The error is relatively small (<4% of the object
size) considering the excessive noise. In this particular case
90% of the pixels were obscured. As can be seen, this makes
the individual images unintelligible to the human eye. The
rms error determines how much detail can be recovered if
sufficient images are available.

In the bottom images of Fig. 2, the rms alignment error
is plotted against the percentage of pixels obscured by noise.
The 90% obscuring in the example may occur only under
extreme circumstances. In all cases the alignment shows
a switch-like behavior. At low noise levels shifts of a low
number of pixels occur. Typically, the decrease is relatively
steep. In most cases the error decreases from 10 to below 1
pixel within a three-fold increase of the non-obscured pixel
fraction. When the noise increases above some threshold
level the alignment deteriorates rapidly and is soon lost
completely. Unfortunately, the change is not so sudden that
an unambiguous threshold level can be assigned. Below we
obtain it somewhat arbitrarily with an error of 10 pixels,
approximately 10% of the object’s size in the image. The
threshold may be taken as a measure of the object’s ‘‘noise
resistance’’.

To investigate how the alignment is affected by various
parameters, we first varied the contrast of the object. As
shown in Fig. 1, the object spans a range of 192−64=128
gray levels. This is obtained by multiplying an original
drawing by 0.5 and adding 64, so that the background is gray
instead of black. In this series we reduced the multiplication
factor to 0.2 and 0.1. The results (bottom left) show that the
error increases considerably when the contrast is reduced.
The threshold at which the shift reaches 10 pixels decreases
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Figure 3. Background effects on image alignment. Left: typical case with mask (top left), image 1 (top right), image 2 (bottom left) and (mis)aligned copy
of image 2 (bottom right). Opposing gradients (0.2 levels/pixel) were used and 100 gray levels were added to image 1. Center: threshold levels with
gradient background and a margin of 50 (squares), 150 (circles) or 100 pixels (triangles). For the latter case we also show an added constant (50 gray
levels, dashed) and vertical gradient (0.2 levels/pixel, dotted). Right: threshold levels with constant background around the object. Alignment is lost in the
shaded area.

from 0.9 to 0.6 when the contrast is reduced from 50 to 10%.
This result may be compared to the areas within the image
that are covered with the object and with noise. The latter
increases fourfold (from 10 to 40% of the image) while the
former decreases with a factor of 1.5 (from 90 to 60% of the
image). The ratio of the two areas increases with a factor of
4 × 1.5 = 6, which agrees nicely with the fivefold reduction
of contrast.

As the second parameter, we considered the margin
around the object. This parameter is important when
windows with the detected object are copied from the video
frames. When a large margin is used, the risk is lower that
the object is (partially) outside the image. On the other
hand, a large margin means that more noisy data are added,
which may reduce the quality of the alignment. By default
we use a margin of 50 pixels. The graph in Fig. 2 (bottom
middle) shows what happens when the margin is altered to
25 or 100 pixels. Remarkably, the increase to a 100 pixel
margin does not reduce the quality of the alignment. This
is indeed remarkable since in that case the image is largely
filled with background. The object covers only 10% of the
image. This does not seem to affect the alignment at all. In
fact, the results show that a decrease of themargin to 25 pixels
makes the alignment more susceptible to noise. Apparently a
minimal amount of background area is necessary to average
out the noise correlation. While an exact number would
require more extensive simulation we suggest for now that
a margin covering 80–90% of the image does not appear to
be a problem for the alignment procedure.

In order to understand the importance of structures
within the object for its alignment, we considered various
degrees of blurring. For this, the image of the object was
correlated with a Gaussian point spread function before the
noise was added. This will smooth out structures within
the object’s image, especially those that are narrower than
the point spread function. The results (bottom right) are as
one would expect: with increased blurring the alignment is
more easily disturbed by the addition of noise. Although an
analysis of independent correlation functions is not strictly
allowed because the image is not a linear sum of object
and noise, it may help to analyze these results. Due to the
blurring, the correlation function of the object (with the

reference) widens and therefore becomes lower while the
correlation function of the noise (also with the reference) is
unaffected. When the object’s correlation function becomes
lower than that of the noise, the alignment is lost.

ALIGNMENTWITH BACKGROUNDVARIATION
With correlation alignment it is important to consider
the possibility that the backgrounds are not constant and
will therefore correlate as well as the objects. It is not
possible to distinguish these two types of correlation or even
cross-correlation of the background from one image with the
object from the other. If the magnitude of the background
variation is too large, this will lead to a shift or even loss of
the alignment of the objects. Since the background typically
covers a larger area than the object, even a relatively small
variation may affect the alignment.

In order to study how the alignment is affected by
the background, we add a linear function of the pixel
coordinates. This is a reasonable assumption since the object
spans a small angle, as discussed in the introduction. A
typical result is shown in Figure 3 (left). In one image the
background becomes darker to the right and in the other to
the left. An additional constant background was added to the
latter. In the original images, the object was (exactly) in the
center, but in the ‘‘optimal’’ alignment, the object is shifted
to the edge and somewhat down. This is clearly not correct,
but the light background areas do indeed overlap better than
in the original images. Apparently, it is the backgrounds that
have been aligned in this case rather than the objects. The
vertical shift is likely due to cross-correlation.

In all the simulations, we found a strong switch-like
effect. If the magnitude of the background signal is small, the
objects remain perfectly aligned. When it increases above a
threshold level, the alignment is lost completely. Typically,
the object shifts to the edge of the image, as in the example,
and remains there when the background becomes stronger.
In some cases the object is shifted some 10–15 pixels over the
edge. The sudden shift indicates that the correlation peaks of
both the object and the background are relatively narrow.

To study the effect of background gradient on both
images we added a fixed gradient to the background of
one image and increased the gradient of the other until the
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Figure 4. ‘‘Align and average’’ procedure with recorded images of a printed circular object against a black background. Left: the reference and 24
recorded images (odd columns) and the final result with the 24 aligned images (even columns). A crosshair has been included in the aligned images for
visual inspection of the alignment quality (see text). Other images (left to right): enlarged copies of two recorded images and the final result.

alignment was lost. The threshold lines (center plot) are
roughly straight, indicating that the sum of the two gradients
is the determining factor. The threshold is somewhat higher
when only one background shows a gradient because the
misalignment is then due only to cross-correlation. The
threshold is around 0.8 levels/pixel for a 50 pixel margin and
decreases when the margin is widened. Minor shifts occur
when the overall background level is changed or when a
vertical gradient is added. Thus, a background change of
200× 0.8= 160 gray levels causes loss of alignment. In view
of the small angle (∼mrad) that is typically spanned by the
object, it is unlikely that such a large gradient will occur in
practice. Of course, the results depend on the type of image
that is being used, so a higher sensitivity may occur in some
cases.

It may appear that addition of only a constant back-
ground should have no effect on the alignment. After all,
the correlation of an image with a constant is not affected
by displacement. However, since the background only affects
the area around the object, the above is not completely true.
As shown in the right plot of Fig. 2, adding 170 gray levels to
either background causes loss of alignment. This makes the
background so much brighter that it correlates better with
the object of the other image than the object itself. As can
be seen, the effect is reduced when a constant background is
also added to the other image. Again, the required threshold
is large compared to the range (0–255) of gray levels and will
not often occur in practice.

EXPERIMENTAL IMAGE
Figure 4 shows correlation alignment of a set of simple ex-
perimental images. For this initial case noise and background
variation were avoided as much as possible. The object was
a white cardboard circle (d = 15 cm) with printed black
circles. Circular symmetry was used on purpose so that only
translational alignment was necessary. The object was placed
at various positions on a background of black cloth and
photographed at 1.5 m distance with a compact camera.
The pictures were taken in typical indoor lighting conditions
without flash. As a result, the exposure time was several
seconds. Some images are slightly blurred by vibrations of the
camera. From each picture a window of 420×270 pixels was
roughly selected by hand which always included the object,

but not at the center. The objectmeasures approximately 100
pixels across.

One of the experimental images was used as a reference
and the other images were aligned to that image. To check
the performance we drew a crosshair at the center of the
reference image and copied it to the same fixed position
on all aligned images. Inspection by eye indicates that the
aligned objects are off by at most one pixel except for the
most severely blurred cases. The final enhanced image was
obtained by taking the average of the 24 aligned images. The
result is smoother than the original images, but does not
show any features that were obscured in the recorded images.
The thinnest line in the object was the first dark circle from
the outside. This is visible in the final result but also visible
in most of the recorded images.

We must conclude that while the correlation alignment
worked very well, the effects on the final enhanced image are
limited. Nevertheless, some enhancement can be observed in
Fig. 4. In the blurred images, parts of the rings are obscured.
This problem is not present in the final resulting picture. At
least, the recorded images of lower quality do not affect the
final result. Perhapsmore important is, however, that a small
amount of noise can be observed in the recorded images and
also some staining in the white and black areas of the object.
Apparently, this noise did not affect the alignment, and both
the noise and the staining have been reduced in the final
resulting image.

DISCUSSION
In the above we studied correlation alignment of multiple
images. We focus on long range imaging with objects
typically several meters to tens of meters in size at a distance
of several kilometers, whichwill thus span an angle of around
1–10 mrad. We furthermore assume that the object has been
detected and roughly located in a series of images so that
windows can be extracted which contain the object and a
limited amount of background. After alignment, a single
enhanced image can be obtained, e.g., for identification of the
object. The object will be relatively featureless and distorted
by noise but (due to the small size) the background may be
relatively constant. Because of this, correlation appears to be
the useful tool to perform the alignment.

Using simulated images we established that accurate
correlation alignment can be obtained, at least in theory, even
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when the noise is so severe (90% of the pixels obscured)
that the object cannot be distinguished by the naked eye.
This may occur only in extreme cases. In a more realistic
scenario, contrast and detail are reduced by absorption,
scattering and turbulence in the atmosphere, which indeed
reduce the noise resistance of the image. The ratio of noise-
and image-covered areas at the threshold level may be
proportional to the contrast in the image. To our surprise
we found that including more background in the window
may actually reduce alignment errors at least when the
background is constant. Possibly, this due to averaging of
the random noise. Alignment may be most accurate when
80–90% of each image is occupied by background.

The resistance of correlation alignment to a background
gradient can be quite strong. We found that alignment is lost
only when the background gradient across the object is of
the same order as the gray level range within it. Surprisingly,
miss-alignment can also occur if a background gradient is
present in only one of the images (i.e., even if a reference with
a constant background is used) and even without gradients
with a sufficiently strong difference in background gray level
between the images. In view of the small angle typically
spanned the abovemay not usually occur, unless the contrast
of the object is very small. In that case it may be necessary to
reduce background variation, e.g., with high-pass filters1 or
local normalization.10

A theoretical treatment is complicated because neither
noise nor background is additive, making it difficult to
compare what happens with the images and the correlation.
The correlation of the objects in the two images consists of
a main peak that represents the displacement between them.
Side peaks occur if different parts of the object are similar.
The width the main peak depends on the details in the
image. The correlation of the noise will form a homogeneous
random spike pattern. Alignment is lost if one of the spikes
is higher than the main peak. Alignment error occurs by
spikes on top of a relatively broad alignment peak. This is
in line with our observations: low noise intensities lead to
minor alignment errors, while the alignment is lost if the
noise reaches a threshold value. The background effects may
be considered with a similar model. While the addition of
object, noise and background correlation is not strictly true
it does provide a useful description of our observations.

The purpose of the work presented in this article
was not so much to provide the best possible alignment
enhancement, but rather to investigate which parameters
affect the outcome and quality of the results. Nevertheless,
it may be useful to try to compare the performance to that
of similar and other techniques. Our main performance
result is that it may be possible to align images to within a
few pixels (50 × 200 pixel object) when up to 90% of the
pixels are obscured by noise and the object can no longer
be recognized by the naked eye. This appears to be affected
mainly by the amount of contrast in the image and not so
much by other parameters such as blurring, the amount of
background included in the image and even background
gradients. Besides contrast, the performance relies on the

fact that the underlying image of the object is the same so
that information from the entire image can be used for the
alignment. A little differently from our original thoughts,
our present approach may therefore be most useful not so
much for extremely long range imaging, where blurring but
also image deformation is caused by air turbulence,5,9 but
rather when the object is hidden by foreground clutter such
as, for example, precipitation or (on land) small objects or
foliage.8,22

Correlation alignment and registration is routinely
applied to medical images23 and remote sensing.24 However,
this typically involves alignment of the entire image, rather
than a small sub-image, and techniques such as elastic
alignment are applied to compensate for small image
deformation in the detector. Perhaps a better example is
made with face alignment studies.25,26 Yigang et al.25 were
able to obtain alignment to within 0.5 pixels in a set of
100 images (49 × 49 pixels) of a dummy head using a
robust alignment procedurewith sparse decomposition. This
advanced analysis does require a rather long computation
time (24min for the set). InTzimiropoulos et al.,26 artificially
distorted facial images are aligned to within 1 pixel using
robust alignment based on gradient ascent. It should be
noted that these studies focus more on image displacement
and warping and less on resistance to clutter. As far as the
comparison is justified, these results still outperform ours,
althoughwe also obtain 1 pixel rms shifts in lower noise cases.

We have studied the basic characteristics for correlation
alignment in long range target identification. Rotational
correlation can be included with some computational effort.
Combined with translation this may be useful in practical
applications where the image of the object itself is relatively
constant.4,6 More fundamental are changes of aspect ratio
that result from a maneuvering target. An extension of
our approach is then to find groups of images, within the
data, that correlate among themselves. Distortions may be
compensated,12,21 while optical flow19,20 or patch tracking15

may detect independent displacement within the object’s
image. Our results have shown that correlation alignment
may be effective when little information is available in the
image and have illustrated how the alignment quality is
affected by various parameters such as noise strength and
the amount of background included in the image. This
information should be useful in the analysis of experimental
images and the development of practical applications.
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