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Abstract. Some experimenters have begun to carry out image pref-
erence experiments over the web, with observers completing the
task in their own time and using their own display devices. This
reduces the administrative overhead, and opens the possibility to
huge numbers of potential observers. However, we have to surrender
some control over viewing conditions. In previous work, we evalu-
ated an existing web-based paired comparison experiment against a
lab-based counterpart and found that, generally, the two variants did
not correlate to a significantly high degree. In this work we extend
that study with the development of our own web-based research
platform with greater control over viewing conditions and much larger
quantities of observers (over 1,000, with more than 26,000 individual
observations). With this, we show much more positive correlation
between the web- and lab-based variants. We also show the similarity
or otherwise between the two variants as a function of time, which
reveals how many web-based observations are required to achieve
stable results. dc 2013 Society for Imaging Science and Technology.
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INTRODUCTION
The images we see around us are often the end result of a
long chain of image processing algorithms. The difference
between the ‘‘raw’’ image recorded by a camera and the
output of a processing pipeline can be very large, as shown
in the example in Figure 1. The common aim of the
majority of photographic pipelines is to construct images
that look as ‘‘good’’ as possible. While ‘‘goodness’’ is a rather
fuzzy and personal notion it is precisely this judgment that
cameramanufacturers and purveyors of imagemanipulation
software must address.

This question can be evaluated systematically in a
preference experiment, where some processing pipeline, A,
is evaluated in concert with a second pipeline, B (where,
for the purposes of illustration, A and B might be the same
except B has a putatively improved white balance method).
In a paired comparison preference experiment, images are
processed with each of the two pipelines and presented in
pairs. An observer (one ofmany) is asked to choose the image
they prefer while, crucially, they are unaware of which image
maps to which algorithm. Figure 2 shows a pair of images,
that differ by their color balance, in a format that might
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be used in a preference experiment. Assuming the number
favoring B is significant (above a criterion amount: perhaps
75%) then B is the preferred algorithm.

Caremust be taken to undertake preference experiments
correctly, for we do not wish the results of our experiment to
depend on how the images are viewed. The display should be
calibrated (to a standard like sRGB)1 and the observer should
view the image pairs in a dimly lit room (ideally with walls of
a neutral gray surround). The pair of images should be shown
on an average neutral background and the sequence of pairs
shown should be random. Each observer should ideally see
the same pair several times. Further details of an appropriate
experimental set-up are encoded in the standard ISO 3664.2

Often we are interested in evaluating many algorithms,
or pipelines, simultaneously. We might run five, six, seven
or more different algorithms against each other. While in
principle the preference experiment remains the same—the
observer is presented with a pair of images at a time—the
number of image judgments that need to be made increases
rapidly. Assumingwe are processing 10 raw imageswith four,
six or eight algorithms and we present each unique pair of
processed images, then there are respectively 60, 150 and
280 pairwise comparisons. For even a modest number of
observers and a small number of repetitions it takes a long
experimental session to obtain complete image preference
data.

The main contribution of this article is the design
of a web-based pairwise image preference experimental
platform. We take inspiration from the color naming work
of Moroney3 and also the ‘‘typewar’’ platform.4 Our idea is,
simply, to meet the challenge of the need for large numbers
of pairwise comparisons by crowd-sourcing via the internet.
Indeed, we can achieve a far greater number of repetitions
than could ever reasonably be found in the lab if only the
smallest fraction of web users took part in the preference
experiment. Given a greater set of preference data we would
like to be able to arrive at stronger conclusions (and so make
stronger recommendations about which algorithms perform
most favorably).

Of course controlled, lab-based, image viewing was
adopted for a reason; we cannot, for example, calibrate
a remote observer’s monitor. However, it is still possible
to use the same presentation of image pairs. Images are
entirely visible side by side and are viewed on a variegated
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Figure 1. Camera captured image before and after application of processing pipeline.

Figure 2. Typical interface of a paired comparison experiment.

background that averages to gray. This simple insight, which
is key to our work, proves to be crucial in making the web
application work. Moreover, we hope that there is a law of
large numbers that works in our favor: specifically that, given
enough observations, the ‘‘web preference’’ will, on average,
be the same as the lab preference.

In our first experiment we evaluate a large set of
algorithms using a conventional lab-based methodology and
also by crowd-sourcing the web. Broadly, our experiment
shows that the two different experimental approaches do
converge to similar algorithm rankings. This is, however, not
an obvious result: a previous preference experiment run on
the web, using identical images, but where care was not taken
to standardize image presentation delivered a quite different
ranking. That study, combined with our own, indicates (at
least on a prima facie basis) that image preference studies can
be successfully transplanted to the web so long as sufficient
care is taken over image presentation. Significantly, in a
second contribution of this article we track the similarity
or otherwise of the preference results as a function of the
number of observations. We do obtain convergence between
lab- and web-based preference data but only after sufficient
preference judgments are made.

BACKGROUND
Web-based Paired Comparisons
Several attempts have been made to gather data from
participants over the web, many of which are introduced and
examined by Birnbaum5. However, a large amount of the
successful among these studies have followed survey-based
formats, suggesting that the presentation and viewing condi-
tions of the experiment have little or no impact on the results
gathered. Work by Rasmussen6 investigated defect detection
over the web; observers were presented with two duplicates
of the same image, one of which had beenmodified to exhibit
some ‘‘defect’’, or noise, and the time taken for observers to
identify which of the two images was defective was recorded.
The results of this experiment were not compared to any
lab-based alternative, but as every comparison had a correct
answer, the authors could quantify the level of correctness
of the observers, which was generally positive. The results
were manipulated by discarding data points according to
some filtering steps, such as removing user sessions below a
certain accuracy level, or excluding observers who did not
complete a minimum of 100 observations. This particular
study also required a calibration stage by observers, and so
represents amore restrictive kind of experiment than the one
we envisage here. Observer engagement was encouraged by
presenting the experiment in a game-like format: observers
were challenged to identify the defects within the quickest
time possible. Engagement was further incentivized by the
inclusion of a monetary reward for top performers.

Zuffi et al.7 carried out a web-based readability test,
attempting to isolate the thresholds for lightness differences
between text and background color on web pages. This was
compared to a lab-based control experiment. Similar results
were indeed found. Interestingly, in this experiment there
were actually fewer web-based participants than those in the
lab, but, that the two experimental formats produced similar
results is encouraging.

There have been a comparatively small number of
paired comparison experiments carried out on the web, with
varying degrees of success, but there has been little effort in
empirically comparing the results gathered to any ‘‘ground
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truth’’ lab-based data. Some notable attempts to date are
studies by Jiang et al.8 and Sprow et al.9

Jiang et al.8 performed a web-based paired comparison
experiment and contrasted it with two lab-based counter-
parts using the same dataset as part of a larger study on
soft-copy reproductions of fine art images. The two lab-based
variants were carried out with andwithout the original image
present.While strong positive correlationwas found between
the web-based results and the lab results without the original
present, only weak correlation was found when comparing
to the variant with the original present. The web-based
variant in this study received a relatively small number
of observers—88—and the authors do not describe their
recruitment process. On top of this, some statistical power
was lost due to the adaptive paired comparison procedure
that was employed.

A study by Sprow et al.9 focused on web-based and
lab-based variants of a paired comparison preference experi-
ment concerning a gamut mapping task, presenting an sRGB
reference image as well as two images mapped to various
device gamuts by competing gamut mapping algorithms.
This study attracted a larger number of participants—around
700—and, generally, showed very good correlation between
the two sets of results. The importance of these results does
come with some notable caveats, however: many observers
were friends, relatives and coworkers of the authors and also
those recruited by solicitation via the ECI (European Color
Initiative) mailing list. Some observers also participated
in both variants, with 43 of the 70 observers in the lab
variant contributing to the approximately 700 total for the
web variant. This particular study utilized a questionnaire
and adjustment/characterization images to gather extra data
about observers’ display devices. This extra intrusion was
kept as minimal as possible, but would likely still drive away
a substantial amount of possible observers had they not been
recruited directly from the color community.

Here lies a significant problem with web-based
research—attracting participants and maintaining engage-
ment. Recruitment through mailing lists and pre-existing
contacts is effective, but it carries the problem of introducing
a sampling error in that the participants already have a vested
interest in the results and/or are ‘‘expert observers’’. Casual
web users have little or no commitment to the study in which
they are voluntarily participating, and the task of keeping
them engaged and entertained without introducing bias into
the results is problematic. The offer of a material reward for
participation,or for topcontributors,hasbeenused inthepast
but it introduces the problem of participants manipulating
the system for their own reward, without taking any care over
their responses.

Our own previous work10 examined an established,
long-running, web-based paired comparison experiment by
Mei11 (comparing the outputs of different tone mapping
algorithms operating on high dynamic range images), and
compared the results to those produced by a highly con-
trolled lab-based variant performed using the same images
and image treatments.We found that, largely, the correlation

between these two sets of results was unsatisfactory. How-
ever, we suggest that this can be, at least partially, explained
by the relatively small numbers of participants attracted to
the web-based experiment (no large-scale recruitment was
performed), as well as some presentation and implemen-
tation issues which may have affected a significant portion
of the participants that were attracted—the images were
displayed against a yellow background and occasionally the
formatting of the web page led them to be displayed stacked
atop each other.

The new contribution of this work is to compare the
same lab-based data from our previous work10 to a new set
of web-based results gathered from our own, more highly
controlled, web-based platform.

METHODOLOGY
Control experiments
Mei11 and, by extension, our own previous work10 examined
observer preference of tone mapping operators (TMOs).
TMOs are functions designed to map pixel values of high
dynamic range images into a low dynamic range space
such that those images can be viewed on low dynamic
range monitors or printed using a conventional printer, all
the while attempting to preserve the color, contrast and
brightness information present in the original image. We
shall be continuing to use TMOs as a test subject in this
work, however it is not the purpose of this article to explain
the use of TMOs or to examine their relative merits—many
authors have already carried out such evaluations, such as
Ledda et al.12 For reference, the TMOs under comparison are
given in the Refs. 13–22. We will be using the same lab-based
data as our previous work,10 and comparing that to new data
from our own web-based platform.

In our lab-based experiment,10 we carried out a con-
trolled paired comparison experiment with 14 unpaid par-
ticipants who were naïve to the objective of the experiment.
The pairwise comparison was run using the same collection
of scenes and operators as used in the existing web-based
experiment by Mei.11 Note that, for consistency with Mei,11

different subsets of the algorithms were used for each of
the different scenes. There were two scenes for which six
algorithms were evaluated (giving ( 6×5

2 ) × 2 = 30 pairs),
five scenes where seven algorithms were tested (105 pairs),
another four where eight algorithms were tested (112 pairs)
and one scene where respectively nine and 10 algorithms
were tested (36 and 45 pairs respectively). In grand total
there were 328 pairs of images. Each pair was viewed as [AB]
and [BA], where A and B are images for the same scene
processed by two different algorithms, making a total of
328 × 2 = 656 comparisons per observer. Due to this large
amount of comparisons undertaken, the average observer
completed the experiment in one hour, however this was
split into sessions lasting no more than 30 minutes each in
order tominimize eye strain and loss of concentration among
observers.
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Viewing conditions were prepared in accordance with
ISO standard 3664:2009, and images were displayed on an
HP LP2480ZX monitor calibrated to sRGB standard.1 The
average image size subtended at the retina was approximately
6◦ observable angle, with approximately 1◦ of padding be-
tween the two images. The observed experimental interface
resembled that of Fig. 2. Viewing time was not limited but
wasmonitored. The average viewing time was 5.5 s per image
pair.

The images used in our lab-based replicate were taken
directly from the existing web-based experiment,11 and
resized with bicubic resampling to fit within the intended
observable angle at a standardized viewing distance of
approximately 1 meter. Note that the images displayed
to participants were exactly the same in the web- and
lab-based variants (save for displayed size); it is the change
in environment which is of interest.

To corroborate results from our TMO experiment, and
to alleviate the problem of having results that are task
dependent, we also carry out a second experiment using
color-to-grayscale (C2G) algorithms. These are algorithms
designed to reduce color images, usually three-dimensional
RGB, into one-dimensional grayscale images. There are
many existing approaches to solving this problem, a col-
lection of which are reviewed by Connah et al.23—again, it
is not the purpose of this article to compare the different
techniques. We shall be using the preference data gathered
by Connah et al.23 as the lab-based variant in this second
experiment. The C2G algorithms under comparison are
detailed in Refs. 24–28 as well as simple luminance-channel
grayscale which, assuming an image color space of sRGB, is
given by:

lum= 0.2172× R+ 0.7152× G+ 0.0722× B. (1)

The control conditions for the second lab-based experi-
ment are summarized by Connah et al.23

Our web-based platform
Extending from our previous work,10 we observe that the
web-based experiment by Mei11 suffered from fairly low
numbers of participants and did not control for some factors
which could still plausibly be controlled and/or monitored
even in a web-based scenario. In light of this we opted
to implement our own web-based research platform29 so
that we could gain greater control over the web-based
data collection. We have also expanded our datasets to
not only compare observer preferences for tone mapping
operators, but also for color-to-grayscale algorithms. For
the first experiment, we use observer preferences from our
own web-based platform (hereafter referred to as the ‘‘web’’
variant) and from a controlled experiment carried out in
our own lab (hereafter referred to as the ‘‘lab’’ variant). For
the second experiment, we use observer preferences from
Connah et al.23 for the lab-based data, and data gathered
from our own web-based variant of the same study for the
web-based data.

One of the limitations of the web-based experiment by
Mei11 was that, due to the design of the page and the size
of the images compared, only an estimated 20%30 of visitors
to the site would be able to observe the entirety of both
images in a pair on their screen without scrolling. Worse
still, for an estimated 50% of observers the resolution of
their display device would cause the page layout to display
one image stacked atop the other, meaning that the observer
would have to scroll between the two images, and would
never be able to make a direct comparison of both images
on the screen at the same time. In our system, the layout is
fixed so that the images will always be shown side-by-side,
and the statistics gathered show that 87% of our observers
were able to see the entirety of both images on the screen
at the same time without scrolling. To facilitate this, we
resized the images to a smaller scale than that used by
Mei.11 All images were resized using bicubic resampling and,
for the web experiment, we ensured that there would be
no client-side rescaling of the images. It is worth noting
that while the resolution of the displayed images can be
controlled, the physical size of the displayed images cannot be
reliably controlled or recorded. It is entirely feasible to record
the resolution of observer’s display devices and indeed this
was done, but physical device size and pixel density cannot be
recorded to a high level of accuracy or reliability with current
browser support, and it is even less feasible to monitor the
observable angle of the image, as viewing distances cannot
be controlled. In principle some of this information could be
obtained through a questionnaire, although in practice this
approach can be unreliable—for example, to be useful, the
questionnaire would need to include questions that require
a high degree of technical competence to answer.

In previous similar experiments to this, authors have
often recruited observers through friends and colleagues, or
at conferences or through mailing lists etc. Obviously this
can lead to an unrealistic sample of observer populations,
as those recruited from within the community are likely to
be expert observers, and anyone who is personally recruited
is likely to feel an obligation to complete a large number
of preference choices, or to spend more time scrutinizing
their decisions in order to ‘‘get it right’’. We therefore opted
against personal recruitment and targeted the wider online
audience for our experiments. The project was publicized
through social media and advertised through various other
websites unrelated to color science. Participants were there-
fore attracted much more organically and represent a much
better sample of internet users ‘‘in the wild’’.

Observers were free to complete as many or as few
preference choices as they wished. If an observer submitted
only a handful of preference choices these were added to
the pool of data with equal weighting to those submitted
by an observer who submitted hundreds. To date, the mean
number of comparisons per observer is 18.9, with a standard
deviation of 35.3.

Also in opposition to some previous approaches, we
opted to have no calibration process, questionnaires or
adjustment images. Observers visiting the site were immedi-
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ately presented with their first preference choice. Primarily it
was thought that immediate presentation of the task at hand
would be more likely to engage observers and encourage
them to partake; presentation of welcome pages, splash
screens, or anything of the sort are well known to increase
the ‘‘bounce rate’’ on websites. It is also noted that even
if a calibration process were implemented, it would likely
be of little value: observers’ viewing conditions are likely to
changewith time, especially onmobile devices. Furthermore,
observers could be employingmultiple displays, returning to
the site on multiple devices, or they could be using a device
with an auto-dimming or auto-adjusting display.

Statistical tools
Thurstone’s law of comparative judgment. When seeking a
preference metric of the perceived quality of several differing
image treatments, an intuitive approach is to compare every
treatment with every other in a pairwise fashion, resulting
in a ‘‘tournament’’ of comparisons where the image that
receives the greater preference ‘‘wins’’ each comparison.
The problem then, is aggregating the results from each
comparison in the tournament into a definitive collection
of preference scores. A common approach to this problem,
which is still an active area of recreational mathematics,31

is the application of Thurstone’s32 law of comparative
judgment.

Thurstone proposes that a discriminatory process be-
tween two stimuli, causing responses SA and SB, can be
modeled as a normally distributed random variable, where
the distribution represents the value of SA − SB over
many observations, under the assumption that SA and
SB are themselves normally distributed. The mean of this
distribution should give a good approximation of the true
value of SA−SB. This approach allows us tomake an estimate
of the scale of SA − SB, even though observers do not make
any explicit assertions of that scale, rather they are only
ever asked to judge which of the two stimuli produces the
‘‘greater’’ response. To accomplish this, Thurstone adopts
some sets of assumptions, grouped by various cases which
may apply to the experimental design. We shall use case V,
which is the most commonly applied case in the imaging
science literature.

Mosteller’s test. As described above, Thurstone’s case V
solution makes several assumptions about the data being
analyzed: specifically that the variances for the underlying
discriminal processes are equal and that the coefficient of
the correlation between observer responses is zero. However,
there are occasions when these assumptions do not hold
and the case V solution is inadequate. To detect these
situations, Mosteller33 put forth a chi-square test to evaluate
the goodness-of-fit of the model to the data. When the
χ2 value obtained from this test is lower than the χ2

value at some significance level p (with degrees of freedom
(t − 1)(t − 2)/2, where t = the number of algorithms, or
treatments), we accept that the case V solution is suitable for
this data.

Kendall coefficient of consistency. We would hope that, in
general, observers are consistent when they make their
preference choices. An inconsistency, in this case, refers to
the situation where an observer prefers image A over B, and
image B over C, but then prefers image C over A. Kendall and
Smith34 define such an occurrence as a circular triad, and they
can occur in situations where the compared stimuli do not
elicit a hugely different response, meaning that the observer
has a hard time differentiating between them or, specifically
to cases in image preference, in situations where different
image treatments performwell in some image regions but not
others, and the observer then chooses different image regions
on which to base their preference for one comparison than
they do for another.

When only a small collection of stimuli are being
compared, it is simple to count these violations of consis-
tency directly. However, for larger quantities, a process for
calculating the frequency of the inconsistencies is described
by Kendall and Smith.34 Once the total number of inconsis-
tencies has been calculated, this number is compared to the
maximum possible number of inconsistencies for the given
number of competing algorithms. This normalized measure
of consistency, �, has a maximum value of one in the case
where there are no violations of consistency, and decreases
to zero as the observed inconsistencies increase.

Low values for� can be interpreted as an indicator that a
particular observer was poor at making consistent preference
choices. Alternatively, if� is low across many observers, it is
an indicator that the stimuli being judged were too similar
for the observers to make consistent choices.

It is important to note that, when giving summary
statistics for an experiment, � is calculated separately for
each observer and then averaged across all observers.

Kendall coefficient of agreement. If two observers make the
same preference judgment on a pair of images, we denote
this as one agreement. Kendall and Smith34 give a method to
calculate the number of pairs of observers in agreement over
each pair of images, which is then normalized by the number
of observers and the total number of pairs of images. This
gives a measure, u, of observer agreement, which can range
from 1 in the case of perfect agreement, to−1/(n− 1) when
n is even, and−1/n when n is odd, where n is the number of
observers.

To gain some significance measure of the coefficient
of agreement, we can use the χ2 test described by Ledda
et al.12 to test the null hypothesis that all observersmade their
preference judgments entirely at random. A significantly
high value for u suggests that there are differences among the
images being compared, but we cannot necessarily tell where
those differences are.

Score difference test. Upon compilation of a Thurstonian
analysis, the outcome is a collection of assignments of scores
to image treatments. From these scores it is possible to
generate an ordinal ranking. However if the scores for two
different treatments only differ by a small amount, we may

J. Imaging Sci. Technol. 020502-5 Mar.-Apr. 2013



Harris, Finlayson and Tauber: Web-based image preference

be hesitant to assign a definitive ranking. To quantify this
uncertainty, we can use the score difference test, described by
Ledda et al.12

This test groups a collection of scores such that two
scores within the same group cannot be declared significantly
different at a given significance level. Formally, we are
grouping the scores so that the variance-normalized range
of the scores within each group is less than or equal to some
value R+α .

CalculatingR+α is equivalent to finding someR′ such that
P(R ≥ R′) ≤ α. The distribution of the range R is asymptot-
ically the same as the distribution of a variance-normalized
range, Wt, of a set of normal random variables with variance
= 1 and t samples.35 This gives us

P

(
Wt,α ≥

2R− 1
2

√
nt

)
, (2)

where Wt,α is the value of the upper percentage point of Wt
at significance level α, which is tabulated in many statistics
texts, e.g. Pearson and Hartley.36 From here we can directly
calculate the value of R+α given the value of Wt,α .

R+α =

⌈
1
2

Wt,α
√

nt +
1
4

⌉
. (3)

To this resultant integer value, R+α , we ascribe the
following quality: if the score difference between two image
treatments is less than R+α , those two treatments cannot be
described as perceptibly different at the chosen significance
level, α.

Kendall rank correlation coefficient. To compare the results of
our lab-based and web-based variants, we need a measure
of computing the correlation between the two. Given the
ordinal nature of the ranking derived from the scores
output from a Thurstonian analysis, it follows to use a rank
correlation statistic such as Kendall’s τ .37

Kendall37 gives a method for computing a significance
measure, p, for τ . This measure is based on the likelihood
of the observed correlation occurring given two independent
variables. A low value for p indicates that a correlation to
the extent of τ is unlikely to occur and so we reject the null
hypothesis that the two variables are independent.

Sprow et al. chi-squared goodness-of-fit. From the Thursto-
nian analysis, we have access to more than just ordinal rank
data. The scores give scale values as well as a rank ordering.
In light of this, there may be some situations where a rank
correlation statistic does not tell the whole story. Given a
scenario with three treatments A, B, C with scores −1, 0.9,
and 1 respectively, if in another experiment, the score for
B was 1.1, a rank correlation statistic would penalize this
small change just as heavily as if the score became −1.1, as
both changes produce an equal rank order swap despite the
differing magnitudes of the score difference.

To address this, Sprow et al.9 devised a χ2 statistic,
similar in construction to Mosteller’s test.33 Instead of
comparing the observed results of the experiment to an
expected distribution, this test treats one experiment as the
‘‘observed’’ data, and the other as the ‘‘expected’’ data. This
statistic is defined as:

χ2
=

∑
j<l

(
njl · n′jl

njl + n′jl

)
· (arcsin(2pjl − 1)

− arcsin(2p′jl − 1))2, (4)

where P and P′ are the proportion matrices (matrices where
PAB = the proportion of times algorithm A is preferred
over algorithm B) of the ‘‘expected’’ and ‘‘observed’’ data
respectively, and N and N′ are matrices representing the
total number of comparisons per pair in each of the
experiments. This statistic accommodates for differing num-
bers of observers (and thus differing variance) between
the two experiments and, due to its formulation, allows
for unbalanced experiments, where each image pair is not
necessarily viewed an equal number of times to every other
pair.

Much like Mosteller’s, this test is examining at what
significance level can we assert that pij and p′ij are from two
different distributions. As such, and in juxtaposition with the
significance measure for Kendall’s τ , a low p-value from this
statistic indicates a poor correlation.

RESULTS
Tone mapping operators
In our first experiment, we are seeking to re-evaluate
our web- against lab-based comparison from our work in
Harris and Finlayson10 with a new, more highly controlled,
web-based variant. Before doing so, however, it is important
to evaluate the quality metrics of the lab data in isolation,
so that we can uncover any statistical artifacts which may
later impact our lab-to-web comparison: Table I shows the
summary statistics described earlier for the lab variant of the
TMO experiment.

The columns under the ‘‘Agreement’’ and ‘‘Consis-
tency’’ headings show that, remarkably, all scenes showed
significantly high inter-observer agreement (p < 0.001 for
all scenes) and also high levels of intra-observer consistency.
The columns under ‘‘Mosteller’’ show the χ2 score and
corresponding significance level (p-values greater than 0.05
are omitted for clarity) for the Mosteller test, which shows
that, for the majority of the tone-mapped scenes, the
case V solution adequately describes the preference data.
However, the significantly high scores for the ‘‘Synagogue’’
and ‘‘Tahoe’’ scenes should be noted at this point—these
suggest that, for these scenes, the assumptions of the case V
solutionmay not hold and that these scenes should be treated
with some caution when we later compare the web-based
results to these lab-based results.

The data in this table convey several importantmessages.
First, that the Thurstonian case V solution is, in most
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Table I. TMO experiment: summary statistics for lab data.

Scene Mosteller Agreement Consistency

χ 2 Significance u χ 2 Significance �

Atrium night 16.438 0.280 179.643 p < 0.001 0.691
Belgium 42.425 0.239 335.571 p < 0.001 0.592
Bristol bridge 15.052 0.222 195.821 p < 0.001 0.719
Clock building 24.126 0.433 355.357 p < 0.001 0.800
Fog 13.727 0.229 258.393 p < 0.001 0.694
Foyer 6.313 0.155 108.679 p < 0.001 0.577
Indoor 13.883 0.194 130.857 p < 0.001 0.707
Memorial 18.268 0.252 218.286 p < 0.001 0.646
Synagogue 36.019 p< 0.05 0.252 218.536 p < 0.001 0.815
Tahoe 19.535 p< 0.05 0.225 105.929 p < 0.001 0.633
Tinterna 18.058 0.274 126.000 p < 0.001 0.718
Tree 18.532 0.287 183.679 p < 0.001 0.719
Venice 4.668 0.227 149.429 p < 0.001 0.694

cases, sufficient for the task of analyzing preference data
for tone mapping operators (although notably not in all
cases). Second, that the observers in our lab made consistent
preference judgments, and, finally, that the observers agreed
with each other on image preference choices to a significantly
high degree.

Now that we have some understanding of our lab-based
results, we can begin to consider the data from the web-based
variant. The data under consideration are taken from the first
year of operation of our web-based platform,29 during which
time over 26,000 preference judgments were submitted
by more than 1,000 observers. Unfortunately, due to its
unbalanced nature, we cannot complete the same summary
statistics as above for the web-based variant. Expecting web
observers to complete every possible combination of images,
in order to facilitate the balanced paradigm, is unreasonable.
Indeed if we omitted all unbalanced sessions from our data
we would be left with only two complete, balanced, sessions.

Table II shows how the web data compare to the lab
data—we are considering how the Thurstonian analysis of
one variant correlates with the other. The results of both
the Kendall rank correlation coefficient and the Sprow
goodness-of-fit test (as described earlier) are shown. Recall
the disparity in the significance measures for the Kendall
and Sprow statistics—a low p-value for the Kendall rank
correlation coefficient suggests a strong correlation, while
a low p-value for the Sprow goodness-of-fit test suggests a
weak correlation. We can see that eight of the 13 scenes
give significantly correlated rank orderings. However, for the
‘‘Clock building’’, ‘‘Fog’’, ‘‘Foyer’’, ‘‘Tahoe’’ and ‘‘Venice’’
scenes, both of the Kendall and Sprow measures agree that
those scenes showed weak correlation, although we should
bear in mind the results of the Mosteller test which suggest
that the ‘‘Synagogue’’ and ‘‘Tahoe’’ scenes are ill-suited for
the case V solution.

Interestingly, for ‘‘Bristol bridge’’ and ‘‘Tree’’, signifi-
cant rank correlation is achieved but the Sprow test indicates
a poor goodness-of-fit. This is examined in further detail
later, with the aid of data from the color-to-grayscale
experiment.

Also included in Table II (and Table IV), are approxi-
mate values for the quantity of observations for each scene
in the web-based variants. These are not equal due to the
unbalanced nature of the experimental design, but are of the
same order of magnitude owing to the random assignment
of observers.

Color to grayscale
To corroborate the TMO experiment, we ran a second exper-
iment examining observer preference for color-to-grayscale
algorithms. For the lab-based variant of this experiment,
we are using existing data published by Connah et al.23

The summary statistics for these data are recapitulated in
Table III, with the addition of the results of the Mosteller
test.

We can see that, as in the TMO experiment, there
were high levels of intra-observer consistency for all scenes.
However, for the ‘‘Girl’’ and ‘‘Hats’’ scenes, the inter-
observer agreement was slightly lower—it is still significantly
high (p < 0.05 and 0.01 respectively) but it is not at the
p < 0.001 level as in the other scenes. The reasons for the
poorer performance for these scenes are discussed byConnah
et al.;23 it is suggested that, for these scenes in particular,
the compared algorithms all perform similarly and different
observers may be selecting different criteria to judge the
minor differences in these images.

The Mosteller test shows positive results for five of the
six scenes but, as with ‘‘Synagogue’’ and ‘‘Tahoe’’ from the
TMO experiment, we should be wary when considering the
‘‘Monet’’ scene due to its significantly high χ2 score.
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Table II. TMO experiment: correlations between lab and web results.

Scene Approx. web observations Kendall rank correlation Sprow goodness-of-fit

τ Significance χ 2 Significance

Atrium night 1100 0.905 p< 0.01 23.123
Belgium 2200 0.733 p< 0.01 48.589
Bristol bridge 1500 0.571 p< 0.05 72.106 p < 0.001
Clock building 1400 0.357 150.678 p < 0.001
Fog 1800 0.333 98.427 p < 0.001
Foyer 1100 0.333 83.700 p < 0.001
Indoor 1000 0.714 p< 0.05 17.081
Memorial 1400 0.643 p< 0.05 34.599
Synagogue 1400 0.857 p< 0.01 26.182
Tahoe 700 0.467 48.377 p < 0.001
Tinterna 800 0.867 p< 0.05 20.508
Tree 1000 0.810 p< 0.05 62.485 p < 0.001
Venice 1000 0.619 41.896 p < 0.01

Table III. C2G experiment: summary statistics for lab data.

Scene Mosteller Agreement Consistency

χ 2 Significance u χ 2 Significance �

Girl 4.362 0.040 28.833 p < 0.05 0.714
Hats 3.026 0.061 36.000 p < 0.01 0.604
Heron 11.569 0.521 194.833 p < 0.001 0.885
Monet 24.199 p< 0.01 0.435 165.167 p < 0.001 0.807
Parrot 13.172 0.386 148.000 p < 0.001 0.818
Poppies 9.070 0.226 92.833 p < 0.001 0.755

Table IV. C2G experiment: correlations between lab and web results.

Scene Approx. web observations Kendall rank correlation Sprow goodness-of-fit

τ Significance χ 2 Significance

Girl 1600 0.333 17.970
Hats 1600 0.867 p< 0.05 15.422
Heron 1600 0.867 p< 0.05 99.281 p < 0.001
Monet 1700 0.600 48.534 p < 0.001
Parrot 1700 0.867 p< 0.05 29.811
Poppies 1600 0.733 p< 0.05 27.162

Our web-based variant of the C2G experiment ran
parallel to the TMO experiment on our web-based research
platform.29 Observers were randomly assigned to one of the
two experiments on their first visit to the site, but could
opt-in to a different experiment if they so wished. Similarly,
if an observer completed all the comparisons for a particular
experiment (a feat managed by only two observers), they
would be assigned to the other upon their next visit. Table IV

shows how the web data compare to the lab data for the

C2G experiment—much like Table II, these data represent

the first year of data collection.

Four out of six scenes give significantly correlated rank

orderings, while ‘‘Monet’’ exhibits weak correlation accord-

ing to both the Kendall and Sprow measures—although we

should once again bear in mind the results of the Mosteller
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Figure 3. Thurstone scores for ‘‘Girl’’ scene.

test which suggest that the ‘‘Monet’’ scene is ill-suited for the
case V solution.

The ‘‘Girl’’ scene presents an interesting situation: it
exhibits weak rank correlation according to the Kendall
measure, but favorable goodness-of-fit according to the
Sprowmeasure. Figure 3 shows the results of the Thurstonian
analysis of the ‘‘Girl’’ scene for both the lab and web variants
plotted on the same axes. It is evident that the scores are
very similar in both experiments, but the minor fluctuations
happen to cause significant rank differences. Figure 4 shows
the rankings for both variants, with the vertical bar to the
right grouping algorithms that are, according to the score
difference test (described earlier), not perceptibly dissimilar
at the α = 0.05 significance level. The rankings produce
many rank position swaps, but they are all within the bounds
of the perceptibly similar. This highlights the danger of
relying solely on a rank correlation measure to quantify the
similarities or otherwise of our lab- and web-based variants.

Notably, if we carry out the score difference test for
all scenes (across both the TMO and C2G experiments),
this same explanation holds true for every scene that does
not exhibit significantly strong rank correlation—the rank
position swaps are always among those algorithms which
are, according to the score difference test applied to the
lab data, not significantly dissimilar. This is an important
point to underline—for every scene that does not exhibit
strong rank correlation, the rank position swaps causing that
weak correlation are all among algorithms which are not
perceptibly dissimilar.

Another interesting situation arises for the ‘‘Heron’’
scene, as well as ‘‘Bristol bridge’’ and ‘‘Tree’’ from the TMO
experiment: significantly strong rank correlation is achieved
but the Sprow test indicates a poor goodness-of-fit. Figure 5
shows how this can be the case for the ‘‘Heron’’ scene—the

Figure 4. Rank position swaps for ‘‘Girl’’ scene.

rank orderings are very similar, with only one position swap
between the ‘‘BAL’’ and ‘‘LUM’’ algorithms, however the
web results are somewhat muted in comparison to the lab
results. This could be due to the larger number of observers
for the web experiment. The results for ‘‘Bristol bridge’’ and
‘‘Tree’’ show similar properties.

Correlation over time
A feature of our web-based platform is the ability to compute
all the statistics used above in real time. This means that
we can examine the correlation between the lab-based and
web-based variants as a function of time or, equivalently,
the number of comparisons completed. In so doing, we will
consider the TMO and C2G experiments in unison.

Figures 6 and 7 show, for the two most strongly
correlated scenes, rank correlation between the lab- andweb-
based variants as a function of the number of comparisons
made in the web variant. The horizontal lines show the value
of τ required to be significant at the 95 and 99% levels. Both
of these scenes suggest that significantly strong correlation
can be achieved after approximately 500 comparisons have
been completed (≈27 observers).

Conversely, Figure 8 shows correlation over number of
comparisons for the weakly correlated ‘‘Fog’’ scene. We can
see that the results do not correlate to any significant degree,
but they do stabilize after approximately 500 comparisons.

J. Imaging Sci. Technol. 020502-9 Mar.-Apr. 2013



Harris, Finlayson and Tauber: Web-based image preference

Figure 5. Thurstone scores for ‘‘Heron’’ scene.

Figure 6. Rank correlation as a function of number of observations for the
strongly correlated ‘‘Atrium night’’ scene.

This suggests that, for the experiments detailed in this article,
500 comparisons is sufficient to obtain a stable result from
a cohort of generic web users, but that this result cannot
necessarily be relied upon to correlate with a lab-based
experiment. This stability despite lack of correlationmay also
suggest a deeper underlying difference in preference metric
for observers on the web.

It is important to note that, while 500 has emerged as the
threshold for reliable results for the experiments discussed
here, it should not be treated as a general criterion for
web-based experiments. Experiments with differing num-

Figure 7. Rank correlation as a function of number of observations for the
strongly correlated ‘‘Hats’’ scene.

Figure 8. Rank correlation as a function of observations for weakly
correlated ‘‘Fog’’ scene.

bers of treatments under scrutiny, with differently matched
treatments, using different populations of observers, or
employing varying experimental paradigms, may require
a greater or lesser quantity of comparisons to meet this
threshold.

DISCUSSION
It is apparent that often the results from web-based paired
comparisons closely correlate with those carried out under
laboratory conditions. It is also shown that, when the
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results do not correlate, this can be attributed to lack of
discriminatory power among the images being compared.

After completing the lab experiment, observers were
consulted about the factorswhich influenced their preference
decisions. Many revealed that they used different image fea-
tures to inform their decision about different scenes; rather
than taking the image as a whole they used specific regions
or features of each scene to influence their decision. Further
to this, observers noted that certain images had certain
recurring artifacts generated by some image treatments but
not others, and would intentionally seek these artifacts out
upon being presented with an image pair of a certain scene.
These cues to decision making are learned as the observer
completes more comparisons. An observer beginning the
experiment may take more time considering the image as
a whole before making their decision, but as they continue
they learn which salient image features to look for. This
could be an important factor separating the lab and web
variants. It is known that the observers in the web variants
did not all complete large numbers of comparisons before
ceasing their participation. This implies that the rankings
of the web variants are likely to be made up of a greater
number of observers each undertaking a smaller number of
comparisons, which in turn means that each comparison
in the web variants is more likely to have been made by a
participant who is still unaware of these image features.

During consultation, the majority of observers in the
lab-based TMO experiment mentioned the ambiguity in the
instructions given. These were chosen to be as similar as
possible to those in the web experiment we investigated in
our previous work,10 and it is easy to see how differences
of interpretation could arise. The prompt ‘‘choose the
image you think is better’’ could be interpreted as ‘‘choose
the image you think most represents a natural scene’’ or
‘‘choose the image you think has more artistic merit’’ or
even ‘‘choose the image you would prefer to hang on your
wall’’, all of which could produce vastly different results.
Observers noted that, because they were participating in
the experiment under laboratory conditions, they felt that
they should choose images which looked more natural. It
is plausible that observers of the web variant may have
interpreted the prompt as in the latter interpretations above,
considering that the sort of images traditionally associated
with ‘‘HDR photography’’ and ‘‘tone mapping’’, especially
among online photo-sharing websites such as Flickr, are
those oversaturated, extremely crisp images that are seen
to be more artistic. If we suggest that the lab observers
were choosing images which appeared more natural, while
the web observers were choosing images which were more
artistic (usually distinctly unnatural), then the two sets
of observers were deriving completely different judgment
metrics from similar instructions, due to the context in
which the instructions were given (a formal, laboratory
environment, or the informal environment of the internet).
This may go some way to explaining the stability in some of
the web results despite lack of correlation with the lab results,
which was noted at the end of the previous section.

It is clear the question being asked of the observer
is important. Prompts can easily be interpreted in many
different ways depending on their environment. However,
often in these kinds of experiment, we are seeking general
observer preference. In both the TMO and C2G cases
(and in many more like them), we are not looking for
observer opinion on a specific metric such as ‘‘which image
appears more saturated?’’, but we are seeking to quantify a
quality as broad and expansive as general observer preference.
Instructional context, and clearly separating quality metrics
via precise instruction will be an intriguing area of further
research in the future.

Our previous work10 compared an existing web-based
preference experiment to a lab-based replicate, and in this
work we carry out the same task using the same lab-based
data except with our own web-based experiment. Given the
similarity of the experiments, it is surprising that we do
not find similar results. Comparing our lab-based results
to the web experiment by Mei,11 we find only four of
13 scenes show significantly strong rank correlation, but
comparing those same lab results to the results gathered
from our web-based experiment we achieve significant rank
correlation for eight of the same 13 scenes. Our experiment
attracted a larger number of participants, indeed Mei11 did
not reach the 500 comparisons level which, according to
our results, seems to be the point at which stable results are
achieved. As well as this, perhaps some differences can be
attributed to the small advances in control we implemented
that Mei did not: namely ensuring consistent side-by-side
display at appropriate resolutions, and displaying against a
neutral gray background.

All of these points share a common theme: transplanting
paired comparison experiments onto the web does not,
necessarily, mean the complete surrender of all control over
the experiment. With consideration over presentation, and
large numbers of observers, it is entirely possible to achieve
reliable results.

CONCLUSIONS
The results in this article compare the outcomes of two
differing experimental techniques. Lab-based paired com-
parisons, with all the control and standardization they are
typically carried out under, are seen bymany as the ‘‘correct’’
way of performing visual psychophysics, while web-based
techniques are criticized and often disregarded for their lack
of traditional control. We have shown that, largely, similar
results can be gathered by performing these experiments
on the web and that, when the results are not similar, it is
indicative of an underlying problem with the images under
comparison that may suggest that they are ill-suited for this
type of experiment in general.

We observe that convergence in results can be met, so
long as careful consideration is given to image presentation,
the phrasing of the prompt given to the observer andwhether
or not general web users may have a predisposition to favor
certain images that a lab observer may not. We also note that
many previous studies in this area have exhibited poor results
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which may be attributable to small numbers of observers, or
to samples of web users that are not generally representative
of the observers on the web at large.
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