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Abstract. It has been estimated that one out of every four medical
diagnosis in the world involves ultrasound imaging modality because
of its noninvasive nature, low cost and capability of forming real time
imaging. Ultrasonic imaging extends its application to many fields of
medical diagnosis, but the utilization is being unfortunately affected
by speckle noise. In this article, an efficient multiscale approach is
proposed to reduce speckle, to enhance the edge information and to
preserve point and linear features, rather than just inhibiting smooth-
ing. With this approach, the image enhancement is made in three
steps: First the image is transformed into Laplacian pyramid domain
representation. Second, the pyramid coefficients are manipulated by
permutated diffusion, and finally the image is reconstructed from the
diffused Laplacian pyramid. New permutated diffusion is proposed
for coefficient manipulation for effective speckle reduction and
enhancement. The proposed permutated diffusion avoids the blocky
effects caused by second-order partial differential equation (PDE)
and requires only little iteration compared to fourth-order PDE to
converge. In each pyramid layer, a gradient threshold is estimated
automatically using robust median estimator. The mean absolute
error between two adjacent diffusion steps is used as a stopping cri-
terion. Performance of the proposed approach is compared with the
state of the art pyramid based methods. Experiments on synthetic
data, simulated phantom and real ultrasound data set indicate effec-
tive suppression of speckle, preservation of edge information
and their structural details. VC 2012 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2012.56.1.010501]

INTRODUCTION
Ultrasound Medical imaging is very popular due to its low

cost, least harmful to human body, real time view, and small

size. It is estimated that one out of every four medical diag-

nostic image studies in the world involves ultrasonic techni-

ques. Ultra sound (US) waves are characterized by frequency

above 20 kHz, which is the upper limit of human hearing. In

medical US applications, frequencies are used between

500 kHz and 30 MHz. B-mode imaging is the most preferred

modality in medical US. When an US transducer placed

onto the patient’s skin over the imaged region, it sends a US

pulse that travels along a beam into the tissue. Due to inter-

faces some of the US energy is reflected back to the trans-

ducer and converted into echo signals. These signals are then

sent into the amplifiers and signal processing circuits in the

imaging machine’s hardware to form a 2D image. The pro-

cess of launching pulses in different directions is repeated in

order to examine the whole region in the body. Thus, US

imaging involves signals which are obtained by coherent

summation of echo signals from scatterers in the tissue.

ULTRASOUND IMAGING SYSTEM
The functional block diagram of an ultrasound imaging

system is depicted in Figure 1. The construction of ultra-

sound B-mode image involves capturing of echo signal

returned from the tissue at the surface of piezoelectric crys-

tal transducers. These transducers convert the ultrasonic RF

mechanical wave into electrical signal. Convex ultrasound

probes collect the echo from the tissue in a radial form.

Each group of transducers is simultaneously activated to

look at a certain spatial direction from which they generate

a raw line signal called A-line, which is later used for raster

image construction. These A-lines are then demodulated

and logarithmically compressed to reduce their dynamic

range to suit the commercial display devices. The final

Cartesian image is constructed from the sampled A-lines in

a process called scan conversion.

Speckle reduction techniques can be applied on enve-

lope detected data, log compressed data, or on scan con-

verted data. However, slightly different results will be

produced for each data. In the compression stage, some

useful information about the imaged object may be deter-

iorated or even lost. For optimum result envelope detected

data processing is preferred because some information that

lost after the compression stage cannot be recovered by

working with log compressed data or the scan converted

image. However, the real time speckle reduction methods
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are applied on the scan converted image, since the scan

converted image is always accessible and most of the com-

mercial ultrasound systems do not output the envelope

detected or log compressed data.

SPECKLE IN ULTRASOUND IMAGING
Speckle in US B-scan is seen as a granular structure, which is

caused by the constructive and destructive coherent interfer-

ences of back scattered echoes from the scatterers that are

typically much smaller than the spatial resolution of medical

ultrasound system.1,2 This phenomenon is common to laser,

sonar, and synthetic aperture radar imagery.3 Speckle pattern

is a form of multiplicative noise, and it depends on the

structure of imaged tissue and various imaging parameters.

Speckle degrades the target detection ability in B-scan

images and reduces the contrast, resolutions. This affects the

human ability to identify normal and pathological tissues. It

also degrades the speed and accuracy of ultrasound image

processing tasks such as segmentation and registration.

The nature of the speckle pattern can be categorized

into one of three classes according to the number of scatter-

ers per resolution cell or the so called scatterer number

density, spatial distribution and the characteristics of the

imaging system itself. These classes are described as follows:

(1) Fully formed speckle pattern: It occurs when

many fine randomly distributed scattering sites

exist within the resolution cell of the pulse-echo

system. In this case, the amplitude of the backscat-

tered signal can be modeled as a Rayleigh distrib-

uted random variable4 with a constant SNR of

1.92. Blood cells are typical examples of this type

of scatterers.
(2) Nonrandomly distributed with long-range order:

Examples of this type are the lobules in liver paren-

chyma. It contributes a coherent or specular back-

scattered intensity that is in itself spatially varying.

Due to the correlation between scatterers, the

effective number of scatterers is finite. This situa-

tion can be modeled by the K-distribution. This

type is associated with SNR below 1.92. It can also

be modeled by the Nakagami distribution.5,6

(3) Nonrandomly distributed with short-range order:

Examples of this type include organ surfaces and

blood vessels. When a spatially invariant coherent

structure is present within the random scatterer

region, the probability density function of the

backscattered signals becomes close to the Rician

distribution.7 This class is associated with SNR

above 1.92.

Thus, speckle is considered as the dominant source of

noise in ultrasound imaging and should be processed with-

out affecting important image features. The main purposes

for speckle reduction in medical ultrasound imaging are

(1) To improve the human interpretation of ultrasound

images—speckle reduction makes an ultrasound image

cleaner with clearer boundaries and (2) Despeckling is a

preprocessing step for many ultrasound image processing

tasks such as segmentation and registration—speckle

reduction improves the speed and accuracy of automatic

and semiautomatic segmentation and registration. The fol-

lowing factors have to be taken into account in developing

an efficient and robust denoising method for ultrasound

images.

Adaptation to Features of Interest

For an experienced radiologist speckle noise (also referred

as “texture” in medical literature) may present diagnostic

information. The degree of speckle smoothing depends on

the expert’s knowledge and the application at hand, like

enhancement for visual inspection or preprocessing for

automatic segmentation. For automatic segmentation, it is

usually preferred to keep the sharpness of the boundaries

between different image regions and to smooth out the

speckle texture. For visual interpretation, the texture

smoothing may be less preferable.

Figure 1. Block diagram of ultrasound imaging system.
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Adaptive to Spatial Content

The medical ultrasound images have significant spatial

correlation. A spatially adaptive denoising can be based on

statistical content models or on adapting certain filter pa-

rameters based on measurements from a local window

around each pixel.

Proposal of Noise Models

The basic assumption in majority of speckle filters is that

the speckle is fully developed and is modeled as multiplica-

tive noise. Logarithmic operation transforms speckle into

additive white Gaussian noise. But for different reasons

such a speckle model seems to be too simplistic in the case

of medical ultrasound images. Speckle is not necessarily

being fully developed and there exists a pronounced spatial

correlation. Moreover, the ultrasound devices themselves

usually perform a preprocessing of the raw data including

even logarithmic compression. Thus, in the displayed med-

ical ultrasound images, the noise differs significantly from

often assumed multiplicative method.

Most speckle filters are developed for enhancing visual-

ization of speckle images.8–10 In compounding method, a

series of ultrasound images of the same target are acquired

from different scan directions and with different transducer

frequencies or under different strains. Then, the images are

averaged to form a composite image. The compounding

method can improve the target detection ability but they

suffer from degraded spatial resolution and an increased

system complexity. Whereas the postacquisition method do

not require many hardware modification. The postacquisi-

tion image processing technique falls under two categories

(1) single scale spatial filtering and (2) multiscale methods.

A speckle reduction filter that changes the amount of

smoothing according to the ratio of local variance to local

mean is developed by Bamber and Daft.11 In which,

smoothing is increased in homogeneous region where

speckle is fully developed and reduced or even avoided in

other regions to preserve details. Unsharp masking filter is

suggested in Ref. 12, in which the smoothing level is

adjusted depending on the statistics of log compressed

images but the filters proposed in Refs. 11 and 12 have dif-

ficulty in removing speckle near or on image edges. In

region growing based spatial filtering methods,13–15 it is

assumed that the pixels have similar gray level and connec-

tivity are related and likely to belong to the same object or

region. After all pixels are allocated to different groups, spa-

tial filtering is performed based on the local statistics of

adaptive regions, whose sizes and shapes are determined by

the information content of the image. The main difficulty

in applying region growing based methods is designing the

appropriate similarity criteria for region growing.

The numbers of filters have been developed for despeck-

ling based on the multiplicative model16 of speckle

noise.17–20 Filtering based on anisotropic diffusion (AD) is

introduced by Perona and Malik (PM)21 and his work has

made a great influence in this field of research. Later, edge

enhancement function is incorporated to generalize PM

diffusion by Wei22 and a nonlinear fourth-order diffusive

term is added to reduce staircase effects and to preserve

edges23 by Chan. et al. and Yu and Acton24 have proposed a

novel filtering scheme based on the combination of the fil-

ters first described by Lee and Frost. The AD equation gives

rise to a speckle removal filter called speckle reducing aniso-

tropic diffusion (SRAD). This filter has shown a very good

performance with different levels of speckle; however, for

thin linear features and point features, SRAD tends to

broaden and it needs to be corrected. Regularization meth-

ods have been used in real-valued image restoration25,26 as

well as image reconstruction problems such as medical to-

mography27,28 to obtain improved image estimates in the

face of data degradation. The simplest and most common

approach is to use quadratic functions of the unknown

quantities. These methods lead to computationally straight-

forward optimization problems, but they suppress the useful

features in the resulting imagery, such as edges. Recently,

considerable effort has been spent in designing alternative

nonquadratic constraints which preserve such features.

Methods based on these nonquadratic constraints have been

successfully used in edge-preserving regularization in image

restoration27 and computer-assisted tomography.27–29

Recently, there has been a great deal of interest in rep-

resentations that retain spatial localization in the spatial

frequency domain. This is achieved by decomposing the

image into a set of spatial frequency band pass component

images.30 Individual samples of a component image repre-

sent image pattern information that is appropriately local-

ized, while the band passed image as a whole represents

information about a particular fineness of detail or scale.

There is evidence that the human visual system uses such

representation and multiresolution schemes that are

becoming increasingly popular in machine vision and in

image processing in general.

Several multiscale methods based on wavelet and pyra-

mids have been proposed for speckle reduction in ultra-

sound imaging. The wavelet based speckle reduction

methods31–36 have difficulty in determining an appropriate

threshold, reasonable distribution models and the exact

prior knowledge of noise distribution.

Pyramid transform is a multiscale approach used for

reducing speckle.37,38 Unlike sub-band decomposition in

wavelet transform, the approximation and the interpolation

filters in pyramid transform have low pass properties so

that pyramid transform does not require quadrature mirror

filters. Considering the multiplicative nature of speckle,

Aiazzi et al.37 introduced a ratio Laplacian pyramid. In this

method, the conventional Kuan filter is extended to multi-

scale domain by processing the interscale layers of the ratio

Laplacian pyramid, but it suffers from the noise variance

estimation in each interscale layer. Diffusion based

Laplacian pyramid is proposed in Ref. 38 which utilizes the

second-order nonlinear diffusion and median absolute

deviation estimator. But the use of second-order partial dif-

ferential equations (PDE) introduces blocky effects and

cause broadening of point and linear features.
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In this article, an efficient speckle reduction is pro-

posed for the effectively suppress speckle and at the same

time to preserve edges and detailed features in the diagnos-

tic image. The proposed method transforms an image into

Laplacian pyramid domain, and the pyramid coefficients

are manipulated by permutated diffusion, finally the image

is reconstructed from the diffused Laplacian pyramid. The

permutated diffusion is the combination of second-order

and fourth-order PDE. It avoids the blocky effects caused

by second-order PDE and require only little iterations com-

pared to fourth-order PDE.

BACKGROUND

Diffusion in Speckle Reduction

The use of PDE in image processing has grown significantly

over the past years. Its basic idea is to deform an image, a

curve or a surface in a partial differential equation frame-

work and to approach the expected result as a solution to

this equation. Diffusion is generally defined as a physical

process that equilibrates concentration differences without

creating or destroying mass. This physical observation can

be easily cast in a mathematical formulation. The equilibra-

tion property is expressed by Flick’s law

j ¼ �D:rI : (1)

This equation states that a concentration gradient rI

causes a flux j which aims to compensate for this gradient.

The relation between rI and j is described by the diffusion

tensor D, a positive definite symmetric matrix. The case

where j and rI are parallel is called isotropic. Then, we

may replace the diffusion tensor by a positive scalar-valued

diffusivity g. Generally, j and rI are not parallel. The diffu-

sion only transport mass without destroying it or creating

new mass and is expressed by the continuity equation as

@t I ¼ �div j; (2)

where t denotes the time. If we plug in Flick’s law into the

continuity equation, we end up with the diffusion equation

@t I ¼ div ðD:rIÞ: (3)

This equation appears in many physical transport processes.

In the context of heat transfer, it is called heat equation. In

image processing we may identify the concentration with the

gray value at a certain location. If the diffusion tensor is con-

stant over the whole image domain, it is called homogeneous

diffusion, and a space-dependent filtering is called inhomo-

geneous. Often the diffusion tensor is a function of the dif-

ferential structure of evolving image itself. Such a feedback

leads to nonlinear diffusion filters. Diffusion which does not

depend on the evolving image is called linear. In general, the

homogeneous filtering is named isotropic and inhomogene-

ous blurring is named as anisotropic. The anisotropic diffu-

sion uses a scalar-valued diffusivity instead of a diffusion

tensor. A general expression of the anisotropic diffusion

equation can be written as

Iðx; 0Þ ¼ I0

@I

@t
¼ divðFÞ þ bðI0 � IÞ

(
; (4)

where F is diffusion and b is data attachment coefficient.

Diffusion algorithms remove noise from an image by modi-

fying the image via solving a PDE. For example, applying

the isotropic diffusion equation (the heat equation) given

by @I(x,y,t)=@t¼ div(c.rI), to a noisy image, using the

original (degraded or noisy) image I(x,y,0) as the initial

condition [where I(x,y,0);<2¼<þ is an image in the con-

tinuous domain, (x, y) specifies spatial position, t is an arti-

ficial time parameter, c is the diffusion constant, and rI is

the image gradient] is equivalent to filtering the image with

a Gaussian filter.

Second-Order PDE

Second-order PDE have studied as a useful tool for image

enhancement and scale space analysis of image. In 1990,

Perona and Malik21 proposed a nonlinear anisotropic diffu-

sion equation for better image smoothing and his work

made an important influence on this field. The PDE of ani-

sotropic diffusion is given as follows in continuous

domain:17,18

@I

@t
¼ r:½cð rIj jÞrI �

Iðt ¼ 0Þ ¼ I0

8<
: ; (5)

wherer is the gradient operator,r. is the divergence opera-

tor, j�j denotes the magnitude, c(x) is the diffusion coeffi-

cient, and I0 is the initial image. But using P-M equation to

smooth the image bring in “blocky effects,” i.e., after image

progress the gray level in some region is very close or same.

2D SRAD (Ref. 24) takes the format of the PDE of conven-

tional anisotropic diffusion. Given an intensity image I0(x,y)

having none zero-valued intensities over the image domain

U, the continuous form of SRAD is expressed as follows:

@Iðx; y; tÞ
@t

¼ r:½cðx; y; : tÞrIðx; y; tÞ�

Iðx; y : 0Þ ¼ I0ðx; yÞ; ð@Iðx; y; tÞ=@X ¼ 0

8<
: ; (6)

where @X denotes the border of X, c(x) is the diffusion

coefficient, and q is the instantaneous coefficient of varia-

tion (ICOV). 2D SRAD inherits the partial differential

equation format of the conventional anisotropic diffusion

and exploits ICOV. 2D SRAD is based on traditional aniso-

tropic diffusion, which is a nonlinear filtering method that

encourages diffusion in the homogeneous region, while

inhibits diffusion at edges.

Fourth-Order PDE

Second-order PDE based methods tend to cause blocky

effects in the image. These effects are visually unpleasant, and

there is high possibility of detecting them as false edges by

edge detection algorithm. The second-order PDE are usually

designed to evolve faster in smooth areas than around the
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image edges in order to preserve edges and to remove noise.

Therefore, after certain time of evolution, the image will look

like one consisting of level areas of various intensities and

boundaries and these level areas may coincide with edges.

The fourth-order partial differential equation is pro-

posed in Refs. 39–41. This equation can reduce the noise

and at the same time it can keep the image edge better. The

fourth-order PDE is

@I

@t
¼ �r2½gð r2I

�� ��Þr2I �; (7)

where gðxÞ ¼ 1
½1þðs=kÞ2�, k is a constant. r and D are gradient

and Laplacian operators, respectively. The advantage of using

fourth-order PDE in image denoising is, it removes the

blocky effects that made by second-order nonlinearity diffu-

sion equation. However, it requires more number of itera-

tions to converge. Thus, we necessitate a PDE that combines

the advantages of second-order and fourth-order partial dif-

ferential equations.

Pyramid Transform

The image pyramid offers a flexible and convenient multi-

resolution format that mirrors the multiple scales of proc-

essing in the human visual system. The image pyramid is a

data structure designed to support efficient scaled convolu-

tion through reduced image representation. It consists of a

sequence of copies of an original image in which both sam-

ple density and resolution are decreased in regular steps.

Pyramid construction is equivalent to convolving the origi-

nal image with a set of Gaussian-like weighting functions.

A general structure of pyramid transforms consists of

decomposition and reconstruction stages and can be

described by approximation and interpolation filtering. In

the decomposition stage, a signal is successively decom-

posed into a decimated approximation signal and a signal

containing residual information. This residual signal is com-

puted as the difference between the signals on a finer scale

and the interpolated signal from a coarser scale. A finer scale

corresponds to a lower pyramid layer. The lowest pyramid

layer has the same size as the original image. The basic clas-

sifications of pyramids are: Gaussian pyramid and Laplacian

pyramid. In Gaussian pyramid, the original image G0 is

repeatedly filtered and subsampled to generate the sequence

of reduced resolution image G1, G2, etc. These comprise a

set of low pass filtered copies of the original image in which

the bandwidth decreases in one octave steps. A specific pyr-

amid is determined by its particular decimation factor and

approximation and interpolation filters.

In the Laplacian pyramid, two operators REDUCE and

EXPAND are commonly used. The REDUCE operator per-

forms a two-dimensional (2D) low pass filtering followed

by a subsampling by a factor of two in both directions. The

EXPAND operator enlarges an image to twice the size in

both directions by up-sampling (i.e., insertion of zeros)

and a low pass filtering. The filtering is followed by a multi-

plication by a factor of 4, which is necessary to maintain

the average intensity being reduced by the insertion of ze-

ros. For an input image I, let its Gaussian pyramid at layer l

be Gl, and its Laplacian pyramid at layer 1 be Ll, where

l = 0,1,2,…,d-1 and d is the total decomposition layer. The

Laplacian pyramid is introduced by Burt and Adelson.39 An

important property of the Laplacian pyramid is that it

is a complete image representation. The Gaussian and

Laplacian pyramids can be defined as

G0 ¼ I ;

Gl ¼ REDUCE ½Gl�1�;
Ll ¼ Gl � EXPAND ½Glþ1�: (8)

The Gaussian pyramid consists of a set of low pass filtered

copies of the original image at different sizes, whereas the

Laplacian pyramid decomposes the original image into a

set of band pass images and a final low pass image. Recon-

struction of an image from its Laplacian pyramid can be

achieved by simply reversing the decomposition steps. The

top pyramid level, LN, is first expanded and added to LN� 1

to form GN�1 then this array is expanded and added to

LN� 2 to recover GN� 2, and so on.

MULTISCALE APPROACH

Permutated Diffusion in Laplacian Pyramid Domain

The diffusion coefficients proposed by Zhang,38 Perona

and Malik,21 Yu and Action24 are ill disposed in the sense

that image close to each other are likely to diverge during

the diffusion process. Since anisotropic diffusion is

designed such that the smooth areas are diffused faster than

less smooth ones, blocky effects will appear in the early

stage of diffusion, even though all the blocks will finally

merge to form a smoother image.

The fourth-order PDE40–42 is considered for image

denoising for the following reasons, First, Fourth-order lin-

ear diffusion dampens oscillations at high frequencies much

faster than second-order diffusion. Second, there is the pos-

sibility of having schemes that include the effects of curva-

ture in the dynamics, thus creating a richer set of functional

behaviors. We have studied a combination of second-order

and fourth-order PDE called permutated diffusion that uni-

tes the advantages of the second-order and fourth-order

PDE. The proposed permutated diffusion avoids the blocky

effects caused by second-order PDE, and it requires only

minimum number of iterations compared to fourth order;

thus, it removes the noise and preserves the edges.

The proposed method consists of three stages as shown

in Figure 2. The sequences of operation are: (1) Transforma-

tion of an image into its Laplacian pyramid domain, (2)

manipulation of pyramid coefficients by regularized permu-

tated diffusion, and (3) reconstruction of the diffused Lapla-

cian pyramid. In the first step, an image is decomposed into

its pyramid structure of decreasing frequencies. Pyramid

transforms separate information into frequency bands.

Since speckle noise has high frequency, it resides in

fine scale corresponds to low pyramid layer. On the other
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hand, the speckle noise is negligible in the coarser scale cor-

responds to the higher pyramid layer. In the second step,

each band pass layer of Laplacian pyramid is filtered using

regularized permutated diffusion to suppress speckle and to

preserve edges. The proposed Laplacian pyramid based per-

mutated diffusion (LPPD) equation is derived as follows:

The heat equation from Fourier’s law of heat flux22 is

jðx; tÞ ¼ �DrIðx; tÞ; (9)

where D is a constant. Equation (9) is approximated to a

quasihomogeneous system that is near equilibrium and can

be approximated as a super flux,

jðx; tÞ ¼ �
X

q

Dqrr2qIðx; tÞ: (10)

The energy conservation leads to

@Iðx; tÞ
@t

¼ �r:jðx; tÞ ¼
X

q

r:½Dqrr2qIðx; tÞ�: (11)

For an image system it can be expressed as

@Iðx; y; tÞ
@t

¼�r:½D1rIðx; y; tÞ þD2rIðx; y; tÞr2Iðx; y; tÞ�

if D1 ¼ D2 ¼ cð rIj jÞ �Diffusion coefficient;

cð rIj jÞ ¼ exp � rIj j
k

� �2
 !

: (12)

And we refer the following equation as permutated diffu-

sion, and it carries both the second and fourth-order terms.

@Iðx; y; tÞ
@t

¼ �r:½cð rIj jÞrIðx; y; tÞ

þ cð rIj jÞrr2Iðx; y; tÞ�; (13)

where r and D are gradient and Laplacian operators,

respectively. The gradient threshold “k” plays an important

role in determining the parts of an image that has to be

blurred or enhanced in the diffusion process. The diffusion

acts as a smoothing filter for large value of k and if k is too

low, big noise will be preserved or even amplified instead of

being reduced. Thus, the gradient threshold k is estimated

using the robust median absolute deviation estimator38

k ¼ c median rIj jð Þ
0:6745

: (14)

The c value is chosen as 1.5 optimally and the mean abso-

lute derivative of zero mean normal distribution with unit

variance is 0.6745. The gradient threshold can be repre-

sented by

kðlÞ ¼ 1

0:6745
median

rIðlÞj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logððl þ 1Þ=lÞ

p
 !

; (15)

where l represents the pyramid layer. The image gradient

is computed using the pyramid coefficients in the

Figure 2. Block diagram of proposed LPPD method.
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corresponding pyramid layer. In this method, a relatively

large value is used in the lowest pyramid layer where

speckle is dominant and in order to remove it more thor-

oughly. On the other hand, to preserve structure bounda-

ries a small gradient threshold is applied in higher layers. In

the third step, the image is reconstructed from its Laplacian

pyramid by simply reversing the decomposition steps.

Numerical Implementation of Permutated Diffusion in

Pyramid Domain

A finite difference scheme is chosen to solve the diffusion

equation because of its easy implementation. Let the time

step be Dt and the spatial step be h in x and y directions.

Then, the time and space coordinates can be discretized as

t ¼ nDt ; n ¼ 0; 1; 2……:;

x ¼ ih; y ¼ jh;

i ¼ 0; 1; 2; 3……:M � 1;

j ¼ 0; 1; 2; 3……… :N � 1 and h ¼ 1;

where Mh�Nh is the size of the image support and let

In
i;j ¼ Iðih; jh; nDtÞ. The image gradients are obtained from

directional differences

rIn
N ði; jÞ ¼ In

i�1;j � I n
i;j ;

rIn
S ði; jÞ ¼ In

iþ1;j � I n
i;j ;

rIn
W ði; jÞ ¼ In

i;j�1 � I n
i;j ;

rIn
E ði; jÞ ¼ In

i;jþ1 � In
i;j ;

(16)

with symmetric boundary condition,

In
�1;j ¼ In

0;j ; In
Iþ1;j ¼ I n

I ;j ; j ¼ 0; 1; 2; 3………:J ;

In
i;�1 ¼ In

i;0; In
i;Jþ1 ¼ I n

i;0; i ¼ 0; 1; 2; 3………:I ;

jrI j is discretized as the average of the four squared direc-

tional differences and the gradient magnitude is given by

rIj j ¼ 0:5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rINj j2 þ rISj j2 þ rIWj j2 þ rIEj j2

q
: (17)

The diffusion coefficient in Eq. (12) can be calculated from

Cn
N ði; jÞ ¼ cð rI n

N ði; jÞ
�� ��Þ;

Cn
S ði; jÞ ¼ cð rIn

S ði; jÞ
�� ��Þ;

Cn
W ði; jÞ ¼ cð rIn

W ði; jÞ
�� ��Þ;

Cn
Eði; jÞ ¼ cð rIn

E ði; jÞ
�� ��Þ;

(18)

with symmetric boundary condition

cn
�1;j ¼ cn

0;j ; cn
Iþ1;j ¼ cn

I ;j ; j ¼ 0; 1; 2; 3………:J ;

cn
i;�1 ¼ cn

i;0; cn
i;Jþ1 ¼ cn

i;0; i ¼ 0; 1; 2; 3………:I :

The Laplacian can be discretized as

r2In
i;j ¼ In

iþ1;j þ I n
i�1;j þ In

i;jþ1 þ I n
i;j�1 � 4In

i;j : (19)

If we define gn
i;j ¼ cð rIn

i;j

��� ���ÞrIn
i;j , then,

gi;j ¼ cn
N ði; jÞrIn

N ði; jÞ þ cn
S ði; jÞrIn

S ði; jÞ
þ cn

W ði; jÞrIn
W ði; jÞ þ cn

Eði; jÞrI n
E ði; jÞ:

(20)

The permutated diffusion can be expressed as

I nþ1
i;j ¼ I n

i;j þ k½gn
i;j þ gn

i;jr2In
i;j �; (21)

where k is the time step and controls the speed of diffusion.

To solve the permutated diffusion, the Neumann boundary

condition is imposed in which it is assumed that the values

beyond an image border are equivalent to values on the

border. Multiscale processing performs local operation to

produce global effects, and it requires much smaller num-

ber of iterations as compared to single scale processing

method. Thus, the time step is chosen as k � 0.25.

Stopping Criteria

As the diffusion process is iterative, one challenging task is

deciding when the diffusion process is to be stopped. It can

be stopped manually by setting a fixed number of itera-

tions. However, in real applications, different images may

need different numbers of diffusion iterations. Thus, a

mechanism to stop the diffusion automatically is preferred.

The mean absolute error (MAE) between two adjacent dif-

fusion steps can be used to stop the iteration.

MAEðIðtÞÞ ¼ 1

M � N

XM ;N

ði;jÞ¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIði; j; tÞ � Iði; j; t � 1ÞÞ2

q
;

(22)

where I(i, j, t) and I(i, j, t� 1) are the filtered values of the

pixel (i,j) at time t and t� 1, respectively, and M, N are the

numbers of columns and rows in the processed image,

respectively.

The convergence of nonlinear diffusion process depends

on the numerical scheme, image size and diffusivity func-

tions.43 In our method, we have incorporated explicit discre-

tization scheme. The stability requirement for this scheme is

the time step k should be �1=2D, where D is number of

dimensions along which the gradient value is measured and

is equal to 2 for image, i.e., k � 0.25. Multiscale processing

performs local operation to produce global effects.44 In our

study, we have determined MAE values for FIELD II software

simulated test phantom by applying permutated diffusion to

three band pass layers and MAE value decrease exponentially

with the number of iterations as shown in Figure 3. By set-

ting a threshold value for MAE, iterations can be stopped

and according to the purpose of speckle reduction, the

threshold value can be adjusted by the clinicians.

EXPERIMENT RESULTS AND DISCUSSION
The performance of the proposed method is evaluated using

simulated phantom and real ultrasound images. In each

study, the performance of proposed LPPD is compared with

Laplacian pyramid based nonlinear diffusion (LPND),
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Laplacian pyramid based Wiener filter (LPWF), nonlinear

coherent diffusion (NCD), SRAD, and Gaussian regularized

nonlinear diffusion (GRND). To quantify the performance,

three metrics are computed, first, the figure of merit (FOM)

is used as edge-preserving measure that is defined as 38

FOM ¼ 1

max N̂ ;Nideal

� �XN

i¼1

1

1þ d2
i k
: (23)

In this equation, N and Nideal are the numbers of detected

and original edge pixels, respectively; di is the Euclidean

distance between the ith detected edge pixel and the nearest

original edge pixel; k is a constant typically set to 1=9. The

dynamic range of FOM is between the processed image and

the ideal image. We have used the Canny edge detector24 to

find the edge in all processed results. Second, the structural

similarity index (SSIM) models any distortion as a combi-

nation of three different factors:45 loss of correlation, lumi-

nance distortion, and contrast distortion.

SSIM ¼ Q ¼ Q1Q2Q3 ¼
rxy

rxry

� 2�X �Y

ð�XÞ2 þ ð�Y Þ2
� 2rxry

r2
x þ r2

y

:

(24)

The first component is the correlation coefficient between x

and y, which measures the degree of linear correlation

between x and y, and its dynamic range is [�1,1]. The best

value 1 is obtained when yi¼ axiþ b for all i¼ 1,2,…,N,

Figure 3. Stability and convergence of MAE.

Figure 4. Simulated B mode image and its filtered results (a) echogenicity map (b) speckled image with
variance 0.05 (c)–(h) image filtered by NCD, SRAD, GRND, LPWF, LPND, and LPPD.
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where a and b are constants and a> 0. Even if x and y are

linearly related, there still might be relative distortions

between them, which are evaluated in the second and third

components. The second component, with a value range of

[0, 1], measures how much the x and y are close in lumi-

nance. It equals 1 if and only if X¼Y. rx and ry can be

viewed as an estimate of the contrast of x and y, so the third

component measures the similarities between the contrasts

of the images. Its range of values is also [0,1], where the

best value 1 is achieved if and only if rx¼ry.

Third the edge preservation index (EPI)46 is used as

measure of edge preservation.

EPI ¼
P
ðDs � D�sÞðDŝ � D�̂sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðDs � D�sÞ2RðDŝ � D�̂sÞ2

q ; (25)

Figure 5. FIELD II simulated B mode image: (a) cyst image (b)–(g) images filtered by NCD, SRAD, GRND,
LPWF, LPND, and LPPD.

Figure 6. Real ultrasound image and its filtered results: (a) ultrasound image (b)–(g) images filtered by NCD,
SRAD, GRND, LPWF, LPND, and LPPD.
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where s and ŝ are the original and denoised images respec-

tively, �s shows mean of s, and Ds is the high pass filtered s

using the discrete Laplacian operator. The results of various

methods on simulated B mode image for the speckle noise

of variance 0.05 are shown in Figures 4(a)–4(h). In this

study, for SRAD implementation, the time step Dt¼ 0.05 is

chosen, and 300 iterations are used. For LPND, four pyra-

mid layers, 7� 7 binomial filter for REDUCE and EXPAND

operator, the Gaussian filter of r¼ 0.1, Dt¼ 0.2, and

MAE¼ 0.1 is set.

For NCD Dt¼ 3, a¼ 1, s¼ 70, and b¼ 0.05 are

selected. For GRND and LPWF, the filter mask of 5� 5,

median filter with r¼ 2 and Dt¼ 0.2 are utilized. In LPPD,

the point features linear features enclosed by blue, red

circles are enhanced, and the noise is suppressed to the

maximum level and gives visually improved results.

The performance of proposed method and other

approaches on FIELD II software generated cyst which is

shown in Figure 5. FIELD II version 3.16 is used to simulate

B-mode ultrasound image47,48 of cyst. The cyst consists of a

background class in gray with pixel value 1, five bright and

dark objects in white, black are aligned vertically with pixel

value 5 and 0, respectively. The parameters used for the

simulation of cyst are: transducer center frequency-3.5

MHz, sampling frequency-100 MHz, and speed of sound-

1540 m=s, wavelength-0.44 mm, element width-0.44 mm,

element height-5 mm, focal point-70 mm, number of phys-

ical elements-192, and number of active elements-64.

The cyst phantom is an 8 bit image of size 390� 500

pixels composed of five dark and bright objects of various

sizes. Our proposed method LPPD gives a good visual

enhancement and preserves small structures. Figure 6 gives

the performance of proposed method and other approaches

on real ultrasound data set.

Figure 7 gives performance of various methods in

terms of image profile along 131st column in the cyst phan-

tom. The performance analysis in terms of image profile on

real ultrasound data along the 97th column is given in

Figure 8. FOM, EPI, and SSIM are calculated for each fil-

tered image. The metric values for simulated phantom and

real ultrasound data set are listed in Tables I and II. The

graphical comparison is shown in Figure 9.

Compared to other approaches LPPD shows the most

noise reduction while preserving small structures, the six

small cysts and four point targets. LPND shows sharper but

Figure 7. Image profile along 131st column of simulated phantom.

Figure 8. Image profile along 97th column of real ultrasound image.

Table II. FOM, SSIM, and EPI values for real ultrasound image using various
methods.

For real ultrasound data

FOM SSIM EPI

Noisy=Real 0.089 0.3743 6 0.0042 0.658

NCD 0.118 0.7309 6 0.0043 0.709

SRAD 0.188 0.7586 6 0.0036 0.764

GRND 0.124 0.7581 6 0.0039 0.887

LPWF 0.692 0.7793 6 0.0048 0.890

LPND 0.808 0.7989 6 0.0038 0.897

LPPD 0.913 0.8437 6 0.0041 0.964

Table I. FOM, SSIM, and EPI values for simulated phantom using various methods.

For simulated image

FOM SSIM EPI

Noisy=Real 0.083 0.3543 6 0.0042 0.613

NCD 0.108 0.7368 6 0.0043 0.673

SRAD 0.198 0.7546 6 0.0045 0.734

GRND 0.116 0.7481 6 0.0039 0.823

LPWF 0.683 0.7763 6 0.0042 0.856

LPND 0.728 0.7289 6 0.0038 0.897

LPPD 0.902 0.8237 6 0.0041 0.944
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jagged edges and gives a relatively low contrast. LPWF does

not give satisfactory speckle suppression. NCD enhances

edges but it does not keep correct edge locations with the

SRAD, the boundaries of bright regions are broadened and

those of dark regions are shrunk. GRND enhances the edge

coherence but cannot suppress enough noise.

CONCLUSION
The proposed method is mainly focused on producing sim-

plified ultrasound images for subsequent computer-assisted

image analysis such as automatic or semiautomatic seg-

mentation and registration, although it can also provide a

visual diagnostic aid for clinicians to interpret ultrasound

images. In this multiresolution approach, the permutated

diffusion of second-order and fourth-order PDE is regular-

ized by a median regulator to guide energy source and to

boost the features in the image. In each pyramid layer, a

gradient threshold is estimated automatically using robust

median estimator. The MAE between two adjacent diffu-

sion steps is used as stopping criterion. It removes noise

and keeps the edge by little iteration. Experiment results

indicate this method has better satisfactory performance in

terms of speckle reduction, detail preservation and

improved visual enhancement than other methods. Fur-

thermore, it can be easily implemented and robust.
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