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Abstract. In optical imaging systems, the wavelength-dependency of
the refraction indices of lenses causes chromatic aberrations: electro-
magnetic radiation from an object point is dispersed in a rainbow-like
manner on the sensor. These aberrations were so far only measured
and modeled for up to three, often relatively wideband wavelength
bands, such as R, G, and B. Moreover, no relation between the aber-
rations of these color channels was generally considered. The
authors describe here the measurement of chromatic aberrations for
multiple narrowband color channels in multispectral imaging. Existing
models for transversal distortions are discussed and the wavelength-
dependency of their parameters is analyzed. The models are
extended with univariate wavelength-dependent polynomials, thus
leading to bivariate models for both space and wavelength-
dependency. The authors compare the models and confirm their
validity qualitatively and quantitatively and simulate aberrations with
state-of-the-art raytracing software. With their wavelength-dependent
model, the distortions can be compensated even at wavelengths for
which no measurements are available. VC 2011 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2011.55.6.060502]

INTRODUCTION
Chromatic aberrations are caused by the wavelength-

dependency of the refraction indices of glasses and are,

therefore, almost unavoidable in any optical imaging sys-

tem. The radiation of different wavelengths emitted by an

object point is not propagated in the same way by the

lenses, thus does not focus exactly on the same point and

reaches the sensor plane at slightly different positions. The

chromatic aberrations are divided into two categories: lon-

gitudinal ones, caused by the variation of the focus along

the optical axis and resulting in a blurring of the image,

and transversal ones,1 caused by the wavelength-dependent

displacement of the image points in the sensor plane and

producing color fringes2 (see Figure 1). In this work, we

analyze the transversal chromatic aberrations.

Since chromatic aberrations appear in all color imag-

ing systems, understanding their effects is quite important.

This includes RGB as well as multispectral imaging systems.

For the latter ones, examining the chromatic aberrations is

particularly relevant since they allow a separation of the

electromagnetic spectrum into narrow wavelength bands.

Multispectral cameras use, for instance, a tunable filter or

between 5 and 13 optical bandpass filters3–11 to divide the

electromagnetic spectrum into different passbands. These

spectral filters allow the acquisition of as many color com-

ponents as there are filters, each color component being

represented by a grayscale image that corresponds to the

wavelength band. The grayscale images are then combined

to a multispectral image. We estimate the incident spectra

from the color components via Wiener estimation6,12 and

transform them to an RGB image to enable their visualiza-

tion on a computer monitor; other, more sophisticated

methods may be used.13 Because of the chromatic aberra-

tions, the grayscale images are slightly shifted and blurred

relative to each other. This causes color fringes when the

different color channels, i.e., the different wavelength

bands, are combined to a multispectral image. Multispec-

tral systems may also encounter other aberrations, such as

the filter induced aberrations discussed by Brauers et al.12

Analyzing the chromatic aberrations separately allows a

better modeling and a better compensation of each of

them, and the output image contains thus less errors.

Chromatic aberrations have already been measured in

prior work. Beads are simultaneously stained with three dif-

ferent narrowband fluorescent dyes, and the weight centers

of these beads are used to measure the chromatic aberra-

tions by Kozubek and Matula.14 Edges of a pattern with

known geometry are detected on three broadband color

planes—the red, green, and blue color planes of an RGB

camera—to estimate the chromatic aberrations.15–17 Using

the same three color planes, the detected edges can be the

crossings of a checkerboard pattern.18 However, the use of

wideband color channels implies an integration of radiation

over a large bandwidth and does not allow a wavelength

specific analysis. In our case, we use much narrower color

bands and increase the number of bands to seven.

Some models describing the lateral chromatic aberra-

tions are also introduced in the literature. In some papers,

the distortions are split into their horizontal and vertical

components and then analyzed.14,15 When analyzing chro-

matic aberrations independently for pairs of fluoro-

chromes, these two components turn out to be almost

linearly dependent on the position of the image point.14
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The two components can be approximated separately by a

cubic spline for the two coordinates of the image point

with chromatic aberrations measured between the reference

color plane blue and the color planes red and green.15 Joshi

et al.17 compute a radial correction in order to align the

edges in the red and blue planes to the edges in the green

plane, which is taken as reference plane. Radial and tangen-

tial distortion terms are introduced by Conrady19 and

Brown20 and used by Mallon and Whelan18: the distortions

of an image point in a color plane are calculated as a func-

tion of the corresponding image point from a reference

color plane, being, for instance, the green color plane. An

affine model, in which the displacements of an image point

between two color channels are described by a rotation, a

translation and a nonisotropic scaling,12 can also be used.

In Refs. 21–23, the chromatic aberrations in digital

RGB images are compensated using image processing, but

no model of the distortions, which is what we aim at, is pro-

posed. Transversal and longitudinal chromatic aberrations

of single images are characterized by Kang,24 by modeling

the optics, the pixel sampling, and the in-camera postpro-

cessing. This model as well as the previous ones consider the

chromatic aberrations in each color plane separately, and no

link between the planes is given. Here, we, therefore, analyze

the chromatic aberrations over the whole set of narrowband

color channels as a function of the wavelength bands and of

the image position to derive a more general model. Since all

presented models describe relative chromatic aberrations

between two color planes, we also sought to avoid the use of

any reference color plane or any reference image point.

Moreover, we use a principal component analysis of the

spectra of gray objects images to compare the first principal

component at each pixel position: in the presence of chro-

matic aberrations, this spectrum can have any spectral com-

position, but after compensation of the chromatic

aberrations, it should be a constant gray spectrum. The first

principal component of compensated images of a gray

object being a gray spectrum will thus confirm the accuracy

of the models. Finally, we confirm the robustness of our

wavelength-dependent model by compensating chromatic

aberrations after incomplete calibration measurements.

In the following, we first describe how the chromatic

aberrations appear, how they can be measured and how the

distortions present in images can be compensated. We,

then, derive models for the relative chromatic aberrations

give results concerning the parameters of the models and

calculate their accuracy. We also compare the measure-

ments with simulated chromatic aberrations before we

finish with conclusions.

PHYSICAL BACKGROUND
We consider an object point and its image formed on the

sensor plane via the objective lens. Without any aberration,

its image would be a single point. However, since the

refraction indices of optical elements are wavelength-

dependent, each spectral component of the object point is

refracted differently in the lenses and finally reaches the

sensor plane at a different position. The wavelengths com-

posing the object point thus form a rainbow-like cloud of

image points. For instance, the blue wavelength band is in

general refracted stronger than the red one.25 In our

images, the image points corresponding to low wavelengths

are therefore nearer to the optical axis, or, more precisely,

the image center, than those corresponding to high wave-

lengths. This results in color fringes at lines and edges in

the images, as shown in Fig. 1: here, the image points corre-

sponding to blue wavelengths are nearer to the optical axis,

which is situated toward the upper right of the displayed

image part. This results in blue color fringes at the upper

and right edges of the white squares. In the same way, there

are red fringes at the bottom and left edges of the white

squares.

The object points situated along the optical axis of the

objective are not distorted by transversal chromatic aberra-

tions: their lines of sight follow the optical axis for all wave-

lengths. Their image points are all located on the image

center (u0, v0)T, which is the point where the optical axis

intersects with the sensor plane. This means that the rays

on the optical axis are free of transversal chromatic aberra-

tions and that the image center (u0,v0)T on the sensor is

also the center of the transversal chromatic aberrations.

Measurement of Chromatic Aberrations

The chromatic aberrations can be measured by following

one specific object point and its image points for different

wavelengths. Since a continuous measurement over the

entire visible spectrum is not feasible, the aberrations are

only measured for discrete wavelength values. The specific

object points we use are the crossings of a checkerboard

pattern. These crossings are detected and their positions are

determined with subpixel accuracy using the algorithm

from Mühlich and Aach.26 In relatively low-noise images

such as ours, the crossings can be localized with an accu-

racy of 0.03 pixels.

To isolate the image points for different known wave-

lengths, we use spectral bandpass filters that enable us to

allow only the rays of one wavelength band coming from

the object point to pass through the lenses and to hit the

sensor. We place the spectral filters in front of the light

source, because filters placed in the optical path, i.e.,

Figure 1. Color fringes on a black and white checkerboard pattern—
only the bottom left corner of the image is displayed.
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between the object and the sensor, lead to additional aber-

rations as explained in Ref. 12, which we need to avoid. As

shown in Figure 2, the scene is directly illuminated with the

radiation of a wavelength band and only the radiation of

this wavelength band arrives at the optical system (except

in case of fluorescent paper where the wavelength band is

slightly shifted, as explained in the next paragraph). With

this experimental setup, each color component of the scene

corresponding to each wavelength band is recorded sepa-

rately on a grayscale image. Each object point is then pro-

jected to a different image point on the sensor plane,

depending on the wavelength band.

The seven spectral filters we use are mounted in a filter

wheel and have center wavelengths ranging from 400 to 700

nm in steps of 50 nm and bandwidths of 40 nm, see Fig. 2.

Note, though, that the light irradiated onto the paper sheet

with the checkerboard pattern may be reemitted with

slightly different wavelengths due to fluorescence caused by

optical brightener contained in the paper. This holds par-

ticularly for illumination wavelengths close to ultraviolet at

about 400 nm. Although the paper we used is labeled

“without any optical brightener” (GMG ProofPaper semi-

matte 250), it is still fluorescent. We measured the spec-

trum of the paper under the different illuminations and the

central reemission wavelength of the color channel corre-

sponding to the 400 nm filter is 418 nm. The center wave-

lengths kc of the color channels we used are thus 418, 450,

500, 550, 600, 650, and 700 nm.

The coordinates of the image points are denoted by

(uc,vc)
T, where c represents the chosen color channel that

corresponds to a particular wavelength band. In the follow-

ing, we will use the relative coordinates pc of the image

points, which relate to the center of the distortions

(u0, v0)T: pc ¼ (xc, yc)
T ¼ (uc – u0, vc – v0)T. Since the optics

is not modified during the measurements, the center of

the distortions (u0,v0)T remains the same for all the color

channels.

One of the color channels is taken as a reference chan-

nel, and the chromatic aberrations are then calculated rela-

tive to this reference channel. The corresponding image

points pr ¼ (xr, yr)
T in the reference channel and pc in

another color channel c are localized, and the relative

distortions Dec in the color channel c are defined by

DecðprÞ ¼ pc � pr ; (1)

as shown in Figure 3. The aim of this work is the modeling

of pc or of Dec, respectively, as a function of the image posi-

tion pr and of the color channel c, which corresponds to a

certain wavelength kc.

Observations

The chromatic aberrations observed at the crossings of a

checkerboard pattern using several different wavelength

bands are shown in Figure 4(a). The wavelength-dependency

of the lens is evident, since the distortions vary with the

wavelength band. We selected the 700 nm channel as refer-

ence color channel. Fig. 4(a) depicts the displacements

Dec(pr) from the crossings pr in the reference channel to the

crossings pc in the other channels from 418 to 650 nm: the

distortions exhibit a radial symmetry around the center of

the chromatic aberrations. The displacements of the low

wavelengths are stronger than those of the high wavelengths

and they point toward the center of the chromatic aberra-

tions. For each crossing of the checkerboard pattern, the dis-

placements relative to the reference color channel exhibit

approximatively the same direction, as shown in Fig. 4(b).

Simulation of the Aberrations

We also simulated the chromatic aberrations of a represen-

tative lens, details of which are described in the patent,27

with the simulation software ZEMAX (Zemax Development

Corporation, Bellevue, WA). This professional software

enables to simulate all rays coming from an object point

and arriving at the sensor plane with very high accuracy,

thus providing a ground truth. With the simulation, we are

Figure 2. The experimental setup to measure chromatic aberrations. A
checkerboard pattern is illuminated with radiation of a known wavelength
band: a color bandpass filter with the transmittance curve s(k) is placed in
front of the light source. The scene is then recorded with a monochrome
camera. The characteristic curves of the seven color filters that are
included in a filter wheel are shown in the lower right: their center wave-
lengths kc range from 400 to 700 nm in steps of 50 nm. Due to the fluo-
rescence of the paper sheet, the center wavelength reemitted by the
checkerboard pattern for the 400 nm filter is shifted to 418 nm.

Figure 3. The image points corresponding to one object point have the
positions pr in the reference color channel and pc in a color channel c, rel-
ative to the image center (u0,v0)T. The chromatic aberration Dec(pr) of the
color channel c for the image point pr is the distance vector between both
image points.
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independent of the crossing detection accuracy, image

noise, and other practical issues. The objects at the entry of

the optical system are isolated points placed at the crossings

of a grid. We calculated the coordinates of their image

points for the wavelengths 418, 450, 500, 550, 600, 650, and

700 nm. We, then, took the image points corresponding

to the wavelength 700 nm as reference and calculated the

relative distortions of the other color channels, as we did

previously with the checkerboard pattern images. These

simulated relative distortions displayed in Figure 5 are sim-

ilar to those measured using the crossings of a checker-

board pattern (Fig. 4(a)): they point to the center of the

chromatic aberrations and the image points near this center

are less distorted than those situated on the edges of the

image.

Compensation of the Chromatic Aberrations

Once the distortions have been measured, the color chan-

nels constituting the multispectral image can be corrected.

Each spectral channel c is compensated separately so as to

match the reference spectral channel. Since the compen-

sated image of each spectral channel must be equidistantly

sampled, the compensation starts with the final coordinates

pc,comp of the compensated image that cover all pixels. The

corresponding distorted coordinates pc,dist of the input

image, i.e., of the distorted image of the color channel c,

can then be traced back by inserting the measured distor-

tions in Eq. (1). The pixel values of the positions pc,dist in

the distorted image are calculated using a bilinear interpo-

lation and are then transferred to the coordinates pc,comp in

the final compensated image, as explained by Brauers and

Aach.28 All channels—except the reference channel—are

processed separately in order to complete the compensa-

tion of the distortions in the multispectral image.

In addition to this measurement-based compensation

of distortions, we will, in the following, use these measure-

ments to also derive distortion models. Toward this end, we

start out from an affine model, but as we will see, a suffi-

ciently accurate description of the distortions requires a

more sophisticated model accounting explicitly for both

radial and tangential distortion components. We will

show that this model can be generalized to include the

wavelength-dependency of the distortions. Once the model

parameters are estimated from the above calibration meas-

urements, the distortions can be compensated in a model-

based manner for other captured image data as well.

MODELING CHROMATIC ABERRATIONS
As mentioned in the section explaining the physical back-

ground, a reference color channel r is selected and the chro-

matic aberrations Dec of all other color channels c are

defined relative to the reference channel. The chromatic

aberrations of a color channel c are calculated using the

image points pr in the reference channel and the image

points pc in the channel c, see Eq. (1).

Figure 4. Chromatic aberrations observed by analyzing the crossings of
a checkerboard pattern in an image of 1280 �1024 pixels. The vectors
show the distortions pc – pr from the crossings pr of a reference color chan-
nel to the crossings pc of the other color channels with a
20�magnification (a). The image center is represented by a black cross.
The distortions of the crossings contained in the marked area are dis-
played in (b). The reference color channel is the wavelength band 700
nm, and the distortions for the other wavelength bands (418 to 650 nm)
are color-coded.

Figure 5. Simulated distortions of the wavelength band 450 nm for a
1700 �1700 pixels image. This simulation is similar to the measured
distortions shown in Fig. 4, now with a 40�magnification. The lengths
and orientations of the distortions are further examined in Fig. 16.
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We investigate several ways to model either the coordi-

nates pc of the image points or the relative chromatic aber-

rations Dec. We examine the role of the wavelength in the

parameters of these models to finally develop a global

model for the chromatic aberrations that take as free varia-

bles the positions in the image and the wavelengths.

Figure 6 illustrates our step-by-step approach: We

begin by a straightforward affine model for the spatial

distortions. As it will turn out, this model will not allow

generalization toward wavelength-dependency. Based on

the observations in Fig. 4, we, therefore, develop a more

specific radial model for the distortions, which is then

refined by also taking tangential distortions into account.

The, thus, resulting radial and tangential model is then in a

final step extended to include the wavelength-dependency

of the distortions.

Affine Model

The relative chromatic aberrations are first modeled by a

straightforward affine transformation. An affine transfor-

mation includes a rotation, a translation, and a noniso-

tropic scaling. The image point in the color channel c that

is estimated using the affine model is called p̂aff
c . It is calcu-

lated by

p̂aff
c ¼ Tc �

pr

1

� �
; (2)

using the image point pr in the reference channel and the

matrix Tc 22�3. The translation is described by the ele-

ments Tc(1, 3) and Tc(2, 3), while the rotation and the non-

isotropic scaling are described by the elements Tc(1, 1),

Tc(1, 2), Tc(2, 1), and Tc(2, 2).

The estimated distortion Deaff
c ¼ p̂aff

c � pr caused by

the chromatic aberrations is then computed by:

Deaff
c ðprÞ ¼ Tc �

1 0 0

0 1 0

� �� �
� pr

1

� �
: (3)

As shown in the “Results” section, this straightforward

model compensates a certain amount of the distortions but

becomes inadequate for increasing distortions: it is not

appropriate to model the chromatic aberrations over all

pixels and all wavelengths. Moreover, the wavelength-

dependency of the matrix coefficients Tc(i, j), 1 � i � 2,

1 � j � 3, could for the six center wavelengths kc of the

color channels not be approximated by an elementary func-

tion of k, such as a low-order polynomial. The affine model

was, therefore, not further investigated.

Radial Model

A first glance at the distortions of the crossings in Fig. 4(a)

shows that the chromatic aberrations exhibit a prominent

radial component. This is corroborated by Figure 7: the

orientations of the measured distortion vectors pc – pr are

displayed in black as a function of the orientations of the

vectors pr pointing to the crossings, and their correspon-

dence is quite good. The difference between both orienta-

tions is also displayed: for the color channel shown, the

mean absolute difference is 1.54� and the maximum abso-

lute difference is 15.7�. Over all channels, the mean abso-

lute difference is 1.72� and the maximum difference is

33.8�. There are occasional outliers for which the difference

of the orientations can reach 10� or more. These are mainly

the crossings situated near the center of the chromatic aber-

rations, where any small error in the measured position of

the center leads to large errors in the orientations of these

crossings.

We, therefore, model only the radial components of

the chromatic aberrations in this step. This means that for

each crossing of the checkerboard pattern, its image point

pr in the reference color channel, its image point p̂rad
c esti-

mated using the radial model in another color channel c

and the center of the chromatic aberrations are in line. Fig-

ure 8 shows the distortion k pc k � k pr k between the

points in the color channel c and the reference channel as a

function of k pr k, where k : k denotes the Euclidean norm.

With the above approximation of vanishing tangential dis-

tortions, we have pck k � prk kj j � p̂rad
c � pr

�� ��, where p̂rad
c

is the estimate of pc using the radial model. In our case, pc

is closer to the center than pr, and the values

k pc k � k pr k are therefore negative. Our aim is to find a

function

fcð prk kÞ ¼ pck k � prk k (4)

that describes the distortions displayed in Fig. 8.

By multiplying Eq. (4) with pr=k pr k and inserting

once pr= prk k ¼ prad
c = p̂rad

c

�� �� since the vectors pr and p̂rad
c

point in the same direction, we obtain

Figure 6. Step-by-step approach utilized in this paper to model the rela-
tive chromatic aberrations.

Figure 7. The orientations of the distortion vectors pc – pr are displayed
with respect to the orientations of the vectors pr in black, and the differen-
ces of both orientations are displayed in gray. The orientations of pc – pr

and of pr are quite similar: the maximum difference between them is
15.7� for some outliers in this color channel, while 95% of the differences
lie between �2.65� and þ3.63�.
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pr

prk k
fcð prk kÞ ¼

pck k
p̂rad

c

�� �� p̂rad
c � pr : (5)

Inserting pck k ¼ p̂rad
c

�� �� yields finally for the estimation of

the chromatic aberrations

Derad
c ðprÞ ¼ p̂rad

c � pr ¼ fcð prk kÞ
pr

prk k
: (6)

Brown expresses the radial distortions29 as

drad ¼ K1 prk k
2þK2 prk k

4þ…
� �

� pr

¼ K1 prk k
3þK2 prk k

5þ…
� �

� pr

prk k
; (7)

for positions pr = (0, 0)T, with the parameters

Ki, i¼ 1,2,…. This means that the function fc could be

approximated using the powers 3,5,… of k pr k. However,

our observations of the distortions k pc k � k pr k as a

function of the distances k pr k in Fig. 8 do not lead to

the same approximation. For some lenses, such as the

Cosmicar lens (Fig. 8(a)), the function fc is almost linear.

For other lenses, such as the Tarcus lens (Fig. 8(b)), the

measured values cannot be approximated by a linear func-

tion and a third-order polynomial is necessary, including

the powers 1 and 2 of k pr k. In order to utilize as many

parameters as required but also as few as possible, the func-

tion fc is approximated by a third-order polynomial of

k pr k

fcð prk kÞ � lc;1 � prk k þ lc;2 � prk k
2þlc;3 � prk k

3; (8)

with specific coefficients lc,i, i¼ 1,…,3 for each color chan-

nel c. The coefficients lc,i correspond to the term of power i

in the polynomial for the center wavelength kc of the cth

color channel, kc being 418, 450, 500, 550, 600, or 650 nm.

The coefficient corresponding to the term of power 0 in the

polynomial is kept null, so that fc k pr k¼ 0ð Þ ¼ 0 can be

satisfied. For other types of lenses requiring more complex

approximation, polynomials with higher order could be

utilized.

We will now show that the wavelength-dependency of

these coefficients can, in turn, be modeled parametrically,

thus allowing to determine chromatic aberrations also for

color channels with other center wavelengths than the ones

above (see also the incomplete calibration in the “Results”

section). To this end, we describe the wavelength-

dependency of the coefficients lc,i by a function of the wave-

length kc. Polynomial functions were tested and, because

only 6 values are available for each coefficient, the order of

these polynomials was restricted. From the values shown

in Figure 11, a third-order polynomial with coefficients

mi,j, j¼ 0,…,3, turned out to be sufficient for the approxi-

mation, yielding

lc;i � mi;0 þmi;1 � kc þmi;2 � k2
c þmi;3 � k3

c ; (9)

where the order of the polynomial is as high as required

and simultaneously as low as possible.

This model allows to calculate the coefficients of Eq.

(8) for any wavelength k between 418 nm and 650 nm,

rather than only for the center wavelengths kc of the color

channels. These coefficients extended to the whole wave-

length range are denoted li(k) and are given by

liðkÞ � mi;0 þmi;1 � kþmi;2 � k2 þmi;3 � k3: (10)

By incorporating the coefficients li(k) into Eq. (8), the

lengths of the distortions become f k; kpr kð Þ, a function of

the wavelength k and of the distance k pr k between the

Figure 8. Distortions k pc k � k pr k as a function of the distances k pr k between the crossings and the center
of the chromatic aberrations in the reference color channel. The measurements, represented by dots, were
approximated by third-order polynomials according to Eq. (8), represented by lines. (a) and (b) are the meas-
urements for two different lenses (Cosmicar and Tarcus, respectively). Information about the lenses is given in
the “Results” section.
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crossings in the reference color channel and the center of

the chromatic aberrations. This generalizes the function

fc k pr kð Þ, which is only defined for discrete color channels.

The function f k; k pr kð Þ is defined by 12 coefficients

mi,j, i¼ 1,…,3, j¼ 0,…,3:

f ðk; prk kÞ ¼
X3

i¼1

X3

j¼0

mi;j � kj � prk k
i: (11)

As shown in the results (Figure 12), this model captures ra-

dial distortions almost perfect. However, a slight tangential

error remains. The amplitude of these errors depends on

the direction of the image point. In the “Radial and Tan-

gential Model” section, we, therefore, take these tangential

distortion components into account as well.

Radial and Tangential Model

The previously explained radial model relies on observa-

tions of the distortions. As illustrated in Fig. 3, there may

additionally occur tangential components of the chromatic

aberrations. For the radial and tangential model, we take

three components into account: the radial distortions, the

tangential distortions, and the effects of a linear depend-

ency of the refraction index on the wavelength.18 These

three types of distortions can be found in the literature and

are denoted drad, dtan, and dlin, respectively.

The radial distortions from Ref. 29 were already given

in Eq. (7). When only the terms up to the third order of

(x, y) are kept and the remaining coefficient is renamed,

this model becomes

drad ¼ n2 prk k
2�pr ; (12)

where n2 is a parameter for the spherical aberrations.2

Decentering—or tangential—distortions were first intro-

duced by Conrady19 and then adopted by Brown,20 which

resulted in the Brown–Conrady model that classifies the

lens distortions into radial and tangential distortions.

The tangential ones29 up to the third order of (x, y) are

given by

dtan ¼
n3ð3x2

r þ y2
r Þ þ 2n4xr yr

2n3xr yr þ n4ðx2
r þ 3y2

r Þ

� �
; (13)

with the coma parameters n3 and n4.2 Another distortion

term that does not appear in the two previous equations is

also taken into account. This first-order term results from

the linearity of the refraction index of lenses with respect to

the wavelength within the visible spectrum18 and is

expressed as

dlin ¼ n1 � pr : (14)

We use the three distortion terms from Eqs. (12)–(14) for

each color channel and finally obtain the distortions

Dertm
c ¼ ðDertm

c;x ;Dertm
c;y Þ

T
in the color channel c with the

radial and tangential model that takes up to the third order

of (x, y) into account

Dertm
c;x ðprÞ ¼ nc;1xr þ nc;2xr prk k

2þnc;3ð3x2
r þ y2

r Þ
þ 2nc;4xr yr

Dertm
c;y ðprÞ ¼ nc;1yr þ nc;2yr prk k

2þ2nc;3xr yr

þ nc;4ðx2
r þ 3y2

r Þ:

(15)

To each color channel c correspond specific parameters

nc,i, i¼ 1…4, that are used to determine the image point

p̂rtm
c with Eq. (1).

The parameter vector bhrtm
c ¼ ðu0; v0; nc;1; nc;2; nc;3;

2nc;4ÞT groups the six unknowns of the model. It is calcu-

lated by solving a nonlinear least squares problem where

the model error, i.e., the difference between the estimated

and the measured chromatic aberrations, is minimized

with respect to the cost function Dertm
c ðprÞ � ðpc � prÞ

�� ��2

which is a function of bhrtm
c .18 A Gauss–Newton method is

used to find the solution of the nonlinear least squares

problem by solving a sequence of linear least squares prob-

lem.30 The parameter vector is first initialized, e.g., withbh0
c ¼ ð640; 512; 0; 0; 0; 0ÞT for images of the size

1280� 1024 pixels. An iteration loop then searches the pa-

rameter vector bhkþ1
c using the bhk

c from the previous itera-

tion until it converges: the cost function is linearized nearbhk
c and this linearized function is used as a cost function to

find bhkþ1
c .

Since the optical elements utilized (lens and sensor)

were not modified during the measurements and only the

wavelengths of the incoming rays were changed, the seven

color channels we used had the same center for the chro-

matic aberrations. We, therefore, took into account that the

two first elements of the vectors bhrtm
c should be the same

for every channel c. The wavelength-dependency of this ra-

dial and tangential model is analyzed next.

Radial, Tangential and Wavelength-Dependen Model

The parameters nc,i, i¼ 1,…,4, from the previous model are

displayed separately in Figure 9 as functions of the wave-

length. The six values nc,i, with c corresponding to the color

channels from 418 to 650 nm, which result from the opti-

mization, are marked by points in each of the four subfig-

ures. These six values can be approximated by third-order

polynomials of the wavelength that represents the value of

the parameter nk,i for any wavelength k between 418 and

650 nm (see the solid gray lines in the figure).

Once it has become clear that the parameters nc,i can

be expressed as functions of the wavelength, this

wavelength-dependency is used further and directly

included in the definition of the model. The model

becomes also wavelength-dependent.

To include the wavelength-dependency in the optimi-

zation, the parameters nc,i, i¼ 1,…,4, are first approxi-

mated by third-order polynomials of the wavelength

nc;i � niðkcÞ ¼ qi;0 þ qi;1 � kc þ qi;2 � k2
c þ qi;3 � k3

c ; (16)

similarly to Eq. (9). The coefficients qi,j, j¼ 0,…,3, corre-

spond to the jth power of the approximation of the
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parameter nc,i. The chromatic aberration Dewl ¼ ðDewl
x ;

Dewl
y Þ

T
of this model then becomes a function of the wave-

length k (and not only of the center wavelengths kc but also

of the color channels) and of the position pr of the image

point in the reference color channel. The distortion is

described by a set of 16 coefficients qi,j, i¼ 1,…,4, j¼ 0,…,3

Dewl
x ðk;prÞ ¼ ðq1;0 þ q1;1kþ q1;2k

2 þ q1;3k
3Þxr

þ ðq2;0 þ q2;1kþ q2;2k
2 þ q2;3k

3Þxr prk k
2

þ ðq3;0 þ q3;1kþ q3;2k
2 þ q3;3k

3Þð3x2
r þ y2

r Þ
þ 2ðq4;0 þ q4;1kþ q4;2k

2 þ q4;3k
3Þxr yr

Dewl
y ðk;prÞ ¼ ðq1;0 þ q1;1kþ q1;2k

2 þ q1;3k
3Þyr

þ ðq2;0 þ q2;1kþ q2;2k
2 þ q2;3k

3Þyr prk k
2

þ 2ðq3;0 þ q3;1kþ q3;2k
2 þ q3;3k

3Þxr yr

þ ðq4;0 þ q4;1kþ q4;2k
2 þ q4;3k

3Þðx2
r þ 3y2

r Þ:
(17)

The coordinates of the center of the chromatic aberrations

(u0, v0)T and these 16 parameters qi,j form the vector bhwl

that describes the model of the aberrations over the whole

wavelength range: bhwl ¼ ðu0; v0; qi;j

� �
i¼1;…;4;j¼0;…;3

ÞT .

The parameter vector bhwl can then be calculated, such

as the parameter vector bhrtm in the radial and tangential

model, i.e., by minimizing a quadratic cost function using a

Gauss–Newton scheme. The difference here is that the cost

function takes the model errors for all the color channels

into account at once and not for each color channel sepa-

rately. The advantage of this model is that all the parame-

ters are optimized simultaneously and that the chromatic

aberrations can be estimated for any wavelength k, even if

it is not the center wavelength of one of the color channels.

The results of the optimization are shown in Fig. 9: the dot-

ted black lines are the third-order polynomial using the

optimized coefficients qi,j. The values are quite comparable

to those from the radial and tangential model, especially

for the lower order terms.

Absolute Chromatic Aberrations

A model for the absolute chromatic aberrations, i.e., a

model giving the coordinates pc of the distorted image

points for each color plane c without using any reference

color plane, would enable the entire correction of the chro-

matic aberrations without taking any color channel as a ref-

erence. One consideration is to model the coordinates pc

with respect to the coordinates pu of the undistorted image

points, which are the image points without any aberrations

that result from pinhole projection.

Such models for camera calibration giving the undis-

torted image points are derived in Refs. 31 and 32. The cam-

era is modeled using extrinsic and intrinsic parameters: the

extrinsic parameters are the rotation and translation coeffi-

cients describing the transformation between the 3D coordi-

nate systems of the object and of the camera, and the

intrinsic parameters describe the transformation between

the 3D coordinate system of the camera and the 2D coordi-

nate system of the computer image. Regardless of whether a

normalized image plane is used32 or not31 for this latter

transformation, the intrinsic parameters include the effective

focal length of the camera, the coordinates of the center of

the image and coefficients corresponding to the pixel size.

The utilization of the models from Tsai31 and Forsyth

and Ponce32 on calibration images illuminated with a spe-

cific wavelength band can thus provide the undistorted

image point coordinates pu. These points are, e.g., com-

puted by mathematically projecting three-dimensional

points of a checkerboard pattern to the image plane by a

pinhole model. However, since the refraction indices of the

lens are wavelength-dependent, the effective focal length,

e.g., is wavelength-dependent too. This means that the

undistorted image point coordinates pu, which are com-

puted using—among other parameters—the focal length

also depend on the wavelength. Therefore, there is no single

undistorted image point, which is valid for all spectral chan-

nels. These camera models are not appropriate to find any

undistorted image point common to all spectral channels

and thus are not appropriate to deduce a model for the

absolute chromatic aberrations.

RESULTS
The effects of the chromatic aberrations on multispectral

images of a gray and of a color object are shown in Figure

10. The scenes are recorded with the same experimental

Figure 9. Values of the parameters from Eq. (15). The results of the optimization from the radial and tangential
model are represented by points. They can be approximated by third-order polynomials (the solid gray lines),
which generalizes the model for the entire wavelength range between 418 and 650 nm. The dotted black
lines are the results of the global model, where the parameter estimation is performed for all image points and
wavelengths at once.
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setup as the previously acquired checkerboard patterns,

and the spectra of the objects are estimated using the seven

color channels.6,12 As explained before, color fringes

appear, and they are especially noticeable near edges of the

objects. The color fringes are more visible on sharp edges

such as the black lines of a millimeter paper (Fig. 10(a)) or

the perforations of the film and the edges of the petals in

Fig. 10(c). To compensate these chromatic aberrations, we

take a multispectral image of a checkerboard pattern with

the same optical system in order to calculate the parameters

of the models for the system. After that, we use these

parameters to compensate the distortions. As Figs. 10(b)

and 10(d) show the fringes then vanish completely. Since

the distortions depend only on the position of the reference

image point on the sensor (see Eqs. (3), (11), (15), and

(17)), i.e., on the angles of the rays arriving at the optical

system but not on the object distances, the models can also

be utilized for natural scenes in which the objects are not

planar and are positioned at different distances from the

imaging device.

Our monochrome camera is an IDS uEye UI2240 CCD

camera with a chip size of 7.60 mm� 6.20 mm and a reso-

lution of 1280� 1024 pixels. We use a Tarcus TV Lens 8

mm F1.3 and a Cosmicar TV Lens 8.5 mm F1.5.

Evaluation of the Model Parameters on Real Data

In the radial model, the distortions in the spectral channel

c can be described by third-order polynomials of k pr k
with the coefficients lc,i, i¼ 1,…,3, as shown in Eq. (8). The

coefficients corresponding to a given power, i.e., the values

lc,i for a given i, are considered as a function of the channel

center wavelength kc and are displayed in Fig. 11. This

figure shows that the points lc,i, i¼ 1,…,3, can in their turn

be approximated by third-order polynomials li(k) of the

wavelength, represented by gray lines in the figure.

These continuous representations li(k) of the discrete

coefficients lc,i are valid for the whole wavelength range

from 418 to 650 nm, and ideally we have li(kc)¼ lc,i. The

results of the approximations are given in Table I. The

radial model, which only uses the approximated lengths of

the distortion and assumes that the distortion is radial, can

thus be integrated into a model in which the distortions are

a function of both the wavelength and the distance to the

distortion center, as defined in Eq. (11).

The errors of the radial model, i.e., the difference

between the measured relative chromatic aberrations and

the modeled ones, are displayed in Fig. 12. The errors only

have tangential components, which means that the approx-

imation of the radial components was quite good. These

tangential errors are taken into account in the radial and

tangential model. The parameters nc,i, i¼ 1…4, of the

radial and tangential model calculated for the utilized opti-

cal system are shown in Fig. 9, with the gray lines corre-

sponding to their approximation using a third-order

polynomial of the wavelength. Considering the approxi-

mated values (gray lines) instead of the calculated ones

(dots) gave practically the same results and the errors

remained almost the same.

In the next step, we directly include this wavelength-

dependency into the optimization for the radial, tangential,

and wavelength-dependent model by approximating the

coefficients nc,i with a third-order polynomial of the wave-

length (see Eq. (16)). The validity of the wavelength-

dependency of the model was confirmed by the errors that

remained almost the same as those of the preceding step

(in which the coefficients nc,i were optimized and then

approximated by a polynomial). The resulting polynomials

ni(k), i¼ 1…4, define the coefficients for the whole wave-

length range, in the same manner as li(k) previously. They

are given in Table II for the used optical system. In this

model, the chromatic aberrations become a function of

both the wavelength and the position of the image point in

the reference color channel.

The coefficients nc,i shown in Fig. 9 do not have the

same values for the radial and tangential model (see the

black dots) and for the radial, tangential, and wavelength-

dependent model (see the dashed lines). The centers

(u0, v0)T of the chromatic aberrations calculated with these

two models are of course different, too. The modeled cen-

ters are (636.55, 530.97)T for the radial and tangential

model and (640.02, 511.98)T for the radial, tangential, and

wavelength-dependent model. The center of the latter

Figure 10. Initial images of a gray object (a) and a color object (c) with chromatic aberrations and results of
the compensation of these distortions using the radial, tangential, and wavelength-dependent model (b), (d).
The bluish and reddish fringes due to the chromatic aberrations are clearly visible at the sharp edges in the
uncompensated images.
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model is closer to the position (640, 512)T used for the ini-

tialization of the optimization. The reason may be that

the center of the chromatic aberrations represent 2/6 of the

parameters for the radial and tangential model and only

2/18 of the parameters for the radial, tangential, and

wavelength-dependent model, and the initial values are

thus less modified in this model.

Accuracy of the Models for Real Acquisition

The accuracy of the models is estimated using three

approaches. First, the initial distorted image is visually

compared to the images resulting from the compensation.

Second, the errors in pixels between the estimated and the

measured positions of the crossings of the checkerboard

pattern are calculated. Third, the accuracy is assessed using

a principal component analysis of the spectra in images of

gray objects.

The visual comparison of parts of distorted and com-

pensated images is shown in Fig. 10. Color fringes are pres-

ent in the initial images (see Figs. 10(a) and 10(c)) and

particularly visible at the sharp edges between dark and

bright regions. A compensation of the chromatic aberra-

tions with one of the models previously explained makes

these color fringes disappear (see Figs. 10(b) and 10(d)).

All the models seem to perform a good compensation of

the chromatic aberrations, but their accuracy cannot be

estimated quantitatively using this visual approach.

The calculation of the pixel errors for each model

allows a better comparison of the model accuracies. For

each color plane c, the distances pc � p̂model
c

�� �� between the

crossings pc detected on the checkerboard and their esti-

mates p̂model
c using the model are calculated. The mean and

maximum values of these distances for each model are then

compared in Figure 13. Evidently, the mean errors (solid

lines in the figure) of the different models are quite close to

each other: they lie between 0.019 and 0.062 pixel for

Table I. Approximation of the coefficients for the radial model in Eq. (8) with third-
order polynomials of the wavelength.

l1(k) � 103 ¼ 7.522 � 10 – 4.824 � 10� 1�k
þ 9.153 � 10� 4 � k2 – 5.452 � 10� 7k3

l2(k) � 106 ¼ 3.556 � 10 – 2.160 � 10� 1 � k
þ 4.064 � 10� 4 � k2 – 2.445 � 10� 7k3

l3(k) � 109 ¼ 1.061 � 102 – 4.528 � 10� 1 � k
þ 6.765 � 10� 4 � k2 – 3.527 � 10� 7 � k3

Figure 11. The wavelength-dependency of the parameters for the radial model in Eq. (8). The black points are
the coefficients lc,i, i¼1,…,3 of Eq. (8), for kc 2 418 nm;450 nm…650nmf g. These values are then approxi-
mated by a third-order polynomial of the wavelength k (see Eq. (9)). The polynomials are represented by gray
curves and give the values li(k) for any k between 418 and 650 nm.

Figure 12. Errors of the radial model for all spectral channels on a
1280�1024 pixels image, with the same color code as in Fig. 4 and
with a 400�magnification. The errors exhibit evidently only a tangential
component, which is not accounted for in the model. They are very small
for the crossings situated in one particular direction (about 70�) and larger
in the perpendicular direction.

Table II. Approximation of the coefficients in Eq. (15) for the radial, tangential,
and wavelength-dependent model.

n1(k) � 103 ¼ 4.309 � 101 – 3.013 � 10� 1 � k
þ 5.884 � 10� 4 � k2 – 3.527 � 10� 7k3

n2(k) � 109 ¼ 4.346 � 101 – 2.107 � 10� 1 � k
þ 3.445 � 10� 4 � k2 – 1.893 � 10� 7 � k3

n3(k) � 108 ¼ � 8.872 � 101þ 4.194 � 10� 1 � k
� 6.555 � 10� 4 � k2þ 3.423 � 10� 7 � k3

n4(k) � 107 ¼ � 1.094 � 102þ 5.737 � 10� 1 � k
� 9.835 � 10� 4 � k2þ 5.554 � 10� 7 � k3

Klein, Brauers, and Aach: Spatio-spectral modeling and compensation of transversal chromatic aberrations in multispectral imaging

J. Imaging Sci. Technol. Nov.-Dec. 2011060502-10



the channels from 500 to 650 nm. For the channels 418

and 450 nm, they become higher (between 0.048 and 0.162

pixels). There is only one model for which the mean errors

do not increase for these two channels: the radial, tangen-

tial, and wavelength-dependent model, whose errors

remain stable. The reason may be the global optimization

of the parameters of this model that is performed over all

wavelength bands. A parameter set leading to high errors

for individual color channels would not be selected by this

global optimization, although the utilization of the

wavelength-dependency in a model that has already been

optimized could result in outliers, as it is the case for the

radial model and for the radial and tangential model. As

the maximum errors show (dashed lines in Fig. 13), the

affine model is not very precise for the increasing aberra-

tions at lower wavelengths, such as in the color channels

418 and 450 nm: the maximum errors are above 0.28 pixels.

The radial model also fails to describe the chromatic aber-

rations for the color channel 418 nm with a maximum

error of about 0.35 pixels. The maximum errors over all

color channels for the other models are 0.209 pixels for the

radial and tangential model and 0.185 pixels for the radial,

tangential, and wavelength-dependent model. The latter

model is the one with the lowest maximum error, when the

entire error over all the color channels is considered.

We employ principal component analysis (PCA) on

images of gray objects to assess the potential occurrence of

color fringes: the first principal component of an image

containing only gray pixels should be a flat spectrum, since

each gray pixel has a spectrum constant over the visible

spectrum range. The eigenvalues corresponding to the

other principal components should vanish. A nonconstant

first principal component or large eigenvalues for the other

principal components indicate that colors are present. The

PCA makes the reduction of the dimensionality of a dataset

possible by using a new coordinate system suited to the

dataset. Starting from the initial coordinate system, a new

coordinate system, whose axes are called principal compo-

nents and which are expressed in the initial coordinate sys-

tem, is calculated.33 Its principal components are sorted so

that the variance of the data that are projected onto these

axes becomes smaller, and the PCA thus minimizes the

energy contribution of the last components of the data in

the new coordinate system.34,35 For pure gray level images,

the seven color channels will for each pixel exhibit the same

value. A PCA on this data thus leads to a first principal

component consisting of seven equal values as well, while

the eigenvalues for the other principal components are

null.

We perform a PCA on the initial uncompensated

image of a gray millimeter paper (Fig. 10(a)), where color

fringes are visible due to the chromatic aberrations. It is

not surprising that the first component of this PCA does

not exhibit seven equal values, as shown in Figure 14. The

variances (eigenvalues) of the uncompensated image along

the seven sorted principal components are shown in Figure

15 (black solid line). The variance of the data along the

second principal component is almost the same as along

the first one. This proves that the initial image is far from

containing only gray pixels. We also perform a PCA on com-

pensated images of the millimeter paper. The models for the

relative chromatic aberrations we described previously all

lead to similar first principal components composed of

almost equal values, as shown in Fig. 14. The energy contri-

bution of the first principal component of the compensated

images is 98.4% for the affine model, 98.7% for the radial

model, 98.5% for the radial and tangential model, and

98.5% for the wavelength-dependent model: they only vary

by 3% and the radial model is best by very low margin.

Moreover, even the second principal component is already

way less important that the first one, since the eigenvalues of

the second component are more than 100 times smaller than

those of the first component in Fig. 15. The results of the

PCA of the compensated images are thus close to those of

the PCA of a perfect gray image and the compensations we

performed led to similarly good gray images.

Aberrations Measured with Simulation

After the evaluation of the parameters and the accuracy of

the models developed in the two previous subsections

“Evaluation of the model parameters on real data” and

“Accuracy of the models for real acquisition”, we will now

discuss the chromatic aberrations simulated with the ray-

tracing software. The simulated aberration vectors pc – pr

have the same orientations as the corresponding crossings

pr, as shown in Figure 16(a). The difference between the

orientations of the crossings and those of the distortions

remains below 9.3 � 10� 11 degrees for all color channels,

and even below 4.1�10� 11 degrees for the color channel

shown here. This means that the simulated chromatic

Figure 13. Errors of the implemented models for each wavelength band.
They are calculated using the distance between a measured crossing pc
in a color channel and the corresponding crossing p̂model

c estimated by
one of the models. The solid lines represent the mean errors over all cross-
ings and the dashed lines are the maximum errors.
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aberrations only have a radial component and the lengths

kpc � pr k are thus equivalent to the lengths

kpc k � kpr kj j. The relation between the distances kpr k
from the crossings pr to the center of the chromatic aberra-

tions and the values kpc k � kpr k of the radial distortions

are shown in Fig. 16(b). They are similar to the measured

values displayed in Fig. 8 and can also be approximated by

third-order polynomials.

For our experiments, we were able to limit the radia-

tion of the light source to narrow (40 nm bandwidth) but

not infinitesimal small passbands. The analysis of individ-

ual wavelengths is, however, possible for the simulation.

While we are thus not able to genuinely measure the distor-

tions for all wavelengths experimentally, the similar results

of the measurements and the simulations confirm that our

approach is valid. The wavelength-dependent models we

deduced for wavelength bands should thus be also valid for

individual wavelengths. Due to the specific simulated lens,

the radial model here works better, but all the maximum

errors between the simulated and the estimated image

points lie below 0.121 pixel.

Compensation Using Incomplete Calibration Data

We tested the robustness of the radial, tangential, and

wavelength-dependent model with respect to the wave-

lengths used for the measurement and calibration step.

Indeed, when the wavelength-dependent model is correct,

it is possible to measure the chromatic aberrations on just

some of the color channels and calculate the aberrations for

all the color channels.

In the section concerning the models accuracy, the

results of the compensation with a complete calibration

were exposed, that is, with all the six color channels being

measured to calculate the parameters of the models. Here,

we will show how the errors of the compensation are

Figure 14. Coefficients of the first principal component of the colors pres-
ent in the initial and in the compensated images of an object containing
only gray values. The coefficients are expressed for the original variables
kc, the center wavelengths of the color channels.

Figure 15. Variances of the data along each of the seven sorted princi-
pal components for the uncompensated image (black line) and for the
images compensated with the four described models. The variances are
normalized so that the sum over the seven principal components for one
data set is one.

Figure 16. Orientations (a) and lengths (b) of the simulated distortions. The orientations of pc – pr are almost
equal to those of pr, since the maximum difference between both orientations is in the range of the machine
accuracy for the color channel 450 nm displayed in (a). The lengths k pc k � k pr k correspond to the lengths
of the simulated chromatic aberrations, as the distortions are only radial. These lengths can be expressed as a
third-order polynomial of the distance k pr k for each wavelength (b).
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modified when an incomplete calibration is performed. We

only utilized five out of the six color channels to measure

the chromatic aberrations and left the color channel with

the center wavelength 500 nm aside. We thus calculated

the functions ni(k), i¼ 1…4, using exclusively the measure-

ments on the color channels 418, 450, 550, 600, and

650 nm.

Table III shows the mean and the maximum pixel

errors obtained with these two calibrations. The errors are

calculated as they were for Fig. 13: the distance between the

position of the crossings estimated with the model and the

real ones are measured. As expected, the pixel errors for the

color channel 500 nm that was not used for the calibration

are larger: 0.08020 pixels with the incomplete calibration

instead of 0.06131 with the complete calibration for the

mean error. This represents an increase of 30% for the

mean value of the pixel error. Still, the mean error remains

low (about 0.08 pixels at the most), which could not be

obtained without a wavelength-dependent model. For the

neighbor color channel 550 nm, the errors were also slightly

larger than with the complete calibration. For the color

channels 600 and 650 nm, the results remain stable with

the incomplete data set. The pixel errors even decreased for

the color channels 418 and 450 nm. The wavelength-

dependency of this model thus makes the estimation more

robust: even with a missing measurement, all the color

channels can be compensated with a good accuracy.

CONCLUSIONS
We have measured relative transversal chromatic aberra-

tions for seven narrowband wavelength bands by illuminat-

ing a checkerboard pattern with narrowband radiation of a

light source. The chromatic aberrations measured between

two color channels with our lenses amounted to as much as

3.5 pixels. We used several existing models to describe the

distortions and analyzed the parameters of these models

and their wavelength-dependency: it turned out that the

parameters can be approximated by third-order polyno-

mials with respect to the wavelength. We, furthermore,

directly included the wavelength-dependency into an exist-

ing model, which thus computes the relative transversal

chromatic aberrations as a function of both the wavelength

and the position in the image. All its parameters can then

be optimized jointly by using all calibration coordinates

from all spectral channels. We also simulated chromatic

aberrations for the center wavelengths of our color chan-

nels, and the results are similar to those obtained with the

wavelength bands, thus indicating that the models can also

be applicable to individual wavelengths. The principal com-

ponent analysis we performed on images of a gray object

that are compensated with the presented models showed

that the compensated images are almost only gray, i.e., free

of color fringes: images containing chromatic aberrations

can be compensated so that no visible color fringes remain.

With our wavelength-dependent model, the distortions are

calculated with a model error lower than 0.1849 pixels and

even lower than 0.2458 pixels in case of incomplete calibra-

tion measurement.
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