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Abstract. Industrial quality inspection using image analysis on
astaxanthin coating in aquaculture feed pellets is of great importance
for automatic production control. The pellets were divided into two
groups: one with pellets coated using synthetic astaxanthin in fish oil
and the other with pellets coated only with fish oil. In this study, multi-
spectral image analysis of pellets captured reflection in 20 wave-
lengths (385–1050 nm). Linear discriminant analysis (LDA), principal
component analysis, and support vector machine were used as sta-
tistical analysis. The features extracted from the multispectral
images were pixel spectral values as well as using summary statis-
tics such as the mean or median value of each pellet. Classification
using LDA on pellet mean or median values showed overall good
results. Multispectral imaging is a promising technique for noninva-
sive on-line quality food and feed products with optimal use of pig-
ment and minimum amount of waste. VC 2012 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2012.56.2.020403]

INTRODUCTION
Industrial quality inspection using image analysis is an area

undergoing extensive development. Pigment inclusion in

aquaculture feed pellets is an area of great interest for auto-

matic visual analysis for statistical production control and

optimization.

Astaxanthin is a naturally occurring carotenoide with

high antioxidant activity essential for reproduction, growth

and survival, and important for the development of color

in salmonid fish.1 The primary use of astaxanthin within

aquaculture is as a feed additive to ensure that farmed

salmon and trout have similar appearance to their wild

counterparts;2 it is the pigment that makes salmonid fish

red. The color appearance of fish products is important for

customers. Astaxanthin is very expensive3 and therefore

optimizing quantities used in fish feed production is

important.

An automatic vision system for on-line quality control

of pigment inclusion will be of great benefit to the industry,

both in relation to process control and process

optimization.

This article is based in part on an earlier study by

Ljungqvist et al.4 Besides this, to the authors’ knowledge no

further work has previously been done on analyzing the

coating of fish feed using image analysis. Multispectral

image analysis has shown good results in previous biologi-

cal applications, where it has been of interest to detect

subtle differences in color and surface chemistry.5–18

The aim of this project is to investigate the possibility

of distinguishing between feed pellets coated with fish oil

with and without added astaxanthin using multispectral

image analysis in order to investigate what spectral features

are of interest for further analysis of astaxanthin coating.

MATERIAL AND METHODS

Material

The feed types used were EcoLife20 and AquaLife R90

(BioMar A/S, Brande, Denmark), both with the radius of

4.5 mm. Each of the two types of fish feed pellets were di-

vided into two groups: One group constitutes pellets coated

with fish oil with an additional 50 ppm of a synthetic ver-

sion of astaxanthin; group A (astaxanthin). The other

group was the same type of pellet, coated using the same

fish oil without additional astaxanthin included; group B

(base). The fish oil typically contains a small amount of

natural astaxanthin, but this is assumed to be less than 1

ppm and should therefore not affect the results. The distri-

bution of the surface coating was unknown and some

amount of variation was likely to have occurred.

The pellets of type EcoLife20 were all produced on the

same day, while the pellets of the two groups of AquaLife
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R90 were produced on different days. This means that the

difference between groups A and B of AquaLife R90 is not

only the added synthetic astaxanthin in the coating but

could also be differences in the constituent raw materials.

Two feed types were used in order to test the robust-

ness of the astaxanthin coating prediction. A total of 2223

EcoLife20 pellets were used, and a total of 2158 AquaLife

R90 pellets were used, see Table I.

Imaging Equipment

The equipment used was a camera and lighting system

called VideometerLab (Videometer A/S, Hørsholm,

Denmark) which supports a multispectral resolution of up

to 20 wavelengths. These are distributed over the ultraviolet

A, visible (VIS), and first near infrared (NIR) region. The

range is from 385 to 1050 nm, as shown in Table II.

This system uses a Point Grey Scorpion SCOR-20SOM

gray-scale camera, and the objects of interest are placed

inside an integrating sphere (Ulbricht sphere) with uniform

diffuse lighting from light sources placed around the rim of

the sphere. All light sources are light-emitting diodes (LED)

except for 1050 nm which is a diffused laser diode. The cur-

vature of the sphere and its white matte coating ensure a

uniform diffuse light, so that the specular effects are avoided

and the amount of shadow is minimized. The device is cali-

brated radiometrically with a following light and exposure

calibration. The system is also geometrically calibrated to

ensure pixel correspondence for all spectral bands.19

The Scorpion camera has a 12 bit analogue to digital

converter (ADC), and the system used 8 bit data output

from the camera. The correction for calibration gives reflec-

tance intensity output of 32 bit precision.

The image resolution is 1280� 960 pixels. Each file

contains 20 images, one for each spectral band. This

results in a multispectral image cube with dimensions of

1280� 960� 20. In this situation, 1 pixel represents approx-

imately 0.072� 0.072 mm.

Spectral Equipment

In order to explore further the spectral properties of astaxan-

thin, a spectrometer was used. Absorption spectra of synthetic

astaxanthin in a solution of fish oil along with spectra of plain

fish oil were recorded in the VIS and NIR range using a

NIRSystems 6500 absorption spectrometer (Foss NIRSystems,

Inc., USA) The absorption spectra were transformed to reflec-

tion values using the standard relation A¼�log(R), where A

is the absorption value and R is the reflection value. Every sec-

ond nanometer (nm) was recorded in the VIS and NIR range.

Image Analysis

Initially, the pellets were segmented from the background

using an intensity threshold on the multispectral images,

see Figures 1 and 2. Color standard RGB image representa-

tions of the multispectral images were made only for visu-

alization in this article, by multispectral color-mapping

using penalized least square regression described in Dissing

et al.20

The basic pellet compound gives a spectral response

which will be present in the both groups A and B. Each

Table I. Number of analyzed pellets in each group. Group A represents pellets
coated with synthetic astaxanthin in fish oil, and group B is pellets coated only with
fish oil.

Size Group A Group B Total Production
(mm) samples samples samples day

EcoLife20 4.5 1165 1058 2223 Same

AquaLife R90 4.5 1207 951 2158 Different

Table II. The wavelength of the light sources in the VideometerLab device and their
spectral representation.

Band Wavelength (nm) Color

1 385 Ultraviolet A

2 430 Violet

3 450 Violet, blue

4 470 Blue

5 505 Green

6 565 Green

7 590 Yellow, orange

8 630 Red

9 645 Red

10 660 Red

11 700 Red

12 850 NIR

13 870 NIR

14 890 NIR

15 910 NIR

16 920 NIR

17 940 NIR

18 950 NIR

19 970 NIR

20 1050 NIR

Figure 1. EcoLife 20 pellets with synthetic astaxanthin in fish oil as coat-
ing (group A) with the segmentation result overlaid (white). Standard RGB
image using multispectral color-mapping using penalized least square
regression.
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pixel is thus a combination of the reflectance of a set of

constituents. This mix is assumed to be of equal amount

for each pellet type except for the difference in the astaxan-

thin coating that we want to isolate in our classification.

The ground truth is that we know that certain pellets

are coated with synthetic astaxanthin, but since the surface

distribution is unknown, it is unclear how much synthetic

astaxanthin each of these pixels contains. This gives us an

uncertain one-to-many relationship situation.

One way to solve this uncertainty is to represent each

pellet using the mean or median of all pixels in a pellet as

sample values. In this manner, we even out the variance of

all pixels in a pellet, and each pellet becomes a distinct

observation.

In addition to the pellet pixel mean and median values,

further summary statistical features to describe the coating

distribution were extracted based on pellet pixel values:

skewness, kurtosis, variance, and maximum value.

Principal Component Analysis

Our multivariate data from the images were analyzed using

principal component analysis (PCA) for exploratory pur-

poses. PCA is the most optimal method with respect to

maximizing the variance21 and has been commonly used

for dimension reduction to deal with ill-posed problems. If

the relation of interest contains large variation, then PCA is

a good method for analyzing the data.22

Preprocessing

The preprocessing method standard normal variate (SNV)

was used in combination with PCA. The SNV is performed

by subtracting the mean and normalizing using the stand-

ard deviation of the data.23 The SNV normalizes each sam-

ple individually and this will remove any variation in

concentration level of the coating between pellets.

Discriminant Analysis

To discriminate between the two groups, we want the

within group variation to be small compared to the

between group’s variation. Wilk’s K consists in principle of

the ratio of the within group variation (W) and the total

variation (T), i.e., the within group plus the between group

variations, see Eq. (1). A value of Wilk’s K which is close to

zero indicates that the two groups are well separated.

K ¼ detðWÞ
detðTÞ : (1)

For statistical discriminant analysis methods, we use linear

discriminant analysis (LDA) and quadratic discriminant

analysis (QDA).21 These are both based on the Mahalanobis

distance and assume that the observations in each group

are normally distributed. The LDA and QDA are based on a

distance-to-the-group mean, weighted by the variance. A

training set of 70% of the samples were used here, along

with a test set of 30% of the samples.

Support Vector Machine

For further discriminant analysis, we used the support

vector machine (SVM), which is a supervised learning tech-

nique based on the theory of optimal separating hyper-

planes.21 While LDA and QDA are based on the distance

between a sample and the group mean, SVM is based on

the distance to the nearest training data points; the margin.

The basic idea with SVM is to construct an optimal

separating hyperplane for the two groups by mapping the

data to a higher-dimensional space. This method uses a

soft margin to handle the situation of two nonlinearly

separable groups; meaning that a certain amount of the

training samples are allowed to fall on the wrong side of

the separating hyperplane which is defined by the slack

amount.

The SVM includes a kernel function, responsible for

the transformation of the data into a higher-dimensional

space. In this way the data are mapped from its original

input space into the higher-dimensional feature space.

Once the data has been mapped, the aim is to train the

model to define a separating hyperplane in the feature

space so that the data are then mostly separable by a line.

One advantage of using a kernel function is that the SVM

method can perform classification without ever represent-

ing the feature space explicitly, thus reducing the computa-

tional cost. The kernel is located at the point of the dot

product in the SVM algorithm.21

Popular choices for kernel functions can be seen in

Eqs. (2) and (3). A dth degree polynomial is shown in Eq.

(2), and a radial basis function (RBF) can be seen in

Eq. (3). The parameters of variable choice are c (constant),

s (linear scaling), d (degree of the polynomial), and c. The

samples from each group are denoted x1 and x2,

respectively.

It should be noted that the radial basis function has a

Gaussian form, where c ¼ 1=2r2. The center of the RBF is

the support vector and r will determine the area of influ-

ence, it has over the data space.

For the kernel parameters, 120 values logarithmically

distributed between 0 and 10 were tested for the parameters

Figure 2. EcoLife20 pellets with fish oil coating (group B) with the seg-
mentation result overlaid (white). Standard RGB image representation
using multispectral color-mapping using penalized least square
regression.
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c and d, respectively, and the best result was chosen for

each kernel. For the polynomial kernel, the parameters c

and s were both set to 1. The value of 0.5 was used as the

soft margin parameter.

K x1; x2ð Þ ¼ s x1 � x2ð Þ þ cð Þd ; (2)

K x1; x2ð Þ ¼ exp �c x1 � x2k k2
� �

; (3)

The SVM implementation used in this study is the SVM

light package.24

RESULTS AND DISCUSSION
Comparing the SNV-normalized mean spectra of the two

groups of EcoLife20 shows that the largest differences between

pellets coated with synthetic astaxanthin in fish oil (group A)

and pellets coated only with fish oil (group B) were at 970,

950, and 565 nm (in order of magnitude), see Figure 3. Both

970 and 950 nm are in the NIR range, while 565 nm repre-

sents the green color, which is next to yellow. Also, 1050 nm

shows to separate the groups. For AquaLife R90, the largest

differences between the group spectra are in the visual range

around 400 nm and also slightly above 600 nm.

The spectrometer results show a large deviation between

synthetic astaxanthin in fish oil and plain fish oil in the range

of 500–600 nm, see Fig. 3. This corresponds well with the

results from the VideometerLab images and partly corre-

sponds with previous studies of astaxanthin.25,26

The mean spectra of the two groups of both EcoLife20

and AquaLife R90 are significantly different at a 0.1% level.

This is promising for classification between the two coating

groups. On the other hand, Wilk’s K of the group means of

EcoLife20 pellets is 0.987, and for AquaLife R90, it is 0.826.

The high values here reflect the situation of high variation

within the groups and a low variation between the groups.

So, even though the group means are well separated, there

is a vast overlap of the two groups.

Classification tests of EcoLife20 show that LDA on the

pellet means or pellet medians gave the best result with a

classification correctness of about 93%, see Table III. for

test results.

Classification tests of AquaLife R90 show that QDA on

the pellet medians gave the best result with a classification

correctness of 100%.

The results from LDA and QDA show for all tests that

group A is misclassified into group B more often than the

opposite. This could be because of the variation in the

astaxanthin distribution on the pellets, in that if some pel-

lets have less astaxanthin on the surface than others they

might get misclassified.

Using LDA and QDA on the other summary statistics

features (skewness, kurtosis, variance, and maximum value)

gave results of lower correctness for both pellet types

(results not shown).

Considering the fact that the AquaLife R90 pellets of

the different groups were produced on different production

days, there is a chance that this fact affects the classification

rate. If the two groups also contain differences in raw mate-

rial batches, this could potentially increase the differences

between the two groups of this pellet type and thereby

improve the classification result. This gives us a confound-

ing situation where we are not certain whether it is the syn-

thetic astaxanthin coating that is classified, the constituent

raw material differences, or a combination of the two. In

future experiments, this should be avoided by using the

same production day for both groups. For further analysis

in this area, the results are likely to show variation depend-

ent on the mixture of the pellet types in relation to the vari-

ation in feed compounds that will affect the spectral

response.

Having LDA train on the mean pixel values of some of

the EcoLife20 pellets, 1126 pellets from group A and 1026

pellets from group B, and then using this model on pellet

pixel values for the remaining 39 and 32 pellets, respectively,

rendered a pixel classification correctness of only 54%. The

Figure 3. Spectrometer reflectance of synthetic astaxanthin in oil (green)
and plain fish oil (black). Multispectral images (reflectance) mean of group
A (pellets with synthetic astaxanthin in fish oil) (red) and group B (pellets
with fish oil) (blue) of the EcoLife20 type. Spectrometer spectra converted
from absorption to reflectance. All spectra are normalized using SNV to fit
in the same plot. The wavelengths captured for the images by the Video-
meterLab are marked by vertical dotted lines.

Table III. The misclassification of pellet coating type for different kinds of features.
Displayed values are total test error for classification of the two groups A (astaxan-
thin) and B (base).

EcoLife20 LDA QDA SVM (RBF) SVM (Poly)

Mean 0.0646 0.0901 0.1291 0.0811

Median 0.0736 0.0931 0.1456 0.0841

Mean, SNV, PC1-5 0.1396 0.2162 0.1727 0.1637

AquaLife R90

Mean 0.0046 0.0031 0.0093 0.0031

Median 0.0015 0.0000 0.0185 0.0031

Mean, SNV, PC1-5 0.0185 0.0201 0.0155 0.0108
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same test for AquaLife R90 shows a pixel classification cor-

rectness of 55%. This lower value in comparison to classifi-

cation on the pellet mean values is interpreted as an

indication of high variance of the spatial coating distribution

on the pellets and/or high variance in the feed composition

at the pixel level.

Using PCA before doing LDA or QDA on the pellet

mean values did not improve the results, see Table III. This

may be an indication that maximizing the variance is not a

well-suited method for this particular problem, which was

also indicated by the high variation within groups in com-

parison to the variation between groups. PCA maximizes

the variance without specifically considering the variance

between the two groups in the data. PC2 shows the largest

difference between the two groups, see Figure 4. The first

five principal components explain 98% of the total variance

of the pellet mean values, and still the result of the discrimi-

nant analysis on these five components rendered worse

classification in comparison to using all 20 variables in the

plain data.

In most of the tests LDA performed better than QDA,

this is interpreted such that the problem is linear. This

could also be explained by the fact that QDA uses two co-

variance matrices, instead of LDA:s one matrix, and in

combinations with 20 dimensions this could make QDA a

bit numerically unstable. LDA also showed better results

than SVM for the EcoLife20 pellets. For AquaLife R90, LDA

or QDA showed better results than SVM for classification

using the pellet mean or pellet median values, while the

classification using PC1–5 on the pellet means showed bet-

ter results using SVM than the LDA and QDA. The LDA

and QDA are quite quick to compute, while the SVM takes

significantly longer time.

To sum up, the results show that it is possible to distin-

guish between feed pellets with and without inclusion of

synthetic astaxanthin in the coating using multispectral

image analysis. However, more work is needed in order to

make the method robust for different pellet types and also

for different amounts of astaxanthin. Since astaxanthin is ex-

pensive, it is important to have a good accuracy in the

method. This will later be of importance for developing

rapid and noninvasive on-line quality food and feed prod-

ucts with optimal use of pigment and minimum amount of

waste.
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