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Abstract. In today’s world of highly sophisticated technological
crimes, criminals including counterfeiters, document forgers, and other
parties interested in altering information have a low barrier of entry. To
combat these crimes requires developing a level of forensic analysis
to aid law enforcement agencies in tracing the origins of documents or
materials in question. In this article, the authors use printer forensics
in an effort to understand the effect of resolution and character selec-
tion on the accuracy of printer identification. Specifically, they use a
multiclass ADABOOST classifier to determine which of six printers,
representing several ink jet and laserjet models, were used to produce
a subsequently scanned image. Their results, investigating six differ-
ent English characters, show that classification accuracy continues to
increase with scanning resolution up to 1200 pixels=in. The results are
character dependent, suggesting that different characters may be
used for different forensic purposes—printer model, cartridge,
and individual printer identification as examples. VC 2011 Society for
Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2011.55.5.050602]

INTRODUCTION
Counterfeiting of printed materials—whether currency,

legal documents, or packages and labels—continues to be a

growing problem globally. High resolution printers, cop-

iers, scanners, and photograph editing software are ubiqui-

tous, placing powerful counterfeiting tools within reach of

any would-be forger. Many advances have been made in the

area of print forensics, but considerable work still remains

to be done in the field.

In this article, we investigate the effect of scan resolu-

tion and character selection on the accuracy of source

printer identification. Specifically, given a set of text docu-

ments of known printer origin, if the prints are scanned at

different resolutions and different characters are selected

for use, we investigate what effects, if any, this variability

has on the ability to classify characters and to identify a

document of unknown origin.

The ability to distinguish documents from printers is

due to the fact that printers exhibit unique signatures.

There are several reasons that this occurs. First, due to dif-

ferences in drivers, print engines, motors, rollers, and other

design aspects of printers, different makes and models will

deposit ink or toner in different ways. Second, due to

differences in the design of the cartridges and chemical

composition of inks and toners, there will be differences in

the appearance of a print. Lastly, due to variances in the

manufacturing process of the printer itself and possibly the

printer cartridges, each printer may exhibit a unique signa-

ture, which can differentiate printers of the same make and

model. Other factors, including substrate and the imaging

device(s) used to capture them, may also play a role in elic-

iting and identifying source printers. However, these factors

will not be examined in this work.

Other research groups have found these statements to

be true,1–4 and have developed methods to identify the

make and model of the source printer. Advancements in

the field have not been as successful in attempts to identify

document origins when looking at multiple instances of the

same make and model printer.

To the best of our knowledge, little research has been

performed in the area of print forensics sensitivity analysis

with the exception of Ref. 1. In this work, the authors exam-

ined the effects of changing font, font size, and substrate on

classification accuracy. Each of these tests is performed inde-

pendently of the other and all tests are performed on only

the letter “e” at a scan resolution of 2400 dpi. The evalua-

tions performed in Refs. 2–4, are also conducted using a sin-

gle scan resolution.

The primary goal of this article is to examine sensitiv-

ity analysis for printer forensics. We will examine the effects

of resolution on classification accuracy as well as the impact

of shape variation for eliciting these unique printer signa-

tures. As has been done by other research groups,1–3 we will

use characters from the western alphabet as the carrier for

detecting unique printer signatures. An earlier version of

this work is presented at the 2010 IS&T NIP26 conference

in Austin, Texas.5

The rest of this article is structured as follows. In the

“Methods” section, we will overview our approach to sensitiv-

ity analysis and classification. We will then discuss the experi-

ments conducted and the outcomes in the “Experimental

Results” section. Analysis of the results is reviewed in the

“Discussion” section and we end with final remarks and an

overview of future work in the “Conclusions” section.

METHODS
In our approach, classification and analysis of printed

documents can be divided into four steps: (1) printed
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sample generation; (2) scanning and extraction of individ-

ual letters via image processing; (3) feature extraction; and

(4) classification of the letters. In the remainder of this sec-

tion, we provide details on each of these steps.

All sample sheets used in our experiments were printed

from a single digital raster. The digital raster was generated

at 600 ppi and contained six letters; {A, U, S, T, I, N}. The

selected letters were chosen based on the fact that the

shapes of each character provide a level of uniqueness in

curvature, edges and angles (the original version of this

work having been targeted for the NIP26 conference, which

was located in Austin, Texas). We believe other characters

in the western alphabet could work equally as well (e.g., the

letter Z could have been selected instead of N).

For each letter in the set, 100 instances of the letter were

printed on the page by generating four rows of 25 characters

each. All characters were generated using the Courier New

font at size 10. Figure 1 depicts a scaled down version of the

digital raster. Five pages were then printed at a resolution of

600 dpi for each printer used in the experiments.

Each printed test sheet was then scanned at multiple

resolutions on an HP Scanjet 8350 flatbed scanner with an

automatic document feeder (ADF). The test sheets were

loaded into the ADF such that the scan occurred down the

Figure 1. Scaled version of digital raster used for test sheet generation. Actual size is 8.5in. by 11in.
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long axis of the page. Scans were performed at 75, 150, 300,

600, and 1200 ppi at 24-bit RGB resolution. All scans were

saved in a lossless portable network graphics (PNG) file for-

mat. Using in-house image processing software, each

scanned page was analyzed to extract each individual letter

from the page. The in-house image processing software,

coded in C#, performed extraction in the following man-

ner. Images were binarized using a variant of the method

by Kittler and Illingworth,6 and then connected compo-

nents were created after an erosion=dilation step to elimi-

nate small ink regions (noise). Each region was

encapsulated in a rectangular bounding-box and subse-

quently copied to an individual file.

After shape extraction, each letter was analyzed to

extract 36 feature descriptors of the shape. Table I lists the

features extracted from each shape. Since the features them-

selves are not a primary focus of this body of work, we refer

the reader to Refs. 7 and 8, for expanded descriptions and

equations for calculating the feature descriptors. While it

may appear that some of these features are redundant,

rather than manually removing features, we made the deci-

sion to keep all of them and allow the classifier to deter-

mine which features provided the best information to

discriminate between classes (i.e., classification).

For classification, we selected the ADABOOST algo-

rithm developed by Freund and Schapire,9 and modified it

to handle multiclass classification problems by using the

approach described by Allwein et al.10 We briefly describe

the ADABOOST algorithm and multiclass approach below

and refer the reader to Freund and Schapire9 and to Allwein

et al.10 for additional details. For more information on clas-

sification approaches we refer the reader to Duda et al.11

The ADABOOST algorithm is a simple yet effective

classifier, which utilizes the concept of boosting to take

weak classifiers and linearly combine them into an overall

strong classifier. Formally, the strong classifier can be

defined as

f ðxÞ ¼
XT

t¼1

at htðxÞ: (1)

In Eq. (1), ht(x) represents the weak hypothesis of the

weak classifier t, and at is the weighting of the hypothesis.

In the two-class approach, the indicator variable y is

defined as yi 2 Y ¼ f�1;þ1g. The final hypothesis of the

classifier, or predicted class, as expressed in Eq. (1) is then

the sign of f(x) obtained from the sum of the weighted

weak classifiers.

To train the ADABOOST classifier, one specifies the

number of weak learners in parameter T, which also corre-

sponds to the number of training iterations performed, and

for each weak learner one iterates over the training set to

determine the weightings. Given a training set of m samples,

the error for the weak classifier at iteration t is defined as

et ¼
Xm

i¼1

Dt ðiÞ yi 6¼ hiðxiÞ½ �; (2)

where Dt represents a distribution of weightings for the

training samples. Prior to training, the weight values of Dt

are uniformly initialized to (1=m). The weight of the weak

learner can then be updated by the function

at ¼
1

2
ln

1� et

et

� �
: (3)

Lastly, the distribution Dt is updated by the function

Dtþ1ðiÞ ¼
DtðiÞ expð�at yihtðxiÞÞ

Zt

; (4)

where Zt is a normalizing constant. As can be seen in Eq.

(4), incorrectly classified training samples receive an

increase in their weight values proportional to the weight-

ing of the weak classifier used for a given training iteration.

This forces the ADABOOST algorithm to focus on the

more difficult training examples when building the model.

Table I. List of feature descriptors used for classification.

Bounded Binary X Centroid Second Order Column Moment

Bounded Binary Y Centroid Second Order Mixed Moment

Bounded Weighted X Centroid Second Order Row Moment

Bounded Weighted Y Centroid Std. Dev. Radial Distance

Circularity 1 Texture Contrast

Circularity 2 Texture Correlation

Cropped Height Texture Energy

Cropped Width Texture Entropy

Height Texture Homogeneity

Ink Area (grayscale) Theta 1

Major Axis Length Theta 2

Major Axis Orientation Weighted X Centroid

Mean Radial Distance Weighted Y Centroid

Minor Axis Length Width

Minor Axis Orientation X-axis symmetry

Perimeter Length Y-axis symmetry

Perimeter Pixel Count X-centroid

Pixel Area (binary) Y-centroid

Table II. Printers used in experiments. Note for the 6940 two instances of the same
printer model were used and they are designated as (1) and (2).

Printer Print Technology

HP Laserjet 3005d DEP

HP Laserjet 3600dn DEP

HP Deskjet 6127 TIJ

HP Photosmart C6280 AiO TIJ

HP Deskjet 6940 (1) TIJ

HP Deskjet 6940 (2) TIJ
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To expand this to a multiclass problem requires determin-

ing how to reduce the multiclass problem to a set of binary

problems, so that it can be integrated into the ADABOOST

algorithm. A number of approaches have been suggested by

others,10 such as one-against-all or all-pairs. Since the latter

requires significantly more computational overhead due to the

number of combinations, we opted to utilize the one-against-

all approach. Using this approach as described in Ref. 10, given

a set of k classes, the multiclass problem is broken up into k bi-

nary tests where each class is compared against the remaining

classes, which are treated as a single second class.

The first part of this approach is to define an encoding

matrix M of size k by k, which represents the class labels.

Using the same values for indicator variables as defined in

the original ADABOOST approach,9 the diagonal of the

matrix will containþ 1 and all other elements will be �1.

For example, in a three class problem class-1 is defined as

[þ1,�1,�1], and class-3 is defined as [�1,�1,þ1].

With the addition of multiple classes, the ADABOOST

algorithm must now take a new error function to encom-

pass the one-against-all approach. To do this, one must

perform an additional iteration over the classes, s, which

is nested inside the iterations over the weak learners.

This allows the function to compute the weights over all

classes.

et ¼
Xm

i¼1

Xk

s¼1

Dt ði; sÞ Mðyi; sÞ 6¼ htðxi; sÞ½ �: (5)

Figure 3. Mean classification accuracy of the test data from the six-class leave-one-out experiment.

Figure 2. Mean classification accuracy of the training data from the six-class leave-one-out experiment.
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In Eq. (5), the distribution, Dt, is defined over the

training samples and each class. This is computed in a

manner similar to the two-class approach in Eq. (4) as seen

in the following equation:

Dtþ1ði; sÞ ¼
Dt ði; sÞ expð�at Mðyi; sÞht ðxi; sÞÞ

Zt

: (6)

As with Eq. (4), the value Zt is a normalizing constant

defined as 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
et ð1�et Þ

p
. With regard to Eqs. (2) and (5), in

the event that the error value, �, exceeds 0.5 the training

cycle is terminated since the value of a derived in Eq. (3)

would otherwise be negative.

The last step is to redefine Eq. (1) to handle multiple

classes. Using the concept of loss-based decoding,10 the loss

function can be defined as

1

mk

Xm

i¼1

Xk

s¼1

LðMðyi; sÞfsðxiÞÞ: (7)

In Eq. (7), the hypothesis fs, which represents the hy-

pothesis that sample xi belongs to class s, is compared to

the encoded value of each training point from the encoding

matrix M to give the average loss over all training points

and hypotheses.

The final hypothesis of the multiclass problem can

then be determined by looking at the vector of class

hypotheses f(x). Using loss-based decoding as a distance

measure, the predicted class is determined by computing

the distance of the prediction to each class and assigning

the sample to the class with the shortest distance or loss.

Formally, this is defined as

dLðMðrÞ; f ðxÞÞ ¼
Xk

s¼1

LðMðr; sÞ; fsðxÞÞ; (8)

where r is the row of the label which is closest to f(x).

The weak learner selected for this implementation of

ADABOOST was the decision stump. The decision stump,

a one level decision tree with two leaf nodes, attempts to

classify a sample by inspecting the value of a single feature

and binning it to a class based on the relation to a split

value determined from the training data. For the decision

stumps used in this work, split values were determined by

finding the value within a feature dimension, which corre-

sponded to the largest information gain. Formally informa-

tion gain (IG), can be defined as

IGðY jX : sÞ ¼ HðY Þ � HðY jX : sÞ; (9)

where the entropy and conditional entropy values are com-

puted as

HðY Þ ¼ �
Xk

i¼1

pi log2 pi; (10)

HðY jX : sÞ ¼HðY jX < sÞPðX < sÞ
þ HðY jX � sÞPðX � sÞ:

(11)
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In Eqs. (9) and (11), the value s represents the split point

and Eq. (10) is the standard entropy calculation intro-

duced by Shannon12, where pi is the probability of being

in class i. To find the split value corresponding with

the largest information gain for a specific feature, values

from the training data are sorted in ascending order and

the information gain is computed at each unique value.

The feature value corresponding to the maximum IG

value is then selected as the split point. This process is

performed over all feature dimensions for the training

data and is precomputed prior to training the ADA-

BOOST model.

EXPERIMENTAL RESULTS
Three sets of experiments were performed to determine the

effects of scan resolution and shape on classification accu-

racy. For the first two experiments, we used six printers.

For the third experiment, we used only two of the six print-

ers. The printers used in all of the experiments are listed in

Table II. As described in the “Methods” section, five pages

of the digital raster were printed for each printer at 600 dpi.

All prints were performed using the normal print quality

settings. For all color printers, the settings were modified so

that printing used only black ink or toner. All printing used

the same brand of office paper.

Figure 5. Mean classification accuracy of the test data from the five-class leave-one-out experiment.

Figure 4. Mean classification accuracy of the training data from the five-class leave-one-out experiment.
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For each of the three experiments, classification tests

were broken out by letter and resolution. With six letters

and five resolutions, 30 separate classification tests were

performed. Since our goal was forensic based, training and

testing were performed by a leave-one-out approach as fol-

lows. For each classification test, the classifier was trained

on samples from four of the five printed pages for each of

the printers used. The fifth page, which was left out of the

training set, was then used as the test set. For example,

looking at the letter “A” at a scan resolution of 600 ppi, if

all six printers are used then there are 2400 letters used for

training (6 printers� 4 pages per printer� 100 A’s per

page), and 600 letters used for testing (6 printers� 1 page

per printer� 100 A’s per page). Similarly to k-fold cross-

validation tests, the classification tests were conducted so

that each of the five pages was used once as a test page and

the remaining four were used for training.

In the first experiment, all six printers were treated as

individual classes. To capture the general trends of classifi-

cation accuracy we distilled the results into two graphs, one

for the training set and the other for the test set, shown in

Figures 2 and 3. In each of these figures, the plot depicts

the mean accuracy for each letter with respect to scan reso-

lution. However, it is important to point out that these

plots do not fully represent the data. The confusion matri-

ces for the results of the test sets where page one is the test

sheet are listed in Table III. The actual class of a sample is

listed along the left hand columns of the table, while the

predicted class is listed across the top of the table. Due to

space limitations and the large number of classification

tests performed, it is not possible to list the results of each

test or the confusion matrices of the training data.

In the second experiment, the two instances of the

6940 DeskjetTM printer were treated as a single class;

thereby, reducing the problem to a five-class classification

test. This doubled the number of samples used for testing

and training of the 6940 class, but all other aspects of the

experiment were conducted the same as the first. The mean

classifier accuracies of the training and test sets are plotted

in Figures 4 and 5 and the confusion matrices for the test

results using the first page are in Table IV.

For the third experiment, we ran a two-class problem

where only the two instances of the 6940 DeskjetTM printer

were analyzed. Table V shows the confusion matrices for all

letters and resolutions from the results of the first test page

and Figures 6 and 7 depict the mean classification accuracy.

For all of the tests, printer identification was per-

formed by a simple majority vote. Looking at each row of a

confusion matrix, the printer selected as the source was

identified as the printer having the largest count of classi-

fied letters in its column.

DISCUSSION
Based upon the results presented in Tables III and IV,

several trends can be identified. First, it is clear that as reso-

lution increases, the overall accuracy of classification Ta
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increases for the six-class and five-class experiments. Fig. 2

through 5 substantiate this claim as do the confusion

matrices in Tables III and IV. However, the results for the

six-class problem also indicate that in many of the tests,

classification accuracy for distinguishing between the two

6940 model printers was low. Looking at Table III, one will

notice that by 150 ppi scan resolution, misclassification

primarily occurs in two areas. The 6940 printers are mis-

classified between each other, as are the two laser printers

(3005 and 3600). If one was to apply a simple majority

test as the means for determining the source printer, it

would fail at a number of resolution and letter combina-

tions due to the 6940. As the resolution continues to

increase, the laser printers become correctly distinguished

from one-another and again a simply majority vote would

correctly identify the source printer except in the case of

the 6940.

If the classification problem is changed into a five-class

problem to only identify make and model, then at 150 ppi

we are able to correctly identify every printer using major-

ity vote regardless of which letter is selected. As the resolu-

tion increases, the accuracy trends upward and the stronger

the vote count for each source printer model. This repre-

sents a typical real world workflow in which a document as

a set of printed marks is forensically analyzed.

The results of the most interest to us, however, were

those of the two-class problem in which the objective was to

distinguish one 6940 from the other. Looking again at the

results in Table V, with a scan resolution as low as 150 ppi,

our approach is able to correctly identify the source printer

using majority vote regardless of letter. However, it is worth

pointing out that of the letters used, the letter N yielded the

highest classification accuracy at each resolution. For these

binary tests, the peak classification accuracy appears to be at

600 ppi and this is best seen in Figs. 6 and 7. For the letter

N, the mean accuracy of the test data is 94.5% (sample

standard deviation s¼ 2.9%) at this resolution but drops

slightly to 91.9% (s¼ 3.8%) at 1200 ppi. Other letters exhib-

ited a stronger downward trend from 600 to 1200 ppi. The

test data for the letter S, for example, is classified with a

mean accuracy of 90.5% (s¼ 4.4%) at 600 ppi, but drops to

83% mean accuracy (s¼ 1.1%) at 1200 ppi. The letter I on

Figure 6. Mean classification accuracy of the training data from the 6940 binary classification experiment.

Table V. Confusion matrices of the test data results for experiment 3 (2-class tests). Only the two 6940 printers were used in this experiment.
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the other hand dropped marginally from 90.2% (s¼ 2.4%)

to 90% (s¼ 3.6%).

Upon closer inspection of the CCD configuration of

the scanner, we discovered that different sensors within the

CCD were used depending on the specified resolution. For

the experiments using scan resolutions between 75 and 600

ppi, a set of 600 ppi native resolution linear CCD arrays

were utilized to perform the document scans. For the scans

performed at 1200 ppi resolution, a different set of linear

CCD arrays with a native resolution of 1200 ppi were uti-

lized. We believe that the drop in classification accuracy

between 600 and 1200 ppi can be primarily attributed to

the different CCD arrays selected for use by the scanner.

However, as previously stated, using our approach with

scan resolutions as low as 150 ppi, printer source identifica-

tion results can be attained.

The results seen in the three sets of experiments sug-

gest a possible workflow, which can be used to identify

source printers in forensic settings. First, identify printer

models which are potential source candidates for a docu-

ment in question. Using the approach of experiment 2, per-

form a multiclass classification to identify the model in

question. Then, following the approach of experiment 3,

perform a classification analysis of the instances for the

make and model in question.

CONCLUSIONS
Using a multiclass ADABOOST classifier, we performed a

sensitivity analysis study to examine how scan resolution

and shape affect the ability to correctly identify samples

with their original source printers. In classification experi-

ments where multiple instances of a printer make and

model are treated as a single class, source printer identifica-

tion using a simple majority vote is successful with resolu-

tions as low as 150 ppi. Performing a binary classification

and identification test on two instances of the same make

and model printer also resulted in 100% correct printer

identification with a resolution as low as 150 dpi. These

overall results indicate that, with a resolution as low as 150

ppi, it is possible to identify the source printer by first per-

forming classification and identification on makes and

models followed by a focused classification analysis on the

make and model instances in question. These results are an

advancement over previous studies and findings,1,2 since

we are able to use a much lower resolution to attain printer

identification.

FUTURE WORK
Based on our findings, a number of unanswered questions,

which warrant further research remain. First, our approach

for identifying the specific instance of a make and model

printer is limited to two printers. A more in-depth study is

required to determine the robustness of our approach if

more than two printers of the same make and model are in

question. Second, with regard to how the printer signa-

tures originate, research needs to be undertaken to investi-

gate whether swapping ink=toner cartridges between

printers of the same make and model changes the signa-

tures of the printers or moves with the cartridges. Lastly,

an in-depth analysis also needs to be performed to assess

the effectiveness of our approach when using laser

printers.
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