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Abstract. The poor performance of the MaxRGB illumination-
estimation method is often used in the literature as a foil when pro-
moting some new illumination-estimation method. However,
MaxRGB has usually been tested on images of only 8-bits per chan-
nel, where clipping of high radiances is likely to have occurred. The
question arises as to whether the method itself is inadequate, or
rather whether it has simply been tested on data of inadequate
dynamic range or with inadequate preprocessing. In particular, is
MaxRGB’s underlying assumption that there is a white or white-
equivalent surface present in every scene too strong? This question
is explored here in two ways. The first avenue of investigation is
based on a new database of 105 sets of multiple-exposure images.
High-dynamic range images are constructed from these sets as well.
The color of the scene illumination is determined by taking an extra
image of the scene containing four Gretag Macbeth mini-
Colorcheckers placed at an angle to one another. MaxRGB is found
to perform surprisingly well when tested on either the multiple-
exposure or the high-dynamic range images. The second avenue of
investigation is to add some simple preprocessing to the basic
MaxRGB algorithm. By removing clipped pixels followed by median
filtering, MaxRGB also performs better than previously reported
when tested on test images of common color constancy test sets,
specifically the Simon Fraser University 321-image indoor set. In par-
ticular, the Wilcoxon signed-rank test indicates that MaxRGB outper-
forms the most recent bright-pixel variant of color by correlation on
the 321 set. MaxRGB is also competitive against the recent Edge-
Based algorithm and significantly better than the computationally in-
tensive Bayesian method on the Grayball set and the Colorchecker
set. Overall, the results presented demonstrate that MaxRGB is far
more effective than it has been reputed to be. VC 2012 Society for
Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2012.56.2.020501]

INTRODUCTION
MaxRGB is a very simple method of estimating the chro-

maticity (i.e., [r, g, b]¼ [R=(RþGþB), G=(RþGþB),

B=(RþGþB)]) of the scene illumination for color con-

stancy and automatic white balancing based on the

assumption that the triple of the maximal values obtained

independently from each of the three color channels repre-

sents the color of the illumination. It has been much

maligned in the literature; however, is its performance

really as bad as it has been reported1–4 to be?

MaxRGB is a special and extremely limited case of reti-

nex.5 In particular, it corresponds to McCann99 Retinex6

when the number of iterations is infinite, or to path-based

retinex7 without thresholding but with infinite paths. Reti-

nex and MaxRGB both depend on the assumption that one

of the following holds as: (1) there is a white surface in the

scene, (2) there is a shiny surface in the scene creating a spec-

ular highlight having the same chromaticity as the incident

light, and (3) there are one or more separate surfaces reflect-

ing maximally in the R, G, and B sensitivity ranges. Condi-

tion (3) is similar to condition (1) except that for condition

(1), the three maxima occur at a single spatial location

because an ideal white surface reflects maximally across all

three sensitivity ranges. For condition (3), the maximal

reflectances for the different color channels are allowed to

come from multiple locations. MaxRGB also depends on the

assumption, common to many illumination-estimation

methods,1–4,8–12 that the chromaticity of the illumination is

constant throughout the scene.

MaxRGB estimates the chromaticity of the scene illumi-

nation as the chromaticity of the triplet (maximal R, maxi-

mal G, and maximal B). In practice, most digital still

cameras are incapable of capturing the full dynamic range of

a scene and use exposures and tone reproduction curves that

clip or compress high values. As a result, the maximum R,

G, and B digital counts from an image generally do not

faithfully represent the corresponding maximum scene radi-

ances. Funt et al.13 present some tests using artificial clipping

of images that show the effect that lack of dynamic range

can have on various illumination-estimation algorithms.

We hypothesize that there are two reasons why the

effectiveness of MaxRGB may have been underestimated.

One is that it is important not only to apply MaxRGB as

the simple maximum of each channel but rather it is neces-

sary to preprocess the image data somewhat before calcu-

lating the maximum; otherwise, a single bad pixel or

spurious noise will lead to the maximum being incorrect.

The second, and perhaps more important reason, is that

MaxRGB generally has been applied to 8-bit-per-channel,

nonlinear images, for which there is likely to be significant

tone-curve compression as well as clipping of high values,

both of which affect the chromaticity of the maximal values

of R, G, and B.

To test the first hypothesis, the effects on performance

of three different preprocessing strategies are tested. To test

the second hypothesis, a new dataset for color constancy

research has been constructed that consists of images of
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105 scenes. For each scene, there are images in both high-

dynamic-range and multiple-exposure formats, and images

with and without Macbeth mini-Colorchecker charts, from

which the chromaticity of the scene illumination is meas-

ured. This data set is now available online.14 Tests described

below show that MaxRGB performs as well on this data set

as other representative and recently published algorithms.

The results reported here significantly extend, combine,

compare, and further analyze those of two earlier stud-

ies15,16 in terms of the algorithms compared, the databases

used, and the preprocessing strategies tested. Based on

these new tests, we now able to conclude that MaxRGB

works as well or better than the well-known Color by Cor-

relation9 method.

EVALUATION OF PREPROCESSING FOR MaxRGB
Three preprocessing methods are considered as follows: (1)

removal of each clipped pixel along with those in its sur-

rounding 3-by-3 neighborhood;17 (2) median filtering; and

(3) the combination of condition (1) followed by condition

(2). A clipped pixel is defined as one for which at least one

channel is maximal (i.e., for n-bit images when R¼ 2n� 1

or G¼ 2n� 1 or B¼ 2n� 1). Since many authors have used

the set of 321 indoor images from the Simon Fraser Univer-

sity image database created by Barnard et al.18 (which

includes the true illumination as measured with a spectror-

adiometer), we use it here for comparison to show how sig-

nificantly MaxRGB improves with simple preprocessing.

The results are tabulated in Table I. The table includes the

results of MaxRGB with and without preprocessing along

with the corresponding results published by Barnard et al.,1

and by van de Weijer et al.2 along with results of the van de

Weijer et al. MATLAB implementation.17 Barnard’s method

involved smoothing by a uniform averaging. Van de

Weijer’s implementation removes clipped pixels and, as

well, the pixels in the 3� 3 surrounding neighborhood of

each clipped pixel. Also, included are the results for the

Do-Nothing method (i.e., the illumination for all images is

estimated to have chromaticity r¼ g¼ b¼ 1=3), Grayworld

(GW), Edge-Based, and Color by Correlation.

The Edge-Based method is included in Table I as being

representative of the performance of the majority of current

illumination-estimation algorithms. It also has the advant-

age that code is available online17 and it does not require

training. Hence it is less susceptible to variations in how it

is applied. Furthermore, van de Weijer et al. conclude with

respect to the Edge-Based method, “The experimental

results show that the newly proposed simple color

Table I. Performance comparison using Barnard et al.1,18 set of 321, 637-by-468-pixel, 16-bit-linear (gamma¼ 1) images of indoor scenes. The algorithms compared are as fol-
lows: Do-Nothing, Grayworld, Shades-of-Gray4, Edge-Based2 (first and second order) (implementation from Ref. 17, MaxRGB without preprocessing13, MaxRGB after 5� 5 median
filtering, MaxRGB after van de Weijer’s17 clipped-pixel removal, MaxRGB after van de Weijer’s clipped-pixel removal followed by 5� 5 median filtering, the Neural Network
approach11, Forsyth’s CRULE12, and CbyC1 as reported by various authors. The results report by Hordley and Finlayson19 were based on a subset consisting of 310 of the 321
images.20 Gijsenij et al.3 trained on part of the data set and tested on the remaining 290 images. Boldface indicates the minimum in the respective column. The Do-Nothing error
is the error in simply assuming the scene illumination is always white (i.e., estimating its chromaticity as r¼ g¼ b¼ 1=3).

Angular difference L2 distance� 100

Methods tested on 321 linear image set Median Mean RMS Max Median Mean RMS Max

Do-Nothing 15.6 17.9 20.5 37.0 10.0 11.6 13.7 25.8

GW (our code) 6.9 9.7 13.7 36.1 5.6 7.8 10.8 32.7

SoG4 (our code) 4.1 6.3 9.0 28.7 2.9 4.4 6.2 19.8

EB12 (code from Ref. 17) 3.7 6.1 8.5 27.7 2.6 4.3 6.0 19.0

EB22 (code from Ref. 17) 4.5 6.8 9.1 35.6 3.1 4.7 6.2 23.8

MaxRGB w=o preprocessing 6.5 9.2 12.3 36.2 4.5 6.3 8.3 25.0

MaxRGB with uniform averaging (Barnard et al.1 Table V) 5.3

MaxM 3.4 5.8 9.0 31.0 2.3 4.1 6.1 21.0

MaxRGB clipped removal (MaxC) 6.5 9.1 12.2 36.2 4.5 6.3 8.2 25.0

MaxRGB clipped removal plus median filter (MaxCM) 3.1 5.6 8.5 25.7 2.3 3.9 5.8 16.7

Neural Network11 (Barnard et al.1 Table V) 6.0

CbyC9 (Barnard et al.1 Table V) 6.1

CRULE12 (Barnard et al.1 Table V) 4.3

ECRULE-MV (Barnard variation on CRULE) (Barnard et al.1 Table V) 4.0

CbyC Finlayson et al.10 9.9

CbyC I (bright pixels only) Hordley and Finlayson19 Table VII (310 out of 321) 3.2 6.6 10.1

CbyC Gijsenij et al.3 (290 out of 321) 6.8 9.9

CbyC Fredembach and Finlayson21 6.0 6.3
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constancy algorithms obtain similar results as more com-

plex state-of-the-art color constancy methods”2 (Page

2213). As another standard for comparison, Table I also

includes published results concerning the widely varying

performance of the well-known Color by Correlation

(CbyC) algorithm applied to this same data, as quoted

from various sources.1,3,10,21

For consistency, all the methods are applied to exactly

the same images without any additional preprocessing. The

assumption is that these methods in their original form

without any additional preprocessing is what their origina-

tors intended to be used. Whether or not they might be

improved by additional preprocessing is a question that is

not addressed here. However, for several methods (e.g.,

Grayworld, Shades of Gray (SoG), Edge-Based) preprocess-

ing is unlikely to make much difference, because they are

based on averaging the results from many image locations.

In the case of MaxRGB, preprocessing is important because

each maximum is derived from a single spatial location.

The tests are based on the implementations of the methods

that are available online. The source of each implementa-

tion is identified in the tables of results.

The performance of the algorithms is measured in

terms of the difference between the measured illumination

chromaticity and that estimated by each method. The chro-

maticity difference is evaluated both in terms of angular

difference and Euclidean distance (see Appendix). Of

course, in terms of correcting the image colors in response

to a change in the illuminant (i.e., for “color constancy” or

white balancing), estimating the illuminant is only the first

step in a two-step process. Given the chromaticity of the il-

luminant, a common approach is to adjust all colors by

scaling the R, G, B channels based on the ratio of the chro-

maticity of the target illuminant to the chromaticity of the

scene illuminant. This method is referred to variously as

the diagonal model, the coefficient rule, or the von Kries

model.22 However, the magnitude of the error in estimating

the illuminant tends to dominate the error in applying the

diagonal model. Since all the methods compared in

the tests below generate an estimate of the chromaticity of

the illumination, which would then be followed by an iden-

tical second color correction step, we evaluate the error in

the estimates themselves rather than in terms of the differ-

ences in the resulting adjusted images.

In Table II, the Wilcoxon signed-rank test is used to

evaluate the statistical significance of the performance dif-

ferences of the algorithms reported in Table I. Table II

shows that MaxRGB with the proposed preprocessing per-

forms better than all the other methods (for which the nec-

essary data are available) listed in Table I to a statistically

significant degree. For the remaining ones, which include

Forsyth’s CRULE,12 ECRULE-MV (a variation on Forsyth’s

CRULE12, and the neural network approach,11 all have

mean L2 (Euclidean) distances listed in Table I exceeding

those of MaxCM (MaxRGB with clipped-pixel removal fol-

lowed by median filtering). Figure 1 graphs the errors

reported in Table I.

Another existing color constancy test data set is the

gray ball set consisting of the 11,346 images Ciurea obtained

using a digital video camera with a gray ball attached.23 The

gray ball provides the chromaticity of the illumination for

each image. Clipping and tone-curve compression effects

are even more likely in these images than those from the

321 set, since they are single frames extracted from digital

video. In contrast, the images in the 321 set were obtained

by averaging a large number of frames so as to reduce noise.

The 321 set is also linear, whereas the 11,346 set is nonlinear,

although the actual gamma or tone curve used is unknown.

Table III compares the errors across the various methods,

which include all those from Table I plus the more recent

Leave-N-out n-jet method.3 A graphical representation of

the errors in Table III is provided in Fig. 1. Overall, prepro-

cessed MaxRGB can be seen to be competitive with all the

other methods listed. Table IV tabulates the results of the

Wilcoxon signed-rank test, which support this conclusion,

especially for the cases of MaxRGB with clipped-pixel

removal (MaxC) and MaxRGB with clipped removal fol-

lowed by median filtering (MaxCM).

Another test data set is 568-image “colorchecker” data-

set provided by Gehler et al.8 The images in it were taken

with two digital single lens reflex cameras (Canon 5D and

Canon1D), with all settings in automatic mode. All images

were saved in Canon RAW format. The dataset also

includes TIFF versions created from the RAW images using

the automatic mode of the Canon DIGITAL PHOTO PROFESSIO-

NAL program to convert the images into TIFF images. Each

image contains a Macbeth colorchecker for reference. The

Table II. Wilcoxon signed-rank test (confidence level 95%) comparison of the algo-
rithms listed in Table I. A “þ,” “�,” and “¼” indicate that the algorithm listed in
the row is statistically better, worse, or equivalent, respectively, than the one in the
corresponding column. Labels are as follows: GW, SoG, EB1, EB2, CbyC, MaxP
(MaxRGB plain without preprocessing), MaxM (MaxRGB with median filtering), MaxC
(MaxRGB after clipped-pixel removal), and MaxCM (MaxRGB after clipped-pixel re-
moval and then median filtering). Note that MaxCM outperforms all the other non-
MaxRGB methods from Table I. These Wilcoxon signed-rank test results are based on
illumination estimates obtained by CbyC as provided by Hordley.20 For compatibility
with Hordley’s results, this table is based on 310 of the 321 images (excludes
jersey_syl-wwf, munsell2_syl-50MR16Q, munsell2_syl-wwf, munsell3_syl-50MR16Q,
munsell4_syl-wwf, books-1_ph-ulm, books-1_solux-3500þ 3202, books-1_solux-
4700, books-4_ph-ulm, books-4_syl-cwf, plastic-1_solux-3500þ 3202).

GW SoG EB1 EB2 C-by-C MaxP MaxM MaxW MaxCM

GW ¼
SoG þ ¼
EB1 þ ¼ ¼
EB2 þ � � ¼
CbyC þ ¼ ¼ þ ¼
MaxP ¼ � � � � ¼
MaxM þ þ þ þ � þ ¼
MaxC ¼ � � � � ¼ � ¼
MaxCM þ þ þ þ þ þ ¼ þ ¼
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image coordinates (measured by hand) of each color-

checker square are provided with the dataset.8

Because the TIFF images in the colorchecker dataset

were produced automatically, they contain clipped pixels,

which are nonlinear (i.e., have gamma or tone-curve cor-

rection applied) and demosaiced as well as including the

effect of the camera’s white balancing. Since all these

aspects may lead to problems for the various illumination-

estimation methods, we chose to reprocess the raw data

and created almost-raw 12-bit Portable Network Graphics

Figure 1. Performance comparison in terms of median angular on the different data sets of the methods GW,
SoG, Edge-Based first order (EB1), Edge-Based second order (EB2), MaxP, MaxM, MaxC, and MaxCM. The
data for the plots are taken from Tables I (321 set), III (11346 set), V (568 Colorchecker set), VII (HDR linear),
and IX (base images).

Table III. Performance comparison on the set of 11,346 images from the Ciurea23 data set. These images are nonlinear, but the actual gamma value is unknown. The original
images are 360� 240 but are cropped to 240� 240 in order to eliminate the gray ball. The Ciurea data set is divided into 15 separate groups of images based on location. The
result of Gijsenij et al.3 for Color by Correlation is based on training on 14 of the 15 groups and testing on the single remaining group, repeated for all 15 groups. The Leave-N-
Out n-jet result is the best of those reported by Gijsenij et al.3 Labels are as in Table I. Because these images are lower resolution than those in the 321 set, the median filter’s size
was reduced to 3-by-3.

Angular-distance L2 distance� 100

Methods tested on 11,346 image set Median Mean RMS Max Median Mean RMS Max

Do-Nothing 6.7 8.3 11 27 4.6 5.9 7.9 22

GW (our code) 6.8 7.8 9.5 45 5.1 6.0 7.5 42

SoG4 (our code) 5.8 6.7 8.1 36 4.2 4.9 5.9 28

EB12 (code from Ref. 17) 5.5 7.0 8.9 32 4.0 5.2 6.5 23

EB22 (code from Ref. 17) 5.4 7.1 9.1 34 3.8 5.2 6.7 25

CbyCfrom Table IV Gijsenij et al.3 6.5 8.1

Leave-N-Out n-jet3 Table IV 5.5 6.5

MaxRGB (MaxP) 6.0 7.7 10.1 27 4.3 5.5 7.4 22

MaxM 5.8 7.6 9.8 28 4.2 5.5 7.2 22

MaxRGB clipped removal (MaxC) 5.2 6.7 8.7 27 3.7 4.9 6.4 21

MaxRGB clipped removalþmedian filter (MaxCM) 5.3 6.9 8.8 28 3.8 5.0 6.5 21
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(PNG) format (lossless compression) images from the

Canon RAW format data by decoding them using dcraw.25

To preserve the original digital counts for each of the RGB

channels, demosaicing was not enabled. Both cameras out-

put 12-bit data per channel so the range of possible digital

counts is 0 to 4095. The raw images contain 4082� 2718

(Canon 1D) and 4386� 2920 (Canon 5D) 12-bit values in

an RGGB pattern. To create a color image, the two G values

were averaged, but no further demosaicing was done. This

results in a 2041� 1359 (for Canon 1D) or 2193� 1460

(for Canon 5D) linear image (gamma¼ 1) in camera RGB

space. The Canon 5D has a black level of 129, which was

then subtracted. The Canon 1D’s black level is zero.

The colorchecker has six achromatic squares. We used

the median of the RGB digital counts from the brightest

achromatic square containing no digital count> 3300 as

the ground-truth measure of the illumination’s chromatic-

ity. This choice of threshold eliminates any clipping or pos-

sible nonlinearity that may occur for digital counts near

4095 (the maximum possible for a 12-bit image). Since

there are six achromatic squares to choose from, this

threshold means a bright, but not overexposed square, is

used. The median was chosen instead of the mean because

the median automatically excludes any of the black pixels

surrounding each square that might have been incorrectly

included in the square due to the inexactness in the hand

labeling of the colorchecker’s position.

Table V compares the errors across the various meth-

ods, which include all those from Table III. In addition, we

also include the results of Gamut Mapping (GM)10 and

Bayes-GT8 (based on three-fold validation). A graphical

representation of the errors in Table V is included in Fig. 1.

The corresponding results based on Wilcoxon test are

shown in Table VI. To give the Gamut Mapping and the

two N-jet methods the best possible training data, the full

set of 568 images with the colorcheckers was used. Testing

was then done on images with the colorcheckers removed.

Sometimes the Gamut Mapping and N-jet methods fail to

provide an illumination estimate (four times for Gamut

Mapping, 1 for 1-jet). In such cases, we assign the illumina-

tion estimate as white with chromaticity (1=3, 1=3). Since

this dataset consists of images from two different camera

models, training and testing were done separately for each

of the two corresponding image subsets. The results were

then combined. For Bayes-GT,8 it would also have been

interesting to be able to include leave-one-out results in

Tables V and VI as well, but unfortunately the method is

computationally intensive and not practical. (Bayes-GT

requires 4 min per image, so even the three-fold validation

required 2 days of computation. It seems doubtful that it

could ever be sped up enough to be of any more than theo-

retical interest.) Overall, preprocessed MaxRGB can be seen

to be competitive with the other methods. Table VI tabu-

lates the results of the Wilcoxon signed-rank test, which

support this conclusion, especially for the case of MaxRGB

with clipped removal followed by median filtering

(MaxCM). On this dataset, simple Grayworld outperforms

all the other methods.

THE MULTIEXPOSURE AND HDR IMAGE DATASETS
In order to determine how much the quality of the image

data affects MaxRGB’s performance, a new test data set of

images of 105 scenes captured using a Nikon D700 digital

still camera were created. The camera’s autobracketing was

used to capture a sequence of nine images with 1 EV (expo-

sure value) difference between each image in the sequence.

The rate of capture was 5 frames per second. The exposure

range was set to ensure that in each set there would be at

least one image with maximum digital count less than

10,321. During bracketing, the camera was set to allow it

and to adjust the shutter speed and=or the aperture setting

automatically between frames in order to change the expo-

sure by 1 EV. In other words, the f-stop setting was not

fixed. Although this is not standard practice when creating

high-dynamic range (HDR) images, because varying the

aperture causes a variation in depth of focus, our goal was

to capture the widest range of exposures without resorting

to long exposure times. The resulting images are not neces-

sarily of optimal sharpness for HDR viewing, but they are

of much higher resolution and much sharper than the

images typically used for testing illumination-estimation

methods. The results are reported below for both the HDR

images and the individual single-exposure images from

which they were assembled.

All images were recorded in Nikon’s electronic (NEF)

raw data format.26 The raw images were then processed in

two ways: The first was to create almost-raw, 16-bit PNG

format (lossless compression) images from the NEF data,

one image per exposure value. We will refer to these 16-bit

PNGs as the “base images.” The second was to create a set

of HDR images from the base images. Both the multiple-

exposure base images and the HDR images are used in

Table IV. Wilcoxon signed-rank test result for the algorithms from Table III tested
on the 11,346-image set. A “þ” means the algorithm listed in the corresponding
row is better than the one in corresponding column; a “�” indicates the opposite;
an “¼” indicates that the performance of the respective algorithms is statistically
equivalent. These Wilcoxon signed-rank test results are based on illumination esti-
mates obtained using CbyC and Leave-N-Out provided by Gijsenij24. Labels as listed in
Table II.

GW SoG EB1 EB2 C-by-C N-jet MaxP MaxM MaxC MaxCM

GW ¼
SoG þ ¼
EB1 þ þ ¼
EB2 þ þ þ ¼
CbyC ¼ � � � ¼
N-jet þ þ ¼ � þ ¼
MaxP þ � � � þ � ¼
MaxM þ ¼ � � þ � þ ¼
MaxC þ ¼ þ þ þ þ þ þ ¼
MaxCM þ ¼ þ þ þ þ þ þ � ¼

Funt and Shi: MaxRGB reconsidered

J. Imaging Sci. Technol. Mar.-Apr. 2012020501-5



testing MaxRGB against other illumination-estimation

algorithms.

Two sets of base images were captured for each scene.

One set includes four Gretag Macbeth mini-colorcheckers

positioned at different angles with respect to one another.

The second set contained images of the same scene, but

without the colorcheckers. Between taking the two image

sets, the camera was refocused and possibly moved slightly.

For the first set, the focus was adjusted, so the color-

checkers were in focus. For the second set, the focus was

optimized for the scene overall.

The colorcheckers were placed in the scene at a point

where the illumination incident on them was expected to

be representative of the color of the overall scene illumina-

tion. While all scenes contain some variation in the illumi-

nation color because of inter-reflections, scenes that clearly

had strong variations in illumination color were avoided.

For example, a room with interior tungsten lighting mixed

with daylight entering through a window would be

excluded.

To create the base images, the raw NEF images were

decoded using dcraw.25 To preserve the original digital

counts for each of the RGB channels, demosaicing was not

enabled. The camera outputs 14-bit data per channel, so

the range of possible digital counts is 0 to 16,383. The raw

images contain 4284� 2844 14-bit values in an RGGB pat-

tern. To create a color image, the two G values were aver-

aged, but no further demosaicing was done. This results in

a 2142� 1422 RGB image.

An HDR image was also constructed from each set of

base images. The base images require alignment, which was

done by the simple Median Threshold Bitmap approach.27

After applying a 3� 3 median filter to the base images, the

MATLAB function makehdr from the MATLAB Image Processing

Toolbox28 was used to combine them into one HDR image.

To ensure the reliability of the pixel values, all base image

pixels having values greater than 13,004 or less than 30

were excluded. MATLAB’s makehdr function requires the rela-

tive exposure (RE) value of each base image, which is calcu-

lated as

RE ¼ 2�EV � N
2
0

t0

� S

S0

; (1)

Table VI. Wilcoxon signed-rank test result for the algorithms from Table V tested
on the colorchecker set of 568 images. A “þ” means the algorithm listed in the cor-
responding row is better than the one in corresponding column; a “�” indicates the
opposite; an “¼” indicates that the performance of the respective algorithms is statis-
tically equivalent. The labels “1-jet” and “2-jet” stand for N-jet (complete 1-jet) and
N-jet (complete 2-jet), respectively. “BAY” stands for Bayes-GT8 tested using three-
fold validation. The rest of the labels are as given in Table IV.

GW SoG EB1 EB2 GM 1-jet 2-jet BAY MaxP MaxM Max64 MaxC MaxCM

GW ¼
SoG � ¼
EB1 � þ ¼
EB2 � þ � ¼
GM � ¼ � þ ¼
1-jet � ¼ � þ þ ¼
2-jet � þ � þ þ þ ¼
BAY � � � ¼ � � � ¼
MaxP � � � � � � � � ¼
MaxM � � � � � � � ¼ þ ¼
MaxC � � � � � � � � ¼ � � ¼
MaxCM � þ � ¼ þ ¼ � ¼ þ þ � þ ¼

Table V. Performance comparison on the set of 568 images from the colorchecker8 data set. These images are linear. Labels are as listed in Table III. The median filter’s size is
5� 5.

Angular-distance L2 distance� 100

Methods tested on the colorchecker set Median Mean RMS Max Median Mean RMS Max

Do-Nothing 4.8 9.3 13 37 3.1 6.5 9.3 30

GW (our code) 3.7 4.8 6.2 25 2.6 3.4 4.5 20

SoG4 (our code) 4.5 6.4 8.7 36 3.5 5.4 7.5 37

EB12 (code from Ref. 17) 3.8 6.6 9.4 38 3.0 5.5 8.0 40

EB22 (code from Ref. 17) 4.4 7.2 10 47 3.5 6.1 8.7 50

GM (code from Ref. 3) 4.3 6.2 8.4 32 3.2 5.0 6.8 24

N-jet complete 1-jet (1-jet) (code from Ref. 3) 4.2 6.0 8.2 32 3.2 4.8 6.5 24

N-jet complete 2-jet (2-jet) (code from Ref. 3) 4.1 5.9 8.0 32 3.1 4.6 6.3 24

Bayes (three-fold) (BAY) (code from Ref. 8) 5.8 7.1 8.9 34 5.0 5.9 7.3 28

MaxRGB (MaxP) 9.1 10 13 51 7.8 9.0 12 55

MaxM 4.7 7.7 11 42 3.6 6.4 9.1 44

MaxRGB clipped removal (MaxC) 9.2 10 13 51 7.8 9.0 12 55

MaxRGB clipped removalþmedian filter (MaxCM) 4.2 7.2 10 41 3.2 6.0 8.6 37
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where EV¼ log2(N2=t). N is the relative aperture

(f-number), t is the exposure time (shutter speed) in sec-

onds, and S is the ISO. N0, S0, and t0 are constants related

to the camera, but which in the present case can be chosen

arbitrarily since all that is required is the relative exposure.

They were set (N0¼ 16, t0¼ 1=8000, S0¼ 100) such that

the resulting REs are positive integers. The final HDR

images may vary slightly in size due to possible cropping at

the boundaries of the images as they are aligned.

MEASURING THE SCENE ILLUMINATION
The illumination chromaticity is determined by manually

sampling the RGB digital counts from each of the four

white patches from the colorcheckers of the base images.

The brightest image from each set not containing any over-

exposed pixels (i.e., all RGB< 214� 1) anywhere within the

colorcheckers is used, and each measurement is the average

RGB of the 3� 3 neighborhood of a pixel near the center of

the white patch. Since the colorcheckers differ in orienta-

tion, we obtain measurements of the scene illumination at

four different angles of incidence. Not surprisingly these

measurements do not always agree. For the tests described

below, the median of the illumination chromaticities from

the four colorcheckers is used as the ground truth.

Taken over the 105 scenes, the median, mean, and

maximum angular difference between the RGBs of each of

the four patches and their collective median is given in the

last row of Table VII for the linear case, and in the last row

of Table VIII for the nonlinear case. Since we do not expect

the performance of an illumination-estimation method to

Table VII. Performance comparison of illumination-estimation methods evaluated on the linear (gamma¼ 1) HDR image data in terms of the angular error and Euclidean dis-
tance metrics between the measured and estimated chromaticities of the illumination. Labels are as given in Table I. The row labeled colorchecker gives the statistics of the differ-
ence between the RGBs of each of the four colorchecker’s whites and their collective median calculated over all 105 scenes. Since these images are much higher resolution than
those in the 321 set, the median filter’s size was increased to 15-by-15.

Angular-distance L2 distance� 100

Methods tested on HDR image set Median Mean RMS Max Median Mean RMS Max

Do-Nothing 14.7 15.1 15.5 29.8 14.5 14.2 14.5 21.5

GW (our code) 7.3 7.9 9.6 23.8 4.8 5.7 7.0 21.7

Shades of Gray4 (our code) 4.2 6.0 8.1 24.7 2.9 4.4 5.9 17.4

EB12 (code from Ref. 17) 3.7 5.9 8.0 24.2 2.9 4.5 6.0 17.1

EB22 (code from Ref. 17) 4.0 5.9 7.9 22.9 3.1 4.5 6.0 16.1

Bayes (three-fold) (BAY) (code from Ref. 8) 5.9 8.0 10 29 4.1 5.9 7.6 20.0

MaxRGB (MaxP) 4.2 6.5 8.8 28.6 3.0 4.9 6.6 20.4

MaxM 3.8 6.3 8.5 25.5 3.1 4.7 6.3 17.8

MaxRGB clipped removal (MaxC) 4.2 6.5 8.8 28.6 3.0 4.9 6.6 20.4

MaxRGB clipped removal plus median filter (MaxCM) 3.8 6.3 8.5 25.5 3.1 4.7 6.3 17.8

Colorchecker 0.9 1.9 3.0 15.5 0.75 1.6 2.6 11.4

Table VIII. Performance tested on the nonlinear (gamma¼ 2.2) HDR images. Labels as in Table I. As in the linear case, the Wilcoxon signed-rank test on these results indicates
that with the exception of Grayworld, which is worse, the other algorithms are statistically equal at the 95% confidence level.

Angular-distance L2 distance� 100

Methods tested on HDR image set Median Mean RMS Max Median Mean RMS Max

Do-Nothing 7.0 7.4 7.8 17.8 6.8 6.8 6.9 11.5

GW (our code) 4.0 4.4 5.1 12.8 2.7 3.0 3.5 11.4

SoG4 (our code) 2.3 3.3 4.4 13.4 1.5 2.3 3.0 8.4

EB12 (code from Ref. 17) 2.6 3.4 4.4 13.5 1.9 2.5 3.3 9.5

EB22 (code from Ref. 17) 2.6 3.2 4.2 13.5 1.9 2.5 3.1 9.6

MaxRGB (MaxP) 2.2 3.4 4.6 15.7 1.6 2.4 3.3 9.5

MaxM 2.1 3.2 4.3 13.1 1.5 2.3 3.1 9.0

MaxRGB clipped removal (MaxC) 2.1 3.2 4.3 12.3 1.5 2.4 3.1 8.2

MaxRGB clipped removal plus median filter (MaxCM) 2.2 3.4 4.6 15.7 1.6 2.4 3.3 9.5

Colorchecker 0.48 0.95 1.5 7.9 0.35 0.77 12.5 6.0
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surpass that of direct measurement of the illumination—

and given that all four colorcheckers represent the chroma-

ticity of the “true” illumination—these values represent a

lower bound on the mean, median, and maximum

illumination-estimation errors possible for any algorithm.

TESTS OF MaxRGB ON HDR IMAGES
MaxRGB,13 Grayworld,29 Shades-of-Gray,4 and Grayedge2

were run on the HDR images of the scenes without the col-

orcheckers. The results are shown in Tables VII and VIII for

linear and nonlinear HDR image data, respectively. A

graphical representation of the errors in Table VII is shown

in Fig. 1. The errors for the nonlinear case are smaller than

for the linear case, which is mainly due to the fact that

gamma compresses the range of RGB values and hence the

errors.

TESTS OF MaxRGB ON MULTIEXPOSURE IMAGES
Although each bracketed image has been assembled into a

single HDR image, we also test the illumination-estimation

methods on the individual base images from each brack-

eted image set (the ones without the colorcheckers in

them) to measure their performance as a function of expo-

sure. We evaluate the effect of clipping on MaxRGB per-

formance by considering the sequence of bracketed images

that have their maximum digital counts below a specified

threshold. As shown in Figure 2, for images without

clipping, the illumination-estimation error for MaxRGB

remains low and relatively constant until a sharp rise at

the point when the maximum scene radiance exceeds the

14-bit range of the camera. At that point, the high digital

counts are clipped to the maximum value of 16,383 and

MaxRGB fails. As more and more clipping occurs, we can

expect MaxRGB eventually to approximate the Do-Nothing

algorithm, which simply estimates the scene illumination as

always being white, because the RGB maximum values in

every 14-bit image will always be R¼G¼B¼ 16,383.

Although the plot in Fig. 2 shows the error to be rela-

tively constant under 16,000, there is a slight dip around

11,000. Using this as a cutoff, MaxRGB was tested on

images with a maximum R, G, or B digital count of 11,000

or less. The results are tabulated in Table IX for linear

image data. A graphical representation of the angular errors

in Table IX is shown in Fig. 1.

CONCLUSION
MaxRGB was found to work well when clipping was

avoided and the full dynamic range of the scene was pre-

served. Two different methods of capturing and represent-

ing the scene’s full dynamic range were used. The first was

to capture a set of images of different exposure and then to

run MaxRGB on the brightest image, whose exposure did

not exceed a specified threshold. If the 14-bit exposure

range of the camera was exceeded and clipping occurred, it

will have significant negative impact to MaxRGB’s perform-

ance. The second method of preserving the dynamic range

was to construct an HDR image from the set of multiple

exposures and then apply MaxRGB to the result. In this

case, MaxRGB worked as well or better than other repre-

sentative algorithms. However, as was the case with other

illumination-estimation methods, MaxRGB relies on the

assumption that the chromaticity of the illumination is

constant throughout the scene. If there are multiple sources

of illumination, especially a light source of different chro-

maticity appearing directly in the image, MaxRGB may fail.

Tests also showed that simple preprocessing of the

image data by removing clipped pixels and applying me-

dian filtering can significantly reduces the MaxRGB error

on Barnard’s1 standard 321-image test set. Similarly, on the

large Ciurea23 data set, it reduces the error to the point that

MaxRGB becomes very competitive with other methods,

including Color by Correlation9 and Leave-N-Out n-jet.7

Overall, the results presented here show that the poor

performance of MaxRGB previously reported in the litera-

ture may have more to do with the consequences of the lim-

ited exposure range (8 to 14 bits per channel) of digital still

cameras than the failure of MaxRGB’s fundamental assump-

tion that every scene contains some region, or combination

of regions, that reflects maximally in each of the R, G, and B

sensitivity ranges. This contradicts the widely held view

expressed, for example, by Fredembach and Finlayson30 that

“…one has, in general, no control as to which reflectances

are present in a scene. This uncertainty is the reason

why simple estimation methods such as gray-world and

MaxRGB are unreliable (if every scene contained a ‘white-

like’ patch, MaxRGB would be very accurate).” Although it

certainly is true that scenes without white-like patches can

occur, the ill-posed nature of the illumination-estimation

problem means that all illumination-estimation algorithms

are based on assumptions of one sort or another that may

Figure 2. Median, mean, root mean square, and maximum of the angu-
lar error between the estimated illumination chromaticity and the measured
illumination chromaticity as a function of the threshold on maximum digital
count allowed within the image for MaxP (MaxRGB without preprocess-
ing) and MaxCM applied to the base images. The sharp increase in error
occurs at the point at which the radiance exceeds the 14-bit range of the
camera. In the case of MaxCM, its preprocessing helps to reduce the
error, but clipping still leads to a significant increase.
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from time-to-time be violated. The results reported here

show that the MaxRGB assumption is no more likely to be

violated than the assumptions underlying the other repre-

sentative algorithms that were tested.
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APPENDIX

Evaluation Measures

The illumination chromaticity [r, g, b] is defined in camera

sensor space as r¼R=(RþGþB), g¼G=(RþGþB), and

b¼B=(RþGþB). Two different error measures are used

to measure the accuracy of an illumination estimate. The

first is the Euclidean distance between the r and g compo-

nents of the measured illumination chromaticity [ra, ga]

and the estimated illumination chromaticity [re, ge]

EL2 ¼ ra � reð Þ2þ ga � geð Þ2
� �1=2

(A1)

The second error measure is the angular difference in

degrees between the measured chromaticity [ra, ga, ba] and

the estimated chromaticity [re, ge, be] defined as

Eangular ¼ cos�1 ðra; ga; baÞ � ðre ; ge; beÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

a þ g2
a þ g2

a

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

e þ g2
e þ g2

e

p
" #

� 360

2p
:

(A2)

If a method provides only the r and g components, the

third component can be obtained as b¼ 1� r� g. If an

estimate includes a chromaticity component that is less

than zero, it is set to zero. Note that Gijsenij et al.31 found a

good correlation between a perceptual error measure and

the angular error used here.

For the distance error, we also compute the root mean

square (RMS), mean, and median errors over a set of N test

images. It has been argued that the median is the most

appropriate metric for evaluating color constancy.19 The

standard RMS is defined as

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

E2
i

vuut ; (A3)

where Ei can be either L2 or angular distances.
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