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Abstract. The real world abounds with textured surfaces. Texture-
based object segmentation is one of the early steps towards identifica-
tion of surfaces and objects in an image. In this article, a feature-based
segmentation (FBS) method is provided to isolate objects that consist
of similar texture patterns from an image based on the following fea-
tures: inverse difference moment of gray-level co-occurrence matrix,
contrast of Tamura, and gradient. In this article, a genetic algorithm
is also provided to decide the most suitable values of the parameters
used in the FBS method. The experimental results show that the FBS
method can provide expressive segmentation results. dc 2013 Society
for Imaging Science and Technology.
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INTRODUCTION
Texture is one of the most important attributes used in
image analysis and pattern recognition. It provides surface
characteristics for the analysis of many types of image in-
cluding natural scenes, remotely sensed data, and biomedical
modalities. Hence, it plays an important role in the human
visual system for recognition and interpretation. Although
there is no formal definition of texture, the patterns can be
the result of physical surface properties such as roughness,
smoothness, coarseness, and regularity, or oriented strands
which often have a tactile quality, or they can be the result of
reflectance differences such as the color on a surface.

In many machine vision and image processing algo-
rithms, simplifying assumptions are made from the uni-
formity of intensities in local image regions. However, real
objects do not often exhibit regions of uniform intensity.
For example, a wooden surface is not uniform but contains
variations of intensity which form certain repeated patterns
called texture patterns. This article proposes a method to
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segment objects, each with a similar texture pattern, from an
image.

Gray-level co-occurrence matrix (GLCM) texture mea-
surements19 have been the workhorse of image texturing.
GLCM is a tabulation writing down how often every
particular pair of gray levels in the pixel pairs, separated by a
certain distance along a certain direction, occurs in an image.
Various statistical and information theoretic properties of
the co-occurrence matrices can be extracted as textural
features (e.g., features such as homogeneity, coarseness,
or periodicity), as introduced by Haralick. The features
generated by this technique are usually called Haralick
features.

Tamura &Mori29 also proposed six texture features cor-
responding to human visual perception: coarseness, contrast,
directionality, line-likeness, regularity, and roughness. They
performed experiments to test the significance of the features
and found that the first three features were very important.
That is, they correlate strongly with the human perception.

Haralick features18 and Tamura features29 are invariable
or tolerant to the variation of optic parameters.5 Hence, the
segmentation method proposed in this article will use them
to describe the textures of an image. Many image segmenta-
tion methods27,33 detect edges by analyzing pixel gradients.
Most of them use traditional gradient operators, such as
Roberts, Sobel, and Prewitt Laplacian operators.2 However,
traditional gradient operators are known to be adversely
affected by noise; they are not suitable for computation
of the contour gradient of a object with complex texture
pattern. In this article, a texture-based gradient operator
is hence provided. We name the feature, computed by the
texture-based gradient operator, a gradient feature. Based on
Haralick features, Tamura features, and the gradient feature,
in this article, a feature-based segmentation (FBS) method is
presented to isolate objects that consist of similar complex
texture patterns. This article also uses the genetic-based
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parameter selector (GBPS)26 to decide the most suitable
values of the parameters used by the FBS method.

The dominant approach in the analysis of texture-based
object segmentation is to construct a description of the
local neighborhood around each pixel, and then to compare
this descriptor to the descriptors of nearby points. This
approach is referred to as ‘‘patch-based’’. However, the gray
values of two neighboring patches from the same texture
could be very different, and more elaborate descriptors are
required.31 In this article, GLCM texture measurements and
Tamura features are used to describe the textures of an image,
and then the texture-based object segmentation problem,
segmenting the objects that have similar texture patterns,
is therefore transformed into a contour-based segmentation
problem,23 segmenting the objects that have similar gray
levels.

RELATEDWORK
This section will briefly review some techniques that will be
used by the FBSmethod, and theCSGV (composite sub-band
gradient vector) based image segmentation method21, the
performance of which will be compared with the FBS
method.

CSGV-based image segmentation method
Huang and Dai21 proposed a texture descriptor, called the
composite sub-band gradient vector (CSGV) descriptor. The
CSGVdescriptor combines the techniques of wavelet decom-
position8,9 and gradient vector.11,14 The discrete wavelet
transform (DWT) uses a low-pass filter (L) and a high-pass
filter (H) to divide an image into four different frequency
bands; the lowest frequency band can be repeatedly split in
the same way at half the rate of the previous frequency. The
CSGV descriptor decomposes an image into four frequency
bands (LL, HL, LH, and HH) by one-level DWT and then
constructs the gradient vectors of the four frequency bands
as the feature vectors of the image. The gradient vectors of
the four frequency bands are named as SVG1, SVG2, SVG3,
and SVG4, respectively.

Huang and Dai21 also applied the CSGV descriptor to
extract objects from an image based on their textures; we
call it the CSGV-based image segmentation method. The
CSGV-based image segmentation method includes three
stages — split, merge, and boundary refinement.

Split stage: This stage is to divide an original image into
quadrants with homogeneous texture via DWT. For each
quadrant, if the Euclidean distance between the CSGVs of
any two subquadrants is less than a threshold, the quadrant
is regarded as a homogeneous quadrant; otherwise, the
quadrant is defined as non-homogeneous and the quadrant
will be repeatedly split into subquadrants until each quadrant
is homogeneous or consists of 16× 16 pixels.

Merge stage: If the Euclidean distance between two
neighboring quadrants is less than a threshold, both of them
will be combined into one.

Figure 1. An example of co-occurrence matrix.

Boundary refinement stage: This stage is to smooth the
boundaries of objects. Each pixel P in an edge block will be
re-classified into the neighboring block of the edge block that
has the minimum distance from the virtual block of which
the center is at P.

GLCM
For a given image I, a co-occurrence matrix C will be
generated. The element Cij of the ith row and the jth column
of C counts the number of times a pixel with gray level i
occurs at a position relative to another pixel with gray level j.
For example, if there are three distinct gray levels 0, 1, and 2
in the image I shown in Figure 1(a), and the specified relative
position is ‘‘lower right’’, the co-occurrence matrix C of I is
shown in Fig. 1(b).

C is generally normalized by the total number of pixels
so that each element in C is between 0 and 1; we name C
a gray-level co-occurrence matrix. Let K be the maximum
gray level in I and µ =

∑K
i
∑K

j Cij/K2 be the mean of
the elements in C. To analyze the gray-level co-occurrence
matrix C used to categorize the textures of an image,
some statistical parameters used as a set of descriptors are
computed as follows.7

(a) The energy
∑K

i
∑K

j C2
ij of C is a measure of textural

uniformity of an image. The energy reaches its highest
value when the gray-level distribution has either a con-
stant or a periodic form. A homogeneous image contains
very few dominant gray tone transitions; therefore the
matrix C for this image will have fewer entries of a larger
magnitude resulting in a greater value for the energy
feature.

(b) The entropy −
∑K

i
∑K

j Cij log Cij of C measures the
disorder of an image and it achieves its largest value when
all the elements in matrix C are equal. When the image
is not texturally uniform, many GLCM elements have
smaller values, which imply that the entropy is larger.
Therefore, the entropy is inversely proportional to the
GLCM energy.
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(c) The contrast
∑K

i
∑K

j (i − j)2Cij of C measures the local
variations of illumination in I. If the contrast values
differ a lot in a given window, there is a set of sudden
strong illumination changes in the local area and it always
corresponds to an edge.

(d) The inverse difference moment
∑K

i
∑K

j
1
|i−j|d

Cij, i 6= j of
I measures image homogeneity. This parameter achieves
its largest value when most of the occurrences in the
GLCM are concentrated near the main diagonal. The
inverse difference moment is inversely proportional to
the GLCM contrast.

(e) The mean 1
2

∑K
i
∑K

j (iCij + jCij) of C describes whether
I is dark or bright. Generally speaking, a larger mean
indicates that I is brighter while a smaller mean indicates
that I is darker.

(f) The variance 1
2

∑K
i
∑K

j ((i − µ)
2Cij + (j − µ)2Cij) of

C shows us the distribution of the elements in C. When
most elements in C are close, the variance is near to zero.

(g) The maximum probability Max{Cij} of C gives the
maximum occurrence of gray levels in I. It is expected to
be high if the occurrence of the most predominant pixel
pairs is high.

Tamura features
Tamura et al.29 proposed six features, coarseness, contrast,
directionality, line-likeness, regularity, and roughness, which
are often used to describe the texture of an image (or a
region).4,22 The experimental results show that the three
features coarseness, contrast, and directionality correlate
closely with human perception. The other three features are
highly correlated with the above three mentioned features
and do not add much to the effectiveness of the texture
description. The three Tamura features coarseness, contrast,
and directionality of an m× n image I are defined as follows.

(a) Contrast: In the narrow sense, contrast stands for picture
quality. Contrast can be influenced by the following four
factors:
• dynamic range of gray levels,
• polarization of the distribution of black and white on

the gray-level histogram,
• sharpness of edges,
• period of repeating patterns.

The contrast Tcon of I is Tcon =
σ
αz

4
, where

µ4 =
1

m×n

∑m
x=1
∑n

y=1(I(x, y) − µ)4, α4 =
µ4
σ 4 , σ is the

standard deviation of the gray level of the pixels in I, and
z is a constant experimentally determined to be 0.25.

(b) Coarseness: The coarseness gives information about the
size of the texture elements. The greater the coarseness
is, the rougher the texture. If there are two different
textures, one macrotexture of great coarseness and an-
other microtexture of low coarseness, the macrotexture
is considered. The essence of calculating the coarseness
value is to use operators of various sizes. At each pixel
I(x, y) located at the coordinates (x, y) on an image I, the
coarseness measure is calculated as follows.

(1) Compute six averages for the windows of size 2k
×2k,

k = 0, 1, . . . , 5, around the pixel:

Ak(x, y)=
x+2k−1

−1∑
i=x−2k−1

y+2k−1
−1∑

i=y−2k−1

I(i, j)

22k

 . (1)

(2) Take the differences between the pairs of averages
corresponding to non-overlapping neighborhoods
on opposite sides of the point in horizontal and
vertical orientations:

Eh
k (x, y)= |Ak(x+ 2k−1, y)− Ak(x− 2k−1, y)|

and

Ev
k(x, y)=|Ak(x, y+2k−1)−Ak(x, y− 2k−1)|. (2)

(3) Select the most suitable size which gives the highest
difference value:

s(x, y)= ARG
(

5
MAX

k=1
MIN
d=h,v

Ed
k (x, y)

)
. (3)

(4) Finally, take the average over 2S as the coarseness
measure Tcrs of I:

Tcrs =
1

m× n

m∑
x=1

n∑
y=1

2s(x,y). (4)

(c) Directionality: This feature measures the frequency
distribution of oriented local edges against their
directional angle gradient. Let W(x, y) with 3 × 3
pixels be the corresponding window of I(x, y).
The Sobel operator can be used to compute the
horizontal difference1Gx(x, y)= Gx⊕WS(x, y) and
vertical difference1Gy(x, y)= Gy⊕WS(x, y) of each
pixel I(x, y). The gradient g(x, y) and the gradient
direction θg(x, y) of I(x, y) can be computed as
follows:

g(x, y)= (1G2
x(x, y)+1G2

y(x, y))1/2

and

θg(x, y)=
π

2
+ tan−11Gy(x, y)

1Gx(x, y)
. (5)

Then, by quantizing θg and counting the pixels
with the corresponding gradient θg greater than a
predefined threshold, a histogram of θg, denoted
as Hdir, can be constructed. Hdir(θg) is relatively
uniform for images without strong orientation but
is peaky for highly directional images. Hence, the
degree of directionality relates to the sharpness of
peaks. The directionality Tdir is obtained as follows:

Tdir = 1− r × np

np∑
p

∑
θg∈wp

(θg − θp)
2Hdir(θg), (6)
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where np is the number of peaks, θp is the position of
the pth peak, wp is the range of the angles attributed
to the pth peak, and r is a normalizing factor related
to quantizing levels of θg.

Adaptable thresholding detector
The general principle of partition is that the data in an
identical group should be very similar, but those in distinct
groups should vary tremendously. Variance (or standard
deviation) is usually used to define the difference among
data in a group. Hence, Otsu’s method,25 Ng’s method,24

and the MCVT method20 all classify data according to the
within-class variances, which should be as small as possible.
Besides, through the number of data in each group, Otsu’s
and Ng’s methods integrate the variances of data in all the
divided groups into one variance to describe the discrepancy
of the data within a class. Otsu’s method applies the variance
of data and the number of data within a class to decide
the optimal threshold. Hou et al.20 found that the threshold
obtained by OTM tends to draw closer to the cluster with a
larger variance or a larger number of data. Hence, Tsai et al.30

proposed an adaptable threshold decision method (ATDM)
to remedy these drawbacks.

Let xmin and xmax be the minimal and maximal data in a
data set, which will be divided intoG groups according to the
distribution of the data values. In this case, G− 1 thresholds
t1, t2, . . . , tG−1 must be specified, so that all the data of the
gth group are in the interval between tg−1 and tg. Let xg,i be
the ith smallest data value in the gth group, and ng,i be the
number of data of which the values are equal to xg,i in the gth
group. Given any threshold T = (t1, t2, . . . , tG−1), the group
interval of the gth group, Rg(T), will be

Rg(T)=


t1 − xmin, if g= 1,

tg − tg−1, if 1< g< G, and
xmax − tG−1, if g= G.

(7)

The percentage Pg(T) of the data quantity in the gth group
to the entire data set is

Pg(T)=

∑Rg(T)
i=1 ng,i∑G

g=1
∑Rg(T)

i=1 ng,i

. (8)

The average data value Mg of the gth group is

Mg =

∑Rg(T)
i=1 ng,ixg,i∑Rg(T)

i=1 ng,i

. (9)

The standard deviation Stdg(T) of the data values in the gth
group is:

Stdg(T)=

√√√√√∑Rg(T)
i=1

∑ng,i
j=1(xg,j −Mg)2∑Rg(T)
i=1 ng,i

. (10)

ATDM will select the optimal threshold via Rg, Pg, and
Stdg by testing every possible threshold T , where Rg is the
difference of the maximal and minimal values in the gth
group. When given any threshold T = (t1, t2, . . . , tG−1),
ATDM computes the optimal thresholds T∗ by the following
formula:

T∗ = ARG

(
MIN

T

(
G∑

g=1

Pg(T)Stdg(T)r1

Rg(T)r2

))
. (11)

Here, r1 and r2 are two given constants describing the
relations among Rg, Pg, and Stdg. Setting different values to
r1 and r2 produces different thresholds, and it also produces
different segmentation results. Thus, it is essential to assign
the most suitable values to r1 and r2 for selection of the most
suitable thresholds.

To partition the same data set, different thresholds could
be used according to the requirement of applications. For a
special application, the images generally have similar prop-
erties (characteristics). Hence, one can take the accumulated
historic data of the application to train the parameters r1 and
r2 to be most appropriate for the threshold decision.

Segmentation errors
Misclassification error (MCE),28 relative foreground area
error (RAE),28 and relative distance error (RDE)32 are three
commonly used segmentation error measures. In this article,
these three measures MCE, RAE, and RDE will be adopted
to evaluate the performance of a segmentation method. For
a two-class segmentation problem, MCE can be described as

MCE= 1−
|BO ∩ BT | + |FO ∩ FT |

|BO| + |FO|
, (12)

where BO and FO are the background and foreground
pixels assigned by experts, respectively, BT and FT are the
background and foreground pixels in the segmented image,
respectively, and |A| represents the number of pixels in set A.
The definition of RAE is

RAE=


AR − AT

AR
, if AT < AR,

AT − AR

AT
, if AT ≥ AR,

(13)

where AR is the area of the ground-truth object and AT is the
area of the segmented object.

Let e1, e2, . . . , ene be the pixels on the extracted contour
E and t1, t2, . . . , tnt be the pixels on the target contour
(probably drawn by an expert) T , where ne and nt are the
numbers of pixels on E and on T , respectively. To check
whether the pixels on E are close to the pixels on T , for each
pixel, RE computes the distance dei :

dei =MIN{Distance(ei, tj)|j= 1, 2, . . . , nt}, (14)

where Distance(ei, tj) represents the Euclidean distance
between ei and tj. To detect some pixels on T without being

J. Imaging Sci. Technol. 010505-4 Jan.-Feb. 2013



Tsai et al.: Feature-based image segmentation

Figure 2. Four θL -partitions of W.

mapped to proper pixels onE,RE also calculates the distance
dtj :

dtj =MIN{Distance(ei, tj)|i= 1, 2, . . . , ne}. (15)

The relative difference error RDE is defined as follows:

RDE=

√∑ne
i=1 d2

ei
ne
+

√∑nt
i=1 d2

ti
nt

2
. (16)

FBSMETHOD
The FBS method contains three stages: feature extraction,
feature-based segmentation, and regionmerging. The feature
extraction stage is to extract image features, suppress noise,
and highlight the edges on an image for the following
segmentation and analysis. The feature-based segmentation
stage is to separate the regions on the image according to the
edges. Finally, the region merging stage is to merge adjacent
regions with similar texture features into one region.

Feature extraction stage
In this stage, the FBS method first extracts seven GLCM
features, three Tamura features, and a gradient feature on
each pixel of an image Io, and then selects three of these
features, which can definitely highlight the boundaries of
objects, to describe the textures of the objects on Io. Let
I0(i, j) be the intensity of the pixel located at the coordinates
(i, j) on I0, and we call WG a corresponding window of
I0(i, j), whereWG consists ofmG×mG pixels on I0 and I0(i, j)
is the central pixel of WG. WG can be regarded as an image.
The FBS method computes the co-occurrence matrix CM of
WG by the following program segment:

For i = 1 to mG
For j = 1 to mG
if j < mG then CM(MG (i , j ),MG (i , j + 1))++
if i < mG and j < mG then CM(MG (i , j ),MG (i + 1, j + 1))++
if i < mG then CM(MG (i , j ),MG (i + 1, j ))++
if i > 1 and j < mG then CM(MG (i , j ),MG (i − 1, j + 1))++

and then divides each element in CM by (4 × mG × mG −

6 × mG − 2) to constrain the element to be in the interval
[0, 1]. From CM, the FBS method can compute the features
of the energy, entropy, contrast, inverse difference moment,

mean, variance, and maximum probability of the GLCM for
I0(i, j).

Similarly, let WT , consisting of mT × mT pixels, be
another corresponding window of I0(i, j). WT is considered
to be an image too. Then, the FBS method computes the
contrast, coarseness, and directionality of Tamura for I0(i, j)
from WT .

The gradient magnitude of a pixel can describe the
strength of an edge at the pixel. Therefore, the FBS method
also computes the gradients of all the pixels in I0. Since in
a texture-based segmentation system the object surface is
rugged, the traditional gradient operators, such as Sobel12,13

and Laplacian gradient operators,2 are not suitable for com-
putation of the contour gradients of objects with complex
texture patterns. This article hence proposes a texture-based
gradient operator to compute the gradient feature of a pixel.
The gradient feature can not only enrich the object contour
but also suppress the noise contour.

The FBS method considers that the direction of an edge
at one pixel is close to one of 0◦, 45◦, 90◦, and 135◦. Let Wg
be a corresponding window of Io(i, j), where Wg consists of
mg×mg pixels. To estimate the direction of the edge at I0(i, j),
Wg is divided into two equal regions according to the four
different directions 0◦, 45◦, 90◦, and 135◦. Figure 2 shows the
four different partitions with mg = 7. The black and white
dots signify two different regions, the black region and the
white region. We call the partitions in Fig. 2 θ-partitions for
θ = 0◦, 45◦, 90◦, and 135◦, respectively. For each θ-partition,
the average gray levels cb and cw of the pixels on black and
white regions and dθ = |cb−cw| are calculated. The gradient
feature of Io(i, j) is defined as MAXθ=0◦,45◦,90◦,135◦(dθ ).

The FBS method extracts seven GLCM features, three
Tamura features, and a gradient feature for each pixel on Io.
Hence, each pixel possesses 11 feature values. The method
transforms the ith feature value of each pixel in Io into
(

f−fm
fM−fm

) × 255, where f is the ith feature value of the pixel,
and fm and fM are the minimum and maximum of the ith
feature in Io. Then, the ith new feature values of all the pixels
can comprise a gray-level image Ii for i = 1 to 11, where
Ii and Io have the same image size. Figure 3 shows the 11
images I1 to I11 of one example image Io.We call these images
the feature images of I0. The experimental results show that
for most images the features inverse difference moment of
the GLCM, contrast of Tamura, and gradient can highlight
the object boundary, so this method will take these three
features to describe the textures of an image. Let Ii, Ic, and
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Figure 3. An example after feature extraction.

Ig be three feature images respectively describing the inverse
difference moment of the GLCM, the contrast of Tamura,
and the gradient of I0.

Since the gray levels of the pixels in an object on Ii, Ic,
and Ig are in disarray, a mean filter12,13 is used to remove
noise on objects. Themean filter is simple, intuitive, and easy
to implement to reduce the amount of intensity variation
between one pixel and its neighbors, and to reduce noise in
an image. The idea of a mean filter is simply to replace the
gray level of each pixel I(x, y) in an image I with the mean of
the pixel gray levels of the corresponding window of I(x, y).
A 3 × 3 square kernel is used in the mean filter. After being
processed by the mean filter, Ii, Ic, and Ig are transformed
into another three images I′i , I′c, and I′g.

To highlight the boundaries of objects, the FBS method
takes the texture-based gradient operator to compute the
gradient features of the pixels in I′i and I′c. After that, I′i and
I′c are changed into I′ig and I′cg. Figure 4 demonstrates the I′ig,
I′cg, and I′g of the images in Fig. 3(e), (j), and (l).

Feature-based segmentation stage
I′ig, I′cg, and I′g describes the gradient intensities of the pixels
on I0. This stage is to identify the boundaries of the objects
on I0 through I′ig, I′cg, and I′g. This stage contains five
approaches: feature combination, run-length enhancement,

Figure 4. I ′ig, I
′
cg, and I ′g of the images in Fig. 3(e), (j), and (l).

adaptable threshold detection, boundary repair, and region
detection. The feature combination approach is to integrate
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I′ig, I′cg, and I′g into one image via a geometric mean
operation. The run-length enhancement approach is not
only to strengthen the boundaries but also to connect the
disconnected boundaries of objects. The adaptable threshold
detection approach is to isolate the objects from the image
background via the ATDM.30 The boundary repair approach
is to mend the broken boundaries of objects. The region
detection approach is to thin out the boundaries of objects
to the thickness of one pixel.

In the feature extraction stage, three features, inverse
difference moment of GLCM, contrast of Tamura, and
gradient, are picked out to portray the textures of I0, which
are respectively characterized by Ii, Ic, and Ig. I′ig, I′cg, and I′g
depict the intensities of the pixels located at the boundaries of
objects. The feature combination approach integrates them
into one image IG by using the geometric mean:

IG(x, y)= 4
√

I′ig(x, y)I′cg(x, y)(I′g(x, y))2. (17)

Figure 5(a) shows the IG obtained by combining I′ig, I′cg,
and I′g in Fig. 4.

There may be some noise with high gradient intensity
or some disconnected object contours on IG, such as the
gradient indicated by the red arrows in Fig. 5(a). To enhance
the object contours and suppress the gradient of noise,
run-length enhancement is used. In microscopic vision, one
can imagine that an object contour is connected with a lot of
tiny straight line segments. In the run-length enhancement,
the direction of one line segment is considered to be one
of 0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, and 157.5◦.
Let Wr(x, y) be a corresponding window of IG(x, y), where
IG(x, y) is the central pixel of Wr(x, y) consisting of mr ×mr
pixels. Let Lθ be a line segment that cuts across Wr as well
as passing through IG(x, y), and rθ be the mean of the gray
levels of the pixels that are inside Wr and located on Lθ . The
run-length R(x, y) of IG(x, y) is

R(x, y)= MAX
θ=0◦,22.5◦,45◦,67.5◦,90◦,112.5◦,135◦,157.5◦

(rθ ).

(18)

Then, it computes Ir(x, y) = R(x,y)−minr
maxr−minr

× 255, where minr
and maxr are the maximal andminimal values of all R(x, y)s.
Hence, after running the run-length enhancement, IG is
changed into Ir. Fig. 5(b) is the Ir of IG in Fig. 5(a).

In order to thin down the object contours, the texture-
based gradient operator is used to compute the gradient
features of the pixels in Ir. Let Irg(x, y) be the gradient feature
of the pixel Ir(x, y). Then, the FBSmethod subtracts Irg from
Ir to generate a new image Is as follows:

Is(x, y)=

{
0, if Ir(x, y) < Irg(x, y),

Ir(x, y)− Irg(x, y), otherwise.
(19)

Fig. 5(c) and (d) display the Irg and Is of Ir in Fig. 5(b).
Next, the adaptable threshold detection approach

adopts the ATDM30 to isolate the candidate object contour

Figure 5. An example through the feature-based segmentation stage.

pixels from Is. In this approach, two thresholds Ths and Thg

are given by the ATDM via Is and I′g respectively. After this
approach, Is is transformed into a binary image Isb, and I′g
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Figure 6. The eight structuring elements for thinning.

into another binary image Igb, by the following formula:

Isb(x, y)= 1 if Is(x, y)≥ Ths; otherwise, Isb(x, y)= 0, and
Igb(x, y)= 1 if I′g(x, y)≥ Thg; otherwise, Igb(x, y)= 0.

Fig. 5(e) and (f) demonstrate Isb and Igb, where the pixels
with value 1 are white and the pixels with value 0 are black.
The white pixels stand for the possible object contour pixels.

Then, the binary morphological erosion operator�22 is
used to erode Igb and generate a binary image Iero based on a
structuring element B:

Iero = Igb � B= {Igb(x, y)|Bxy ⊆ Igb}, (20)

where B consists of mB × mB pixels and each pixel in B is 1.
Fig. 5(g) is the Iero of Igb in Fig. 5(f) with mB = 15.

The boundary repair approach then combines Isb and
Iero into one binary image Ib as follows:

Ib(x, y)= Isb(x, y) ∨ Iero(x, y), (21)

where ∨ is the OR logic operator. Fig. 5(h) is the Ib after
combining Isb and Igb in Fig. 5(e) and (g), where the red
arrow indicates that Ib provides better object contours than
Isb and Igb.

Afterward, the region detection approach takes the
HMTS algorithm12,13 to thin down the edges to the thickness
of one pixel. Let each pixel Ib(x, y) in Ib correspond to a
3 × 3 window Wt(x, y), where Ib(x, y) is the central pixel of
Wt(x, y). The HMTS algorithm compares Wt(x, y) with each
of the eight structuring elements shown in Figure 6, where
the gray pixels stand for the don’t-care pixels (a don’t-care
pixel may be a 1-bit pixel or a 0-bit pixel). We say that
Wt(x, y) is matched if Wt(x, y) is completely the same as one
of the eight structuring elements, regardless of the don’t-care
pixels. When Wt(x, y) is matched, the Ib(x, y) is changed
into 0. The HMTS algorithm is performed to cut off the
redundant-edge pixels, so that the edges have a thickness of
only one pixel. The algorithm repeats this procedure until no
more thinning is required. Fig. 5(i) displays the result after
running the thinning operation on Fig. 5(h).

Since an object contour may be disconnected in It, in
this approach the FBS method then connects the two closest
line end points by a straight line if the distance between the
two line end points is less than e pixels. Finally, the spur
trimming algorithm12,13 is employed to remove the spurs.
The procedure of the spur trimming algorithm is exactly the
same as that of the HMTS algorithm except for the eight

Figure 7. The eight structuring elements for trimming spurs.

structuring elements in Fig. 6, which are replaced by the
eight structuring elements in Figure 7. Let Itr be the binary
contour image that has been processed by the spur trimming
algorithm on It. Fig. 5(j) is the Itr of It in Fig. 5(i).

Region merging stage. After running the feature-based seg-
mentation stage, I0 is divided into many regions indicated by
Itr. The region merging stage will fuse adjacent regions with
similar texture patterns into one. This stage contains three
approaches: small region merging, similar region merging,
and contour smoothing. In the small region merging
approach, a small region will be merged with the region
that is most similar to and neighbors the small region. In
the similar region merging approach, two adjacent regions
with similar textures will be integrated into one region.
The contour smoothing approach is to smooth the object
contour.

Let Rs and R be the regions in I0 where R adjoins Rs and
the number of pixels in Rs is less than a given threshold ThA.
The difference Diff of Rs and R is defined as

Diff =
√
(σRs − σR)2 + (µRs − µR)2, (22)

where σRs and σR are the standard deviations of the pixel
gray levels in Rs and in R; µRs and µR are the averages of
the pixel gray levels in Rs and in R. The small region merging
approachwill joinRs toR ifDiff is smaller than the difference
between Rs and each other region adjoining Rs. Let Ibm be
the binary image after running the small region merging
approach on Itr. Figure 8(a) displays the Ibm after merging
the small regions on Itr in Fig. 5(j) with ThA = 300.

Next, the similar region merging approach is repeated
to combine each two adjacent regions if both regions
have similar textures until the difference between each two
adjacent regions in I0 is greater than a given threshold Thd.
Let IbM be the binary image obtained by running the similar
region merging approach on Ibm. Fig. 8(b) demonstrates the
IbM of Ibm in Fig. 8(a) with Thd = 900.

The object contour on IbM is often rugged. The contour
smoothing approach is to smooth the object contours. Let
(xi, yi) be the coordinates of the ith pixel located on the
contour of one object on IbM . The object contour can be
smoothed by replacing the coordinates (xi, yi) with (x′i, y′i),
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Figure 8. An example through the region merging stage.

where

x′i =



∑i+k
j=i−k xj

K
, if (i− k)≥ 1 and (i+ k)≤ n,∑n−i

j=i−k xj

K
, if (i+ k) > n,∑i+k

j=1 xj

K
, if (i− k) < 1,

(23)

y′i =



∑i+k
j=i−k yj

K
, if (i− k)≥ 1 and (i+ k)≤ n,∑n−i

j=i−k yj

K
, if (i+ k) > n, and∑i+k

j=1 yj

K
, if (i− k) < 1,

for K =


2k + 1, if (i− k)≥1 and (i+ k)≤ n,

k + 1+ (n− i), if (i+ k) > n, and
k + 1+ (i− 1), if (i− k) < 1.

Here, n is the number of pixels on this contour. Let Iobj
be the image generated by smoothing IbM . Iobj indicates the
obtained object contours on I0. Fig. 8(c) demonstrates the
Iobj obtained by smoothing IbM in Fig. 8(b); Iobj points out
the contours of the objects on I0 in Fig. 3(a), where k = 4.

GENETIC ALGORITHM
Table I shows the parameters that will significantly affect
the performance of the FBS method. In this article, a
genetic-based parameter selector (GBPS)26 is employed to

determine the most suitable values of mG, mT , mg, mr, r1,
r2, mB, ThA, Thd, and k. The GBPS concatenates ten binary
substrings sG, sT , sg, sr, s1, s2, sB, sA, sd, and sk, respectively
comprised of nG, nT , ng, nr, n1, n2, nB, nA, nd, and nk binary
bits, to represent a chromosome Ch. mG, mT , mg, mr, r1, r2,
mB,ThA,Thd, and k can be encoded asmG = 2×n′G+1,mT =

2 × n′T + 1,mg = 2 × n′g + 1,mr = 2 × n′r + 1, r1 =

0.1 × n′1 + 0.1, r2 = 0.1 × n′2 + 0.1,mB = 2 × n′B + 1,
ThA = 20 × n′A, Thd = 30 × n′d, and k = n′k + 1, where n′G,
n′T , n′g, n′r, n′1, n′2, n′B, n′A, n′d, and n′k are the numbers of 1-bits
in sG, sT , sg, sr, s1, s2, sB, sA, sd, and sk, respectively.

The GBPS uses the accumulated historic data to decide
the most appropriate values of mG, mT , mg, mr, r1, r2, mB,
ThA, Thd, and k via a genetic algorithm. When given a
Ch, a set of mG, mT , mg, mr, r1, r2, mB, ThA, Thd, and k
can be calculated; then the FBS method can be adopted to
segment objects based on themG,mT ,mg,mr, r1, r2,mB, ThA,
Thd, and k via the accumulated historic data. After that, the
segmentation error MCE, RAE, or RDE can be computed by
comparing the object contours obtained by the FBS method
with the ground truth drawn by certain experts. The GBPS
then uses the obtained segmentation error to measure the
fitness of Ch.

Initially, the GBPS creates N chromosomes at random,
each chromosome comprising of nG+nT+ng+nr+n1+n2+

nB+nA+nd+nk binary bits. To develop the best solution, the
genetic algorithm repeatedly executes the three operations
mutation, crossover, and selection, until the fitnesses of the
reserved chromosomes are similar to one another.

In the mutation operation, for each of the N reserved
chromosomes, the GBPS uses a random number generator
to specify one bit b for each of sG, sT , sg, sr, s1, s2, sB, sA, sd,
and sk. After that, b is replaced by ¬b to generate a new
chromosome, where ¬ stands for the operation ‘‘NOT’’.

In the crossover operation, similarly, a random number
generator is used to designate N′ pairs of chromosomes
from the N reserved chromosomes. Let Ch[i..j] be the
substring consisting of the ith to jth bits in Ch, Set =
{0, nG, nT , ng, nr, n1, n2, nB, nA, nd, nk} be an ordered set,
and ei be the ith element in Set. For each chromosome pair
(Ch1,Ch2), the genetic algorithm concatenates

10⊗
i=1

(
Ch1

[(
1+

i−1∑
j=0

ej

)
..

(
i−1∑
j=0

ej +

⌊ei

2

⌋)]

⊗ Ch2

[(
i−1∑
j=0

ej +

⌊ei

2

⌋
+ 1

)
..

i∑
j=0

ej

])

into a new chromosome, and concatenates

10⊗
i=1

(
Ch2

[(
1+

i−1∑
j=0

ej

)
..

(
i−1∑
j=0

ej +

⌊ei

2

⌋)]

⊗ Ch1

[(
i−1∑
j=0

ej +

⌊ei

2

⌋
+ 1

)
..

i∑
j=0

ej

])
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Table I. The parameters used in the FBS method.

Parameter Role Affected

mG Window size used in GLCM The size of the texture pattern and image resolution
mT Window size used in Tamura The size of the texture pattern and image resolution
mg Window size for computation of the gradient feature The size of the texture pattern and image resolution
mr Window size used in run-length enhancement The size of the texture pattern and image resolution
r1, r2 Two given constants for describing the relations among Rg , Pg , and Stdg in the ATDM The shape of the histogram distribution of the image
mB Window size of the structured element used in the morphological erosion operator The resolution of the image
ThA The maximal area of noise The size of the object
Thd The minimal area of an object The size of the object
K The range for smoothing the obtained contour Texture pattern

into another new chromosome, where ⊗ represents the
concatenation operation.

In the selection operation, according to the fitness, N
optimal chromosomes are selected from theN chromosomes
reserved in the previous iteration, the N chromosomes cre-
ated in themutation operation, and the 2×N′ chromosomes
created in the crossover operation. The three operations
mutation, crossover and selection need to be continuously
operated until the fitnesses of the reserved N chromosomes
are close to one another or the number of iterations equals
the given maximal number of generations.

EXPERIMENTS
The purpose of this subsection is to investigate the perfor-
mance of the FBS method by using experiments. In the first
experiment, four synthesized images (SI1, SI2, SI3, and SI4
of 512 × 512 pixels) and two natural scene images (NSI1 of
512×512 pixels andNSI2 of 1024×1024 pixels) downloaded
from1 are used as the test images.

First, images SI1 and NSI1 are randomly selected to
train the best parameters mG = 9, mT = 11, mg = 7, mr =

13, r1, r2, mB = 15, ThA = 300, Thd = 900, and k = 4 via
the GBPS, where N = 10, N′ = 10, |mG| = 20, |mT | = 20,
|mg| = 20, |mr| = 20, |r1| = 40, |r2| = 40, |mB| = 20,
|ThA| = 50, |Thd| = 50, and |k| = 20. The GBPS uses the
RDE as the measure of fitness of Ch based on the mG,mT ,
mg,mr, r1, r2, mB, ThA, Thd, and k encoded by Ch. Then, the
FBS method separates objects from the six test images based
on mG = 9, mT = 11, mg = 7, mr = 13, r1, r2, mB = 15,
ThA = 300, Thd = 900, and k = 4. Figure 9 shows the six
test images and the segmentation results obtained by the FBS
method and the CSGV-based image segmentation method,
and Table II demonstrates the obtained segmentation errors,
based on mG = 9, mT = 3, mr = 15, r1 = 4.5, r2 = 4.5,
mB = 15, and k = 4.

The experimental results illustrate that the FBS method
can givemore precise and smoother object contours than the
CSGV-based image segmentation method. From the images
in Fig. 9, one can clearly observe that the FBS method
provides lower over-segmentation than the CSGV-based
image segmentation method.

Table II. The segmentation errors of the first experiment.

Image Method MCE RAE RDE

SI1 FBS 0.0125 0.0125 1.6541
CSGV 0.0211 0.0186 2.9775

SI2 FBS 0.0162 0. 0156 1.6734
CSGV 0.0224 0.0152 2.0976

SI3 FBS 0.0197 0.0096 1.5381
CSGV 0.0295 0.0091 2.2813

SI4 FBS 0.0215 0.0150 2.3030
CSGV 0.0247 0.0129 2.4417

NSI1 FBS 0.0185 0.0075 2.6024
CSGV 0.3035 0.3060 10.6226

NSI2 FBS 0.0556 0.0523 27.5204
CSGV 0.2712 0.2685 36.0494

In experiment 2, the FBS method is tested on natural
texture mosaics from Prague. Here, 20 benchmark images,
downloaded from the Texture Mosaics Database (http://
mosaic.utia.cas.cz),17 are used as test images. First, two of
the 20 test images are randomly selected to train the best
parameters mG = 19, mT = 3, mg = 7, mr = 15, r1 = 2.0,
r2 = 0.9, mB = 15, ThA = 280, Thd = 260, and k = 4 via the
GBPS, whereN = 10,N′ = 10, |mG| = 20, |mT | = 20, |mg| =

20, |mr| = 20, |r1| = 40, |r2| = 40, |mB| = 20, |ThA| = 50,
|Thd| = 50, and |k| = 20.TheGBPS similarly uses the RDE as
themeasure of fitness ofCh based on themG,mT ,mg,mr, r1,
r2,mB,ThA,Thd, and k encoded byCh. Then, the FBSmethod
separates objects from the 20 test images based on mG = 19,
mT = 3, mg = 7, mr = 15, r1 = 2.0, r2 = 0.9, mB = 15,
ThA = 280, Thd = 260, and k = 4.

In this experiment, five segmentationalgorithms,AR3D-
GM,16 GMRF-GM,15 JSEG,10 Blobworld,3 and EDISON,6

are also used to extract objects from the 20 test images. The
region-based performance criteria19 are used to evaluate the
segmentation results as well. The region-based performance
criteria mutually compare ground truth (GT) image regions
with the corresponding machine segmented regions (MS).
They are the correct, over-segmentation, under-segmentation,
missed, and noise criteria.Correct represents that over 70%of
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Figure 9. The segmentation results obtained by the FBS method and the CSGV-based image segmentation method.

GT (ground truth) region pixels are correctly assigned,
over-segmentation means that over 70% of GT pixels are
assigned to a union of regions, under-segmentation means
that over 70% of GT pixels from a classified region belong
to a union of GT regions, missed means GT in none of the
previous categories, and noise means MS in none of the
previous categories.

Table III demonstrates the segmentation measures
CS (correct segmentation), OS (over-segmentation), US
(under-segmentation),ME (missed error), andNE (noise er-
ror)17 obtained by the FBSmethod, AR3D-GM, GMRF-GM,
JSEG, Blobworld, and EDISON in extracting objects from
the test images. The experimental results show that the FBS
method is much better than the other methods in severing
the objects from the test images.

CONCLUSIONS
This article proposes the FBS method, which can effectively
isolate objects with similar texture patterns from a gray-level
image. The FBS method takes three features — inverse
difference moment of GLCM, contrast of Tamura, and
gradient — to describe the textures of an image, and
integrates the three features into one by a geometric mean.
In addition, a texture-based gradient operation is presented

Table III. The results of the second experiment.

FBS AR3D-GM GMRF-GM JSEG Blobworld EDISON

CS 62.80 37.42 31.93 27.47 21.01 12.68
OS 21.05 59.53 53.27 38.62 7.33 86.91
US 3.95 8.86 11.24 5.04 9.30 0.00
ME 1.90 12.55 14.97 35.00 59.55 2.48
NE 6.35 13.14 16.91 35.50 61.68 4.68

to compute the pixel gradients where an object consists of
similar texture patterns; run-length enhancement is offered
to strengthen the boundaries of objects and suppress the
boundary of noise; GDW enhancement is provided to
suppress the gradient of the noise contour but highlight
the gradient of the object contour. Moreover, the GBPS is
employed to obtain the optimal parameters used in the FBS
method to cut off objects with similar texture patterns from
various images. The experimental results show that the FBS
method is superior to many leading segmentation methods
that have been developed to extract objects with similar
texture patterns.
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