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Abstract. Color image difference metrics have been proposed to find
differences between an original image and a reproduction. One of
these metrics is the hue angle algorithm proposed by Hong and Luo in
2002. This metric does not take into account the spatial properties of
the human visual system, and it could therefore miscalculate the dif-
ferences between the original and the reproduction. In this article we
propose a new color image difference metric based on the hue angle
algorithm that takes into account the spatial properties of the human
visual system. The proposed metric, the Spatial Hue Angle Metric, has
been subjected to extensive testing. The results show improvement
in performance compared to the original metric proposed by Hong
and Luo, and improvement over or similar performance to traditional
metrics, such as the Structural Similarity Metric and Spatial-CIELAB.
©2012 Society for Imaging Science and Technology.

[DOI: 10.2352/J.ImagingSci.Technol.12.56.5.050501]

INTRODUCTION

Digital image processing systems are meant to create repro-
ductions of visual information for observers. It is a wish
that the image quality is not influenced by the processing,
such as image compression, by the system. However, systems
often have restrictions that influence image quality, creating
atrade-off between the resources available and the perceptual
quality. In these cases it is important to determine the
quality loss of the system in order to produce high-quality
reproductions.

There are basically two ways to judge image quality:
subjectively or objectively. Subjective evaluation is carried
out by observers, and is therefore influenced by the human
visual system (HVS). Objective evaluation of image quality
can be carried out using measurement devices gathering
numerical values or using algorithms, commonly known
as image quality metrics. Image quality metrics are usually
developed to take into account properties of the HVS,
thus with the goal of being well correlated with subjective
evaluations.

Determining image quality is very complex and difficult
since it is influenced by numerous criteria and the subjec-
tivity of human observers. In order for observers to judge
image quality, they must be able to perceive the differences
between the images.! The perceived differences are used to
determine the quality of the image. Being able to determine
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the differences between an original and a reproduction is
considered to be easier than estimating the quality, and is a
very important for obtaining an objective metric for image
quality.

During the last two decades many different color image
difference metrics have been proposed,”™* some for overall
image difference and some for specific distortions. New and
improved metrics are created every year, but so far no one has
been able to create a universal color image difference metric.
Most of the existing image difference metrics follow a similar
framework, in which the images are filtered to simulate the
HVS, before a calculation of the difference between them is
carried out.

In this article we propose a new color image difference
metric for perceptual image difference that takes into
account the HVS. The proposed metric can be considered as
a step towards predicting perceived image quality. The new
metric is an extension of preliminary results.>®

We start by giving a brief introduction to color
difference formulas and image difference metrics, before
we introduce the new image difference metric. Then the
experimental evaluation of the proposed metric is presented
together with a discussion of the results. Finally, we conclude
and propose further research.

STATE OF THE ART
The CIE published the CIELAB (L*a*b*) color space speci-
fication,” based on the idea of a perceptually uniform color
space. By using the Euclidean distance it is straightforward to
calculate the distance between two colors in this color space.
Given a sample color with CIELAB values L}, a}, and b} and

a reference color L, a}, and b}, the distance between them
are calculated as follows:

AES, =V(AL)? + (Aa")? + (Ab")2, (1)

where AL* = LY — LY, Aa* = a} — a}, and Ab* = b} — b}.

The most common way of using AE?, as an image
difference metric is by calculating the color difference in
each pixel, and then to pool these to one value by taking the
average:

Zm:l er:l AE*b
ag, = =t 2t B, o
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Figure 1. Flowchart of S-CIELAB. First, the image is converted fo an
opponent representation, where the spatial filters are applied to simulate
the HVS. The fillered images are fransformed in the CIEXYZ color space,
and further to the CIELAB color space, where the CIELAB color difference

formula is applied to get an S-CIELAB representation. Figure reproduced
from Ref.16.

where m is the width of the image and n is the height
of the image. Other commonly used pooling methods are
maximum, median, or minimum.?

When it was discovered that the CIELAB AE?, did not
correlate well enough with the perceptual color difference,
the CIE proposed an extension, the AEg,.? Later, it was
discovered that the AFEg4 suffered from similar problems
as the AE?,, and a new color difference formula, the CIE
AEy,'%!! was proposed. In addition to these, many other
formulas exist, such as the AEg,'2 CMC,!? and BFD.14

Color difference formulas have commonly been used
in image difference metrics. S-CIELAB from'® is perhaps
the best-known example: in it, a spatial pre-processing
of the image, to simulate the HVS, is carried out before
the difference is calculated by using the CIELAB color
difference formula. The images are first separated into an
opponent-color space, and each opponent-color image is
convolved with a kernel determined by the visual spatial
sensitivity of that color dimension. Finally, the filtered
images are transformed into CIEXYZ, and further into
CIELAB, where the pixelwise AEZb is calculated. A flowchart
of S-CIELAB is shown in Figure 1.

Some years later, Johnson and Fairchild!” proposed an
extension of S-CIELAB, in which the spatial filtering was
refined by using the frequency domain rather than the spatial
domain and the filters were modified to enhance the image
differences where the human visual system is most sensitive
to them. Johnson and Fairchild!” also proposed to account
for localized attention and local and global contrast.

Another image difference metric is the hue angle
algorithm proposed by Hong and Luo,'®! which also is
based on the CIELAB color difference. This metric corrects
some of the drawbacks with the CIELAB color difference
formula, for example that all pixels are weighted equally.
The metrics shows good results for two different images.'1
Nevertheless, it does not include spatial filtering of the
image and is therefore unsuitable to evaluate for instance
halftoned images, where the viewing distance is crucial for
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the visual impression of quality. The hue angle algorithm
has been shown to have problems in calculating perceived
image difference.’~2? Due to this we propose a new image
difference metric based on the hue angle algorithm with
spatial filtering simulating the human visual system, called
the Spatial Hue Angle MEtric (SHAME).

For a complete review of image difference metrics we
refer the reader to Pedersen and Hardeberg.?>

THE PROPOSED METRIC

The new color image difference metric is based on the hue
angle algorithm and the S-CIELAB workflow, in which a
spatial filtering is applied before calculating the difference.
We will first give an overview of the hue angle algorithm, and
then describe two spatial filtering methods that are used.

The hue angle algorithm
Hong and Luo'®!? proposed a full-reference color image
difference metric based on the CIELAB color difference
formula.” This metric is based on the known fact that
systematic errors over the entire image are quite noticeable
and unacceptable. The metric is based on some conjec-
tures, summarized from Hong and Luo.'®!° These are the

following.

e Pixels or areas of high significance can be identified, and
suitable weights can be assigned to these.

e Pixels in larger areas of the same color should be given a
higher weight than those in smaller areas.

e Larger color differences between the pixels should get
higher weights.

e Hue is an important color perception for discriminating
colors within the context.

The first step is to transfer each pixel in the image from
L*,a*,b* to L*, C},, hap. Based on the hue angles (h4p) of the
original a histogram is computed, and sorted in ascending
order based on the number of pixels with same hue angle to
an array k. Then weights can be applied to four different parts
(quartiles) of the histogram, and by doing this Hong and Luo
corrected the drawback that the CIELAB formula weights
the whole image equally. The first quartile, containing n hue
angles, is weighted with 1/4 (that is, the smallest areas with
the same hue angle) and saved to a new array hist. The second
quartile, with m hue angles, is weighted with 1/2. The third
quartile, containing / hue angles, is given 1 as a weight, and
the last quartile with the remaining hue angles is weighted
with 9/4. These weights were empirically derived by Hong
and Luo. The array hist is then computed as

kG)* 1/4, i€{0,... n)
k12, et ntm)
Mt =N et ietndmtte.ntmin’

k(i) *9/4, otherwise.

The average color difference, computed using AE?,, is
calculated for all pixels having the same hue angle and stored
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in CD[hue]. Then the overall color difference for the image,
CDjmage> is calculated by multiplying the weights based on
the quartiles for every pixel with the average CIELAB color
difference for the hue angle:

CDimage = Z hist[hue] * CD[hz,{e]z/47 (4)
where the sum is over all hue angles.

Spatial filtering

We propose two different spatial filtering methods for the
new metric, and evaluate these as a pre-processing step before
applying the hue angle algorithm. The first spatial filtering
is adopted from S-CIELAB.!> The advantage of using this
spatial filtering is that it has been extensively used and
evaluated,”29735 and it has been shown to produce good
results for a wide variety of distortions.

First, the input image goes through color space trans-
formations. The RGB image is transformed into the CIEXYZ
color space, before it is further transformed into the
opponent-color space (01, O, and O3):

01 = 0.279X + 0.72Y — 0.107Z (5)
0, = —0.449X + 0.29Y — 0.077Z (6)
03 = 0.086X — 0.59Y + 0.501Z. (7)

Now, the image contains a channel with the luminance
information (O ), one with the red—green information (0»),
and one with blue—yellow information (O3). The next step
consists of applying the spatial filters, where the information
in each channel is filtered by a two-dimensional separable
spatial kernel:

f=k Z wiE;, (8)
i
where
E; = ke~ /071, (9)

and k; normalize E; such that the filter sums to 1. The
parameters w; and o; are dependent on the color planes, and
are defined in Table I. k is a scale factor, which normalizes
each color plane so its two-dimensional kernel f sums to 1.

The second spatial filtering proposed is adopted from
Johnson and Fairchild.!” By specifying and implementing
the spatial filters using contrast sensitivity functions (CSFs)
in the frequency domain rather than in the spatial domain
as the first spatial filtering, more precise control of the
filters is obtained,!” but usually at the cost of computational
complexity. The luminance filter is based on research
by Movshon and Kiorpes,®® and it is a three-parameter
exponential function:

CSFum(@) =a-p°-e b7, (10)

where a =75, b =0.22, ¢ = 0.78, and p is cycles per degree
(CPD).
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Table I.  The parameters used for the spatial filtering, where w; is the weight of the
plane and o is the spread in degrees of visual angle as described by

Zhang and Wandell.'>

Plane Weight w; Spread o;
Luminance 0.921 0.0283
0.105 0.133
—0.108 4.336
Red—green 0.531 0.0392
0.330 0.494
Blue—yellow 0.488 0.0536
0.371 0.386
Luminance CSFs

2.0 T T

relative sensitivity
5

o
0
T —

0.0

cycles per degree

Figure 2. Luminance CSF from Eq. (10) with (solid) and without (dotted)
the normalization. Figure reproduced from Johnson and Fairchild. 17

The luminance CSF is normalized so that the DC
modulation is set to 1.0. This will also enhance any image
differences where the human visual system is most sensitive
to them.!” Figure 2 shows the luminance CSF from Eq. (10)
with and without the normalization, showing that our HVS
is more sensitive to low—medium spatial frequencies. For the
chrominance CSF a sum of two Gaussian functions is used:

CSFchroma(p) = ay - e 1P +ap- e b2r? s (11)

where different parameters for ay, az, b1, b2, 1, and ¢; have
been used, as seen in Table I1. Research indicates that metrics
using the modified filters from Johnson and Fairchild'” show
increased correlation with human observers.>>17>37

Applying spatial filtering to the hue angle algorithin

The images are spatially filtered with one of the previously
introduced methods. This is done by applying color trans-
formations from the RGB space to the CIEXYZ color space,
and further into the opponent-color space (O, Oz, and
03) where the filters are applied. This is carried out for
both the original and the reproduction, which results in
filtered versions of both. The filtered original and filtered
reproduction are used as input to the hue angle algorithm,
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Figure 3. Workflow of the proposed metric.

Table II.  The parameters used for the spatial filtering of the chrominance channels in
the frequency domain.

Parameter Red—green Blue—yellow
0 109.141,30 7.032,845
b —0.000,38 0,000,004
q 3.424,36 4.258,205
ay 93.597,11 40.690,950
by —0.003,67 —0.103,909
0 2167, 1.648,658

as shown in Figure 3. This new metric can be considered as
an extension of the S-CIELAB flowchart on Fig. 1.

The hue angle algorithm, filtered with the first filter and
the second filter, is from now on referred to as SHAME and
SHAME-II, respectively. The new metric will theoretically
have several key features from both the S-CIELAB and the
hue angle measure.

e Weight allocation: pixels in larger areas of the same color
should be weighted higher.

e Simulation of the spatial properties of the human visual
system.

e Undetectable distortions are ignored.

e Suitable for different kind of distortions, not only color
patches.

e Quality values are pooled to one value for easy
interpretation.

EXPERIMENTAL SETUP

We will evaluate the performance of the new image difference
metric by comparing its results to the results of human
observers. The performance will also be compared to other
state-of-the-art metrics.

Image datasets

Many different image databases have been proposed for
evaluation of image difference metrics. We have selected
five state-of-the-art databases for the evaluation of the new
metric. These databases cover a wide range of distortions and
quality attributes.

TID2008

The TID2008 database®® has been used for evaluation of
the proposed metric. This database contains a total of 1700
images, with 25 reference images with 17 types of distortion
(Table III) over four distortion levels. The mean opinion
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scores (MOSs) are the results of 654 observers attending
the experiments. For the viewing distance, since this was
not fixed in the TID2008 database, we have used a standard
viewing distance of 50 cm on a normal 19 inch screen.

Dugay
For the dataset from Dugay, 20 original images were gamut
mapped with five different algorithms.?”4°

e HPminDE (Hue preserving minimum AE}, clipping)
which is a baseline gamut mapping algorithm proposed
by the CIE.*!

e SGCK (sigmoidal lightness mapping and cusp knee
scaling)*! is an advanced spatially invariant sequential
gamut compression algorithm.

e A spatial gamut mapping algorithm proposed by Zolliker
and Simon*? with the intent to recover local contrast
while preserving lightness, saturation, and global contrast.

e A hue- and edge-preserving spatial color gamut mapping
algorithm proposed by Kolas and Farup.*’

e A multiscale algorithm preserving hue and local rela-
tionship between closely related pixel colors proposed by
Farup et al.**

The images were evaluated by 20 observers in a compar-
ison experiment, from a viewing distance of 50 cm. Gamut
mapping results in many simultaneous changes, making the
changes in this database difficult to predict by image quality
metrics.

Pedersen et al.
Pedersen et al.>! proposed a dataset with four original
images, three portraits, and one illustration. The originals
were altered in lightness: each image had four versions
with global lightness differences, and four versions with
local lightness changes. The lightness changes were 3 and
5 AE},. Four versions were brighter than the original, and
four darker. A total of 25 observers were recruited for the
experiment, and they were asked in a pair-wise comparison
experiment to choose the image most similar to the original.
The viewing distance was set to 80 cm.

Ajagamelle

This database from Ajagamelle contains a total of ten original
images covering a wide range of characteristics and scenes.*
The images were modified using Adobe Photoshop software
on a global scale with separate and simultaneous variations
of contrast, lightness, and saturation, resulting in a total
number of 80 test images. These images were evaluated by
14 observers from a viewing distance of 70 cm.
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Table 11, Overview of the distortions in the TID database and how they are related fo the fested subsets. The database contains 17 types of distortion over four distortion levels. The

sign '+ indicates that the distortion type was used to alter the images of the subset and the sign “/—

uon

that it was not considered for this subset.

Type of distortion Noise Noise2 Safe Hard Simple Exotic Exotic2 Full
1 Additive Gaussian noise + + 4 — + _ _ +
2 Noise in color components - + — — - — — +
3 Spatially correlated noise + + + + - — _ +
4 Masked noise — + - + - — — +
5 High-frequency noise + + + - - — - +
6 Impulse noise + + + - — — — +
7 Quantization noise + + — + _ _ _ +
8 Gaussian blur + + + + + - — +
9 Image denoising + - - + — - _ +
10 JPEG compression - - + - + — — +
11 JPEG2000 compression - — + — + — — +
12 JPEG transmission errors - - - + - - + +
13 JPEG2000 transmission errors - - - + - - + +
14 Noneccenfricity patfern noise — - — + — + 4 +
15 Local block-wise distortion - - - - - + + +
16 Mean shift - - - - - + + +
17 (Contrast change - - - - - + + +
vc the Shannon information present in the reproduction rela-

The TVC database*® contains a total of 235 images, with
10 original images distorted by three types of lossy com-
pression techniques (JPEG, JPEG2000, and Locally Adaptive
Resolution) and blurring process. For this database we only
use the color images, resulting in 180 images. Subjective
evaluations were made by 15 observers using the Double
Stimulus Impairment Scale method with 5 categories at a
distance of six times the height of the screen.

Image difference metrics

The new metric, with the two different spatial filtering meth-
ods, is compared against the original hue angle algorithm,'1
pixelwise AE*,, Spatial-CIELAB (S-CIELAB)'® and Spatial-
CIELAB from Johnson and Fairchild (S-CIELABjopnson)'’ to
see if the segmentation done according to the hue angles and
the spatial filtering improves the performance of the metric.
We also include two other color image difference metrics, the
Spatial-AEg (S-DEE),*” based on S-CIELABjopnson and the
AEE color difference formula,'? and the Adaptive Bilateral
Filter (ABF),">*® based on bilateral filtering and AEY,.
Additionally, we compare SHAME against the Structural
Similarity Metric (SSIM)* and Universal Image Quality
index (UIQ),>* both based on structural similarity. The Peak-
Signal-to-Noise-Ratio (PSNR) is a commonly used metric in
the industry, and therefore we include it in our evaluation.
Two extensions of the PSNR are added to the evaluation list
as well, the PSNR-Human Visual System metric (P-HVS)®!
and P-HVS with contrast masking (P-HVS-M).>? Lastly, the
Visual-Signal-to-Noise-Ratio (VSNR),>® which is based on
near-threshold and suprathreshold properties of the HVS,
and the Visual Information Fidelity (VIF),>* which quantifies
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tive to the information present in the original, are included
in the evaluation. Using these 12 state-of-the-art metrics will
provide an extensive evaluation of the proposed metric, and
it will show differences between the two proposed spatial
filtering methods used in SHAME.

For SHAME and SHAME-II, the images have been
transformed from 8-bit sSRGB images to CIELAB using
Matlab and the srgb2lab function.

Performance measures

In order to measure the performance of the image difference
metrics, we compare the results of the metrics to the results of
observers. Two standard types of correlation coefficient are
computed™ and used as performance measures.

(1) The Pearson product moment: this assumes that the vari-
ables are ordinal and it evaluates the linear relationship
between two variables. This is a performance measure
relating to the prediction accuracy of the metric.>®

(2) Spearman rank: this is a non-parametric measure of cor-
relation and it is used as a measure of linear relationship
between two sets of ranked data, instead of the actual
values. It describes the relationship between variables
with no assumptions on the frequency distribution of
the variables and on how tightly the ranked data clusters
are around a straight line. This is a performance measure
relating to the prediction monotonicity of the metric.>®

The relationship between the metrics and the observers
are not necessarily linear. In order to remove any non-
linearities from the subjective experiments and to obtain
a fair comparison of the metrics in a common analysis
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Figure 4. Pearson and Spearman correlation coefficients for on the
TID2008 database. VIF is the highestperforming metric for both corre-

lation types. SHAME outperforms the hue angle algorithm, S-CIELAB, and
SHAMEI.

space, we investigate the relationship between the metrics
and observers by using non-linear regression.’® We use the
same mapping function as Sheikh et al.: >

1 1

fx) =6 (5 Sy

)+94X+95, (12)

where 6;, i = 1,2,3,4,5, are parameters to be fitted. In
addition to the correlation values we will also report the
95% confidence intervals for the correlation values, which
are calculated using Fisher’s Z transformation as described
by the Video Quality Expert Group.>’

RESULTS

TID2008 database

VIF is the best-performing metric for the TID 2008 database,
as seen in Table IV and Figure 4. SHAME has a signifi-
cantly higher Pearson correlation than SHAME-II, and it
is significantly better than S-CIELAB and the hue angle
algorithm. This shows that the weighting carried out by
the hue angle algorithm combined with the filtering from
S-CIELAB improves the performance. It is also interesting
to notice that SHAME is the best-performing metric among
those based on color differences.

The TID2008 database contains different subsets, as seen
in Table III. For the five first datasets (noise, noise2, safe,
hard, and simple) SHAME and SHAME-II perform well
(Table V); SHAME has a slightly higher Pearson correlation
than SHAME-II. We can also notice that SHAME and
SHAME-II have correlation values higher than S-CIELAB,
S-CIELABjohnson, and the hue angle algorithm. This indicates
that the combination of weighting and spatial filtering
improves the performance of the metric. For the two last
datasets (exotic and exotic2) all metrics have a decrease in
performance, which is mostly caused by scale differences
where different images are rated similarly by observers but
very differently by the metrics.

For the Spearman correlation (Table VI), SHAME and
SHAME-II have a decrease in performance compared to
the Pearson correlation values (Table V). It is interesting
to notice that SHAME-II has slightly higher values than
SHAME, this being the opposite of what is found for the
Pearson correlation values.

J. Imaging Sci. Technol.

050501-6

Table IV. Pearson and Spearman correlafion coefficients for on the TID2008
database. VIF is the highest-performing metric for both correlation types. SHAME
outperforms the hue angle algorithm, S-CIELAB, and SHAME-II.

Metric Pearson Spearman
correlation correlation

S-DEE 0,38 0,29

SHAME 0,60 0,38

SHAME-II 0,47 0,41

S-CIELAB 0,52 0,46

S-CIELAB, ynson 0,40 0,31

SSIM 0,65 0,64

uiq 0,63 0,60

P-HVS-M 0,64 0,64

P-Hvs 0,67 0,67

Hue angle algorithm 0,34 0,31

PSNR 0,60 0,59

VSNR 0,72 072

VIF 0,79 0,75

ABF 0,28 0,26

As an example where SHAME and SHAME-II are in
agreement, we show the metric values for a one-reference
image of the TID2008 database for JPEG compression over
four levels (Figure 5). We also show the results of S-CIELAB
in order to have a reference metric to compare against. For
this image and distortion the metrics are in agreement with
the observers as well, showing excellent correlation against
the observers (Figure 6).

We also show an example where the metrics are not
in agreement (Figure 7). This image, being the 14th in
the TID2008 database, has four levels of local block-wise
distortions of different intensity. Comparing the results of
the metrics to the observers (Figure 8), we see that the metrics
perform differently. The Pearson correlation coefficients are
for SHAME 0.63, SHAME-II —0.30, and S-CIELAB 0.99.
For SHAME and SHAME-II, the correlation is lower than
for S-CIELAB, and this can be explained by the sorting and
weighting performed in these metrics. The local distortions
are small, and the hue of the local distortions does not occur
in the hues that have the highest pixel counts, and therefore
they are given a low weight in SHAME and SHAME-II. The
local block-wise distortions of different intensity is also a
part of the exotic and exotic2 datasets, which might also
partly explain the low correlation found in these datasets for
SHAME and SHAME-II.

Dugay

Figure 9 and Table VII shows the results from the dataset
with gamut mapped images. In general all metrics have a
low performance. This is probably because the task is very
complex, since multiple attributes are changed simultaneous
and the observers may judge them differently.>** Previous
research has shown that image difference metrics have
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Table V. Pearson correlation of the different subsets of the TID2008 dutabase. N = 700, 800, 700, 800, 400, 400, 600 for the noise, noise2, safe, hard, simple, exofic, and
exofic2 datasets, respectively.

Metric Noise Noise2 Safe Hard Simple Exotic Exotic2
S-DEE 0,64 0,64 0,66 0,69 0,64 0,22 0,17
SHAME 0,86 0,84 0,85 0,84 0,86 0,22 0,25
SHAMEN 0,75 0,73 0,72 0,72 070 0,25 0,20
S-CIELAB 0,84 0,82 0,83 0,83 0,85 0,55 0,35
S-CIELAB jopnson 0,66 0,66 071 0,59 0,69 0,31 0,20
SSIM 0,58 0,64 0,66 0,82 0,78 0,27 0,59
uiq 0,54 0,61 0,67 0,76 0,81 0,17 0,59
P-HVS-M 0,93 0,89 0,93 0,82 0,95 0,53 0,43
P-HVS 0,92 0,89 092 0,84 094 0,53 0,45
Hue angle algorithm 0,55 0,52 0,53 0,68 0,65 0,52 0,21
PSR 0,76 0,74 0,76 0,68 0,85 0,39 0,46
VSNR 0,85 0,84 0,86 0,76 0,91 0,61 0,61
VIF 0,82 0,90 0,92 0,84 0,95 0,56 0,68
ABF 0,59 0,47 0,60 0,57 0,67 0,62 0,50

T
B sHAME
09 [ ] SHAME-I
I s CELAB

08 [

0.7

Normalized Color difference

Figure 5. Example of agreement between SHAME, SHAME-, and S-CIELAB for the 14th image with JPEG compression. This is for a one-reference image,
the 14th in the TID2008 database, with four different levels of JPEG compression (shown below with increasing compression corresponding fo image 1-4
in the barplot). The metric values have been normalized by the highest value for easy comparison between the metrics.

problems when multiple distortions occur simultaneously, Pedersen

as in gamut mapping.’>?® Both SHAME and SHAME-II For the Pedersen database, we can see that SHAME-II has
have confidence intervals overlapping with UIQ, which is the the highest Pearson correlation (Figure 10 and Table VIII),
metric with the highest correlation. but several other metrics overlap the 95% confidence interval
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Table VI. Spearman correlation of the different subsets of the TID2008 database. N = 700, 800, 700, 800, 400, 400, 600 for the noise, noise2, safe, hard, simple, exotic, and
exofic2 datasets, respectively.

Metric Noise Noise2 Safe Hard Simple Exotic Exotic2
S-DEE 0,43 0,47 0,42 049 0,37 0,34 —0,09
SHAME 0,55 0,52 0,54 0,43 0,49 0,28 —0,08
SHAMENI 0,66 0,62 0,60 0,66 0,58 0,25 0,28
S-CIELAB 0,79 0,76 0,77 079 0,80 0,27 0,28
S-CIELAB jopnson 0,62 0,56 0,59 0,64 0,58 0,23 0,06
SSIM 0,57 0,64 0,64 0,82 0,77 0,29 0,54
viq 0,53 0,60 0,65 0,76 0,80 0,26 0,53
P-HVS-M 0,93 0,88 0,93 0,83 0,94 0,52 0,41
P-HVS 0,92 0,88 0,93 0,84 0,93 0,53 041
Hue angle algorithm 0,53 0,46 0,48 0,69 0,66 0,60 0,23
PSNR 0,75 073 0,75 0,69 0,85 041 0,40
VSNR 0,85 0,84 0,86 0,77 0,90 0,58 0,59
VIF 0,82 0,90 0,91 0,84 0,94 0,51 0,67
ABF 0,59 0,47 0,58 0,55 0,66 0,72 0,63
Table VII.  SHAME and SHAME-II compared against other metrics for a set of gamut ® L. s ' ' ' " e
mapped images from Dugay.3?/40 sor o s 1
sl . . i
Metric Pearson Spearman 8 .l |
correlation correlation =
20 b
S-DEF 0,07 0,00 o . |
SHAME 0,25 0,27
SHAME-II 0,24 0,28 %1 062 053 054 065 ofe 0f7 068 069 1
S—(IEI_AB 0’22 0,2] Normalized color difference
S-CIELAB yson 0,02 0,03 Figure 6. Values from SHAME, SHAMEI and S-CIELAB for the 14th
SSIM 016 0.05 image with JPEG compression plofted against MOS. As we can see
! ! from the plot, all mefrics are in agreement with the observers. The
v 0,43 019 Pearson correlation coefficients are for SHAME 0.86, SHAME- 0.93,
P-HVS-M 0,18 0,21 and S-CIELAB 0.93. All have a perfect Spearman correlation coefficient
P-HYS 0,18 022 of 1.
Hue angle algorithm 0,07 0,12
PSR 0,10 0,03 Ajagamelle
VSR 0,10 0,10 For the Ajagamelle database,*> P-HVS has the highest
VIF 031 027 Pearson and Spearman correlation values (Figure 11 and
1BF 0:08 0:” Table IX). However, with a 95% confidence interval it

of SHAME-II. SHAME-II is also significantly better than
the hue angle algorithm since their confidence intervals do
not overlap, indicating that incorporation of models of the
human visual system improves the metric. The Spearman
correlation for SHAME-II is also the highest (Table VIII),
indicating a similar ranking to that of the observers. Since the
changes in this database are according to color differences,
a metric calculating image difference with a color difference
formula is likely to have a better performance than metrics
using other approaches such as SSIM and VSNR.

J. Imaging Sci. Technol.
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cannot be said to be significantly different from many other
metrics, including both SHAME and SHAME-II (Fig. 11).
The hue angle algorithm has a lower correlation value than
the two SHAME variations, giving an indication that the
spatial filtering contributes to increased performance, but
they are not significantly different given the 95% confidence
interval. The changes in this database are related to color
differences (the lightness and saturation changes), giving the
metrics based on color differences an advantage, while the
metrics based on structural information and contrast are
more adapted to the changes in contrast.

1vc

VIF has the highest Pearson and Spearman correlation for
the IVC database, as seen in Figure 12 and Table X. None
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Figure 7. Example of disagreement between SHAME, SHAME-I, and S-CIELAB for the 14th image with local block-wise distortions of different intensity

(shown below from left to right corresponding to image 1-4).

Table VIIL. Pearson and Spearman correlation values for the lightness changed

image from Pedersen et al.2!. 22

Metric Pearson Spearman

correlation correlation
S-DEE 0,66 0,70
SHAME 0,81 0,71
SHAME-NI 0,94 0,94
S-CIFLAB 0,85 0,81
S-CIELAB, 081 076
SSIM 0,22 0,49
uig 0,45 0,49
P-HVS-M 075 0,68
P-HVS 0,63 0,67
Hue angle algorithm 0,83 0,73
PSNR 0,66 0,72
VSNR 0,02 0,02
VIF 0,39 0,35
ABF 0,86 0,81

of the other metrics overlap the confidence interval of VIF,
but many metrics are close. SHAME performs well for this
database, with Pearson and Spearman correlation above 0.7,
slightly higher than S-CIELAB but not significantly different.
SHAME-II is among the worst-performing metrics, and
there is significant difference between the filtering from
S-CIELAB and S-CIELABjonnson- However, it is interesting
to see that the correlations for SHAME and SHAME-II are
slightly higher than those of S-CIELAB and S-CIELABjohnson>
indicating that the weighting by the hue angle algorithm
contributes to an increased performance, but the differences
are not statistically significant.

J. Imaging Sci. Technol.
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Figure 8. Values from SHAME, SHAMEA, and S-CIELAB for the 14th
image with local block-wise distortions of different intensity plotted against
MOS. As we can see from the plot, S-CIELAB is highly correlated
with observers (correlation coefficient of 0.99), while SHAME has a
correlation coefficient of 0.63 and SHAME! is not correlated (—0.3).
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Figure 9. Pearson correlation values for the gamut mapped images from
Dugay. All metrics have a low performance on the gamut mapped images,
indicating that calculating the difference between an original and a gamut
mapped image is very difficult for image difference metrics.

Overall observations

In many of the databases the performance of SHAME
and SHAME-II is similar, such as for the Ajagamelle and
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Figure 10. SHAME and SHAME-I compared against other metrics for
the lightness changed images from Refs.21,22. We notice that SHAME-I
has the highest Pearson correlation, and it is significantly better than the
hue angle algorithm.
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Figure 11. SHAME and SHAME-I compared against other metrics for

the Ajagamelle database. 4> Both SHAME and SHAMEH! perform similar
to other state-ofthe-art metrics, such as S-DEE and S-CIELAB.

Table IX. Pearson and Spearman correlation values for the Ajagamelle database.*?
Both SHAME and SHAME-II perform similar to other state-of-the-art metrics, such as

S-DEE and S-CIELAB.

Metric Pearson Spearman

correlation correlation
S-DEE 0,81 0,75
SHAME 0,79 073
SHAME-II 0,81 079
S-CIELAB 0,79 073
S-CIELAB jopnson 073 0,68
SSIM 0,64 072
uiq 0,63 073
P-HVS-M 0,82 079
P-HVS 0,82 0,80
Hue angle algorithm 0,62 0,72
PSNR 0,80 071
VSNR 0,27 0,32
VIF 0,53 0,59
ABF 0,81 0,76

Dugay databases. In IVC, SHAME is significantly better than
SHAME-II, and this is also seen for the complete TID2008
database for the Pearson correlation values. However, when
looking at the Spearman correlation values for the datasets in
TID2008, SHAME-II has for all except one dataset a higher
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Figure 12. SHAME and SHAME-I compared against other metrics for
the IVC database. 4 We notice that SHAME outperforms SHAMEH,
S-CIBLAB| g0, and the hue angle algorithm. VIF s the only metric
that is stafistically significantly befter than SHAME.

Table X. Pearson and Spearman correlation values for the IVC database.*®

Metric Pearson Spearman
correlation correlation

S-DEE 0,53 0,49

SHAME 0,77 0,76

SHAME-NI 0,52 0,51

S-CIFLAB 0,75 0,74

S-CIELAB, 0,49 0,46

SSIM 0,79 0,78

uiQ 0,83 0,83

P-HVS-M 0,77 0,77

P-HVS 0,75 0,75

Hue angle algorithm 0,53 0,52

PSNR 0,72 0,69

VSNR 0,78 0,78

VIF 0,90 0,90

ABF 0,57 0,55

correlation than SHAME. For many of the other databases
SHAME-II maintains a higher Spearman correlation than
SHAME, indicating that it has a better agreement with the
ranking of the observers. With the current databases and
their results it is difficult to prefer one of the metrics over
the other. Selection of which metric to use will most likely be
dependent on the application and the distortion.

CONCLUSION AND FURTHER RESEARCH

The proposed metric, SHAME, uses well-known spatial
filtering methods to improve a color image difference metric,
which results in several advantages. Extensive testing of
the proposed metrics (SHAME and SHAME-II) shows
improvement over or similar performance to traditional
metrics, such as SSIM and S-CIELAB, for several existing
databases. Compared to other metrics based on color
differences the proposed metrics (SHAME and SHAME-II)
are always amongst the metrics with the best performance.
We have demonstrated the importance of weighting areas of
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interest and the importance of spatial filtering for color image
difference metrics.

State-of-the-art image difference metrics also show
weaknesses when judging the difference between an original
and a modified version of it when more than one distortion
occurs, and more research should be carried out to improve
the metrics in this field, in terms of both difference
calculation and spatial filtering. An interesting possible
direction would be to adapt the weighting of the quartiles
to characteristics of the image, making the weights image
dependent.
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