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Abstract. In this article, a local structure adaptive total variation
(LSATV) method for image restoration is presented. In our method,
a discontinuity indicator is first proposed based on the eigenvalues
of the structure tensor, which can effectively distinguish between
edges and noises. Based on the proposed discontinuity indicator, a p
norm is adaptively selected to match the local structure property of a
pixel. Therefore, the proposed LSATV method inherits the advantages
of both the Tikhonov regularization method and the total variation
regularization method. Experimental results show the robustness of
the proposed method and its superiority to state-of-the-art methods.dc 2013 Society for Imaging Science and Technology.
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INTRODUCTION
The degradation of an image is usually unavoidable during
formation, recording, and transmission, and it may affect
latter processing, such as object detection and recognition.
Therefore, image restoration forms a significant preliminary
step in many computer vision tasks, and it has become a
main research topic in the past few years.1–3 It is well known
that images are slightly noised or blurred during formation,
recording and transmission process. So image restoration
aims at deblurring and denoising the observed images.

A commonly used model is the following. Let � ⊂ R2

be a bounded domain, let u : �→ R be an original image
describing the real scene, and let u0 be the observed image of
the same scene. The relationship between the observed image
u0 and the real image u is expressed by the following linear
equation:

u0 = Au+ n, (1)

where A is a blur operator and n is the additive noise.
The goal of image restoration is to recover the original

image u from the observed image u0. The restoration
problem is ill conditioned since the degraded image u0 and
the real image u are typically related through a blur operator
A. A widely usedway to overcome the ill-posedminimization
problem is to add a regularization term to the energy. One of
themost widely referenced regularizationmethods for image
restoration is the Tikhonov regularization method.4 The
authors proposed considering the following minimization
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problem:

E(u)=
1
2

∫
�

|u0 − Au|2dx+
λ

2

∫
�

|∇u|2dx, (2)

where the regularization parameter λ acts as a balancing
factor between the fidelity and the smoothing term. The
Euler–Lagrange equation for (2) in the gradient descent form
is given by

∂u

∂t
= (A∗u0 − A∗Au)+ λ1u, (3)

where A∗ is the transpose of A. However, the noisy and edge
pixels both contain high-frequency energy; the edges will be
over-smoothed using the L2 norm of the magnitude of the
gradient.5

In Ref. 6, Rudin, Osher, and Fatemi proposed using total
variation (TV) as the regularization term,which penalizes the
total amount of change in the image as measured by the L1
norm of the magnitude of the gradient. They proposed the
following TV-based image restoration model:

E(u)=
1
2

∫
�

|u0 − Au|2dx+
λ

2

∫
�

|∇u|dx. (4)

It was designed with the explicit goal of preserving sharp
edges in images while removing noise and other unwanted
fine-scale details. The TV model has subsequently been
extensively studied.7–9 However, the TV method and its
variances tend to cause a staircase effect in the processed
image.10,11 Recently, Fu and Zhang proposed an adaptive
non-convex TV regularization for image restoration.12 This
model can preserve edges while removing noises, but this
model uses the gradient as the discontinuity indicator, which
cannot effectively distinguish between edges and isolated
noises.

In order to overcome the disadvantage of the above
work, in this article we present a local structure adaptive
(LSA) TVmodel based on a discontinuity indicator for image
restoration, which can effectively preserve edge information
during noise removal. Experimental results show the effec-
tiveness of the proposed method.

The remainder of this article is organized as follows.
The section given below proposes the local structure adaptive
TV (LSATV) restoration model. Numerical experiments are
presented in the section ‘Experimental results’ and the article
is concluded in the final section.
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Figure 1. Comparison effects on a noisy image. (a) Noisy image, (b) effect of the gradient, and (c) effect of the proposed discontinuity indicator.

LOCAL STRUCTURE ADAPTIVE TV RESTORATION
MODEL
The adaptive selection of the p norm plays a very impor-
tant role in the restoration process. However, as shown
in the introduction, state-of-the-art methods select the p
norm based on the image gradient as the discontinuity
indicator, which cannot effectively distinguish between edges
or textures and noises. Therefore, we first propose a new
discontinuity indicator based on the eigenvalues of the
structure tensor, and then define the p norm based on the
proposed discontinuity indicator.

It is well known that the structure tensor can preserve
local structure information than gradient.13 Therefore, we
use it to perform local structure information analysis. The
structure tensor matrix is defined as J0 = ∇u · ∇uT , where
∇u denotes the gradient image of u. In order to incorporate
the neighboring structural information, the structure tensor
is then computed by convolution of the components of J0
with a Gaussian kernel

Jσ = Gσ ∗ (∇u · ∇uT), (5)

where Gσ denotes a Gaussian kernel with a standard
deviation σ .

Denote by λmin and λmax the minimum and maximum
eigenvalues of Jσ , respectively. Define the discontinuity
indicator as

γ = λmax − λmin.

For a pixel (x, y) in a smooth region, λmax(x, y) and
λmin(x, y) are both small, so γ (x, y) is small; for a pixel (x, y)
in an edge region, λmax(x, y) is large and λmin(x, y) is small,
so γ (x, y) is large; for an isolated noise (x, y), λmax(x, y)
and λmin(x, y) are both large, so γ is small. According to
the above analysis, edges can be distinguished from smooth
regions and isolated noise based on the value of γ . Figure 1
shows the comparison of the effects on a noisy image between
the image gradient and the proposed discontinuity indicator.
It can be seen that our proposed discontinuity indicator γ
can effectively distinguish between edges and noises, but the
discontinuity indicator based on the image gradient does not
work effectively in the noisy image.

Figure 2. p(γ ) for different values of a (a= 0.2,0.3,0.4,0.8).

Therefore, using the proposed discontinuity indicator
would appear to be a good way in which to improve the TV
model. The LSATV model is proposed as follows:

E(u)=
∫
�

1
p(γ )
|∇u|p(γ )dx+

λ

2

∫
�

|u0 − Au|2dx, (6)

where the function p(γ ) is defined as

p(γ )= 1+ exp(−aγ ), (7)

where a is a constant. Figure 2 shows p(γ ) for different values
of a. Note that p(γ ) is a monotonically decreasing function
from 2 to 1. For smooth regions and isolated noise, γ → 0,
so p(γ )→ 2. At edges or textures, γ →∞, so p(γ )→ 1.
Therefore, the p norm is adaptively determined.

The Euler–Lagrange equation associated to problem
(6) is

div
(

p(γ )∇u

|∇u|2−p(γ )

)
+ λ

[
AT
∗ (u0 − A ∗ u)

]
= 0. (8)

We approximate the solution of (8) by means of
the steepest gradient descent method, formulated as the
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Table I. PSNR and SSIM performance comparison of ‘‘License plate’’ image.

Assessment method p= 1 p= 1.5 p = 2 p (γ )

ISNR 3.6752 3.4528 3.2006 4.5437
SSIM 0.6857 0.6410 0.6119 0.7455

following partial differential equation:

∂u

∂t
= div

(
p(γ )∇u

|∇u|2−p(γ )

)
+ λ[AT

∗ (u0 − A ∗ u)]. (9)

However, model (9) is relatively slow in reaching its steady
state, and is also stiff, since the parabolic term is close to
singular for small gradients, which is similar to the TV
model.14 In order to guarantee the stability of (9), an ad hoc
rule of thumb indicates that the time step ∇t and the space
step size ∇x need to be related by7

∇t

∇x2 6 l
∣∣∣∇2u

∣∣∣
for fixed l> 0. This Courant–Friedrichs–Lewy (CFL) restric-
tion is what we shall relax. This issue was seen in numerical
experiments. In order to accelerate the evolution procedure,
we multiply the right-hand side of (9) by |∇u|2−p(γ ):

∂u

∂t
= |∇u|2−p(γ )div

(
p(γ )∇u

|∇u|2−p(γ )

)
+ λ|∇u|2−p(γ )

[AT
∗ (u0 − A ∗ u)]. (10)

Note that Eq. (9) is not well defined at points where
∇u = 0, because of the presence of the term 1/|∇u|2−p(γ ).
Therefore, from the analytical point of view, the solution of
Eq. (10) approaches the same steady state as the solution of
Eq. (9) whenever u has nonzero gradient. Below, we test the
convergence speed of model (9) and model (10).

In terms of explicit partial derivatives, model (10) can be
expressed as

du

dt
= λ(u2

x + u2
y )

1− p(γ )
2 [AT

∗ (u0 − A ∗ u)]

+
(p(γ )− 1)u2

x uxx + uxxu2
y − (4− 2p(γ ))uxuyuxy + (p(γ )− 1)u2

y uyy + uyyu2
x

u2
x + u2

y
,

(11)

with homogeneous Neumann boundary conditions and u0
as initial guess.

We construct an explicit discrete scheme to numerically
solve differential equation (11). Let un

i,j be the approxima-
tion to an N × M sized image u(x1, x2, tn), where x1 =

0, 1, . . . ,M − 1 and x2 = 0, 1, . . . ,N − 1. In order to
compute the right hand size of (11), we denote by

∇
+
x un

i,j = un
i+1,j − un

i,j, ∇
−
x un

i,j = un
i−1,j − un

i,j,

∇
+
y un

i,j = un
i,j+1 − un

i,j, ∇
−
y un

i,j = un
i,j−1 − un

i,j.

We define the discrete derivative terms as15

[uxx]
n
i,j =∇

+
x ∇
−
x un

i,j/h
2, [uyy]

n
i,j =∇

+
y ∇
−
y un

i,j/h
2,

[uxy]
n
i,j = (∇

+
x +∇

−
x un

i,j)(∇
+
y +∇

−
y un

i,j)/4h2[
du

dt

]n

i,j
=

un
i,j − un−1

i,j

δt
, [ux]

n
i,j = (∇

+
x +∇

−
x )u

n
i,j/2h,

[uy]
n
i,j = (∇

+
y +∇

−
y )u

n
i,j/2h.

These derivatives are computed using a symmetric boundary.
The normalized step difference energy (NSDE) is used to
measure the convergence.16 The NSDE is defined as

NSDE=
|un
− un−1

|
2

|un−1|2
,

where un and un−1 denote, respectively, the image vector at
the nth iteration and at the n− 1th iteration.

EXPERIMENTAL RESULTS
In this section, we test the proposed method on the ‘‘License
plate’’ image with size 171 × 157 and the ‘‘Barbara’’ image
with size 256 × 256 (taken from the USC-SIPI image
database). These two images are shown in Figure 3(a) and
Figure 5(a), respectively. The performance of the method is
evaluated by measuring the improvement in the signal to
noise ratio (ISNR) and the structural similarity (SSIM).17

A trial-and-error method is used to pick the optimal
parameters, and the best result is chosen as the output of the
method.

The ISNR is defined as

ISNR= 10 · log 10

(∑
i,j[u(i, j)− u0(i, j)]2∑
i,j[u(i, j)− ur(i, j)]2

)
, (12)

where u0(·) is the initial image (noised and blurred image)
and ur(·) is the restored image. The larger the value of the
ISNR, the better the restored image.

The SSIM is defined as

SSIM=
(2µu0µur + C1)(2σu0 + C2)

(µ2
u0
+ µ2

ur
+ C1)(σ 2

u0
+ σ 2

ur
+ C2)

, (13)

where µu0 and µur are the mean intensity of the initial
image u0 and the mean intensity of the restored image ur,
respectively. σu0 and σur are the standard deviation of the
initial image u0 and the standard deviation of the restored
image ur, respectively. C1 and C2 are two positive constants.

We first study the effects of the p norm. We consider
the noisy and blurry image in Fig. 3(b) generated by
first convolving the original ‘‘License plate’’ image with a
Gaussian kernel (5 × 5 mask, σ = 1) and then adding
Gaussian white noise with variance 25. The ISNR and SSIM
values of the different methods are presented in Table I. In
Fig. 3(c)–(f), we list the restored ‘‘License plate’’ image with
p = 1 (TV method),9 p = 1.5, p = 2 (Tikhonov method),4

and the proposed LSATVmethod, respectively. It can be seen
that Tikhonov method (p = 2) can over-smooth the image
and that the TV method (p = 1) tends to cause a staircase
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(d) (e) (f)

(b) (c)

Figure 3. Comparison of results on ‘‘License plate’’. (a) Original image, (b) noisy and blurry image, (c) p= 2 (Tikhonov method), (d) p= 1.5, (e) p= 1
(TV method), (f) LSATV method (λ= 0.2,a= 0.1).

Figure 4. Normalized step difference energy for model (9) and model
(10).

effect in the processed image. The proposed LSATV method
obtains better ISNR and SSIM, and better visual effects.

Next, we designed an evaluation of the convergence
performance of model (9) and (10). Figure 4 shows a plot
of the NSDE for model (9) and model (10). It is seen that
the convergence speed of model (10) is better than that of
model (9). Moreover, the results from model (10) is stable
and similar to that of model (9).

Finally, we compare the proposed LSATV method with
the ATV method.12 The essential difference between two
methods is the selection of the p norm. In Fig. 5(a)–(b), we
show the ‘‘Barbara’’ image and the corresponding noisy and

blurry image generated by convolving a Gaussian kernel (3×
3 mask, σ = 1) adding Gaussian white noise with variance
σ = 20, respectively. Fig. 5(c)–(d) show restored images
obtained by using the ATV method and the LSATVmethod,
respectively. Clearly, the proposed LSATV method shows
better results than the ATV method. In the non-smooth
region, the edge structure information, especially the fine
edge, is better preserved. In the smooth region, the noise is
removed effectively.

CONCLUSIONS
In this article, a local structure adaptive total variation
(LSATV) method for image restoration is proposed, which
inherits the advantages of both the Tikhonov regularization
method and the TV regularization method. The proposed
method first presents a discontinuity indicator based on the
eigenvalues of the structure tensor, and then the p norm
is adaptively selected based on the proposed discontinuity
indicator. Experimental results show the effectiveness of the
proposed method. It is important to emphasize that the
proposed model can effectively preserve edges during noise
removal, so it may be a new idea for image superresolution.18
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(a)
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(b)

Figure 5. Comparison of results between the ATV and LSATV methods on ‘‘Barbara’’. (a) Original image, (b) noisy and blurry image, (c) ATV method, (d)
LSATV method (λ= 0.1,a= 0.05).
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