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Abstract. The authors present a new framework for algorithms for a
wide range of image enhancement and reproduction applications,
named sTrRess—Spatio-Temporal Retinex-inspired Envelope with
Stochastic Sampling. The algorithms work by recalculating each
pixel using envelopes for local upper and lower bounds in the image.
The envelopes are obtained sampling neighbor pixels and can be
interpreted as local reference maximum and minimum. This
approach derives from a computational simplification of previous
spatial color algorithms like Retinex or ace. With the proposed
method, various tasks such as local contrast stretching, automatic
color correction, high dynamic range image rendering, spatial color
gamut mapping, and color to grayscale conversion can be performed
with good results. The algorithm exhibits behaviors in line with some
aspects of the human visual system, e.g., simultaneous contrast.
© 2011 Society for Imaging Science and Technology.
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INTRODUCTION

Our vision system collects the meaningful information to
produce its final perception, not from the stimulus coming
from each single point in the scene, but rather from the
spatial relationships among various stimuli." This is at the
origin of several well-known visual effects including local
contrast enhancement, simultaneous contrast, etc. As a
direct consequence of this, with the same stimulus, prop-
erly arranged in the space, we can form nearly all possible
color sensations.

One of the earliest models able to deal with locality of
perception is Retinex, as presented by Land and McCann.’
The scientific community has continued to be interested in
this model and its various applications, as reported in
Ref. 4. In the basic implementation of Retinex by Land and
McCann, locality is achieved by long paths scanning across
images. Different implementations and analysis have fol-
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lowed after this first work. These can be divided into two
major groups and differs in the way they achieve locality.
The first group”'* explores the image using paths or
extracting random pixels around the pixel in question. The
second group''™'® computes values over the image with
convolution mask, distance weighting, or variational tech-
niques. All the sampling implementations use a high num-
ber of samples in order to lower the amount of noise.

A recent implementation, in order to investigate the
effects of different spatial samplings, replaces paths with
random sprays, i.e., two-dimensional (2D) point distribu-
tions across the image, hence the name “Random Spray
Retinex” (RSR)."” The random sprays replaced the paths
with some advantages, but still the required number of
sampled points is very high. A high number of points mean
long computational time, which has been always the weak
point of this family of algorithms.'®

An edge-preserving version of Retinex was proposed
by Sobol' for high dynamic range images. The edge-
preserving behavior was obtained by introducing a ratio
modification operator. Shaked and Keshet have proposed
to use envelope operators for Retinex.”® In order to obtain
a fast implementation, the envelopes were represented as
2D infinite impulse response filters.

In this article, we present an alternative technique
implemented with an extremely small number of sample
points, using two envelopes to characterize the local visual
context. The envelopes are two signals: E™* and Fmin,
which are constructed such that the image signal is always
between the two (see Figure 1 and “The stress Framework”
section). The envelopes are calculated using stochastic sam-
pling technique that is a simpler alternative to the approach
in Ref. 20. By using a simple weighting of the sample val-
ues, an edge-preserving method is obtained without the
need of introducing any ratio modification operator as in
Ref. 19. The properties of the proposed approach are in line
with other spatial color algorithms (SCA)."'® The algorithm
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Figure 1. lllustration of the envelopes of one scandine of an image. We
see the scan-line (blue), E™" (green), and £ (red). Notice that the exact
shape of the envelopes will depend not only on the single scan-ine but
also on the content of the whole image due fo the intrinsic 2D properties
of the image.

framework is called stress: Spatio-Temporal Retinex-
inspired Envelope with Stochastic Sampling. STRESS cannot
be considered as one of the many Retinex implementations.
It inherits from Retinex the idea of local white reference,
but it implements a very different pixel value stretching. In
contrast with Acg, it is based on linear averages and sam-
pling only a few pixel values in each iteration.

The structure of the article is the following: First, the
sTRESS framework is presented in “The sTress Framework”
section. Then, its details and properties are demonstrated
through a set of image processing algorithms derived from
the stress framework. Finally, the sTREss parameters and its
behavior are discussed.

THE stress FRAMEWORK

Basic Idea

By the human visual system, a relatively bright detail in a
very bright part of an image can appear darker than a
darker detail in a very dark part of the same image. The
central part of the sTrRess framework is to calculate, for each
pixel, the local reference lightness and darkness points in
each chromatic channel. This is done through calculating
two envelope functions, the maximum and minimum enve-
lopes, completely containing the image signal. The enve-
lopes are slowly varying functions, such that the image
signal is always in between the envelopes or equal to one of
them.

In calculating the envelopes (that serve as the local ref-
erence maximum and minimum values), the most nearby
parts of the image have the strongest influence on the enve-
lopes at that point. In agreement with Rizzi et al.,>' this de-
pendency should be related to the distance. In order to
avoid checking all image pixels in recomputing every pixel,
resulting in an O(N?) algorithm, stochastic sampling will
be used as in Ref. 17. All computations are assumed to be
performed in a space that is close to perceptually uniform.
In practice, this means, at least, that gamma corrected
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images are used. Since the gamma correction work more or
less as a logarithm, this means that the pixel differences
involved in the calculations are similar to lightness ratios.
However, this is not mandatory. The algorithm shows
goods results on linearly scaled images as well.

Formal Definition of the Envelope Computation

For each pixel, py, the values of the maximum and mini-
mum envelopes, E™ and E™" at the corresponding posi-
tions, are computed in an iterative manner using N
iterations. In every iteration, M pixels intensity values
pj»i € {1,..., M}, are sampled at random with a probabil-
ity proportional to 1/d, d being the Euclidean distance in
the image from the sampled pixel to the pixel in question.
The intensity value of the center pixel, p,, is not eligible for
random sampling but is always included in the sampled set.
The pixels are sampled only from a disk with radius R
around the center pixel. When using such a random spray
to sample the image, the strategy we have chosen when a
sample outside the image is attempted is simply to try
again until a sample within the image is found. From these
samples, the maximum and minimum samples in the spray
are found:

s™ = max p; 1
' el Py =
s = min  p;. 2
T e @)

Since p, is always one of the sample points,
s < py < s always. The range r; of the samples and
the relative value v; of the center pixel are then given as

r; = M — gmin (3)
1/2 if T = 07
v; = .
! (po — s™™)/1;  else.

Thus, v; € [0, 1] always. These quantities are averaged over
the N iterations in order to get a better estimate:

(4)

>
T=— Ti, (5)
N
N
1
v=— Vi. (6)
N
Averaging r; and v; instead of averaging s™* and sMi

directly makes sure that the algorithm is edge-preserving
and does not introduce haloing artifacts. If s™* and s™"
had been averaged directly, too much weight would have
been given to pixels with pixel values distant from the value
of the center pixel. Averaging v; instead, the inverse of the
sample range 1/r;, acts as a weighting factor, giving more
weight to collection of samples with a narrow range. Thus,
pixel collections where all pixels come from the same side
of some nearby edge are given higher weight. The envelopes
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are finally computed from the estimated average range, the
average value, and the pixel value as follows:

E™" = py — U7, (7)
E™* = py+ (1 — 9)7 = E™" + 7. (8)

Since v; € [0, 1], also ¥ € [0,1] always. Thus, we are sure
that E™in < po < E™**. We also notice that with this defini-
tion E™* = p, at the global maximum of the image and
EMiM = py at the global minimum. It is also possible but
not necessary that the envelopes touch the local extrema.
How closely the envelopes will follow the image will depend
on the choice of R, N, and M. An illustration of the enve-
lopes for one scan-line of an image is shown in Fig. 1. For
color images, this is done three times separately for each
chromatic channel.

Implementation Issues

There are different possible ways to perform the random
sampling of the pixels needed for calculating the envelope.
One could precalculate various “sprays”'” or one could use
the same spray for all pixel positions. In agreement with
the discussion of Ref. 17, we use individual sprays.

The position of the pixel is chosen in polar coordinates
as follows: First the distance from the center pixel to the
sample pixel is chosen as a random number d € [0, R], R
being the radius of the spray, using a uniform probability
distribution. Then, the polar angle of the sample pixel is
chosen from a uniform distribution, 6 € [—x,=]. This
results in a probability density that is inversely proportional
to the distance to the center pixel of the spray.'” In order
to speed up the calculation of the spray, we use precom-
puted look-up tables for the conversion between polar and
Cartesian coordinates.

The computational complexity of the algorithm is
O(NMn), where n is the number of pixels in the image. In
other words, the algorithm is linear in the number of image
pixels. However, for practical purposes, the radius of the spray,
R, has to be increased as O(y/n) when increasing the image
size. Doing this, the density of sampling points gets lower, so
N or M, or both, have to be increased somewhat in order to
obtain results of similar perceptual quality, in practice, making
the algorithm heavier than a simple linear one. As a reference,
calculating the image of Figure 2 (512 x 779 pixels) took
approximately 8 s using a C implementation running on a
T7700 2.4 GHz Intel Core2 Duo CPU, under Linux.

We have implemented stress in CUDA 1.1 on a
Quadro FX3700 graphic card, without any optimization
(CUDA and Quadro are provided by NVIDIA, see
http://www.nvidia.com/). For a 512 x 1024 pixel image,
with 10 sampling points and 100 iterations, the computa-
tion takes about 2 s.

The complexity of the proposed method is comparable
to other SCAs."® Like many of them, the efficiency can be
greatly improved by techniques such as using subsampling
and subsequent upscaling with a local linear lut.*?
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Figure 2. The stress algorithm applied fo the grayscale image on the left.
The image size is 512 x 779 pixels, and the parameters used were
R=300, M=3, N=100.

APPLICATIONS
In this section, we present sTrRess details and properties,
through the description of a set of possible applications.

Local Contrast Enhancement of Grayscale Immages

A straightforward application of stress is local contrast
enhancement of grayscale images. Since the envelopes can
be interpreted as local reference maximum and minimum
points, to obtain a local effect, the pixel value should be
compared to these quantities. In this way, a bright pixel
should have a low value if it is close to a local reference
minimum, and a dark pixel should have a high intensity
value if it is close to a local reference maximum.

This is implemented assigning the values 0 to the local
reference minimum and 1 to the local reference maximum
and performing a linear scaling between these extrema.
Again, it is important to remember that all computations
are performed in a gamma corrected or perceptually uni-
form space. This corresponds exactly to calculating the rela-
tive position within the envelope (see Fig. 1 for an
illustration):

Po - Emin

— 9)
Emax - Emin

Pstress =

An example contrast stretched grayscale image is shown in
Fig. 2.

Local Color Correction of Color Iinages

The same approach can be used for color images. If the cal-
culation is performed independently for each color chan-
nel, the three maximum envelopes together will define a
local reference maximum and the three minimum enve-
lopes will define a local reference minimum in the three
chromatic channels, respectively. As in other algorithms of
the same family,18 in case of a global or local color cast, it
will result in an automatic color adjustment. An example
image is shown in Figure 3. This kind of automatic color
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Figure 3. The stess algorithm applied fo the color image on the left. The
image size is 512 x 779 pixels, and the parameters used were R= 300,
M=3, N=100.

correction will, as for Retinex and Ack, tend to remove color
casts if present, where wanted or not.

The local reference minimum and maximum together
define the extremes of a local color cube in the linear RGB
color space containing the pixel to compute (for the same
reasons as in the 1D case). One way to describe locality of
the envelope in color, is considering it as a local color space.
This means that for each point in the image, the RGB color
space changes locally according to the spatial neighbor-
hood. With local color spaces, we can deal with a classic set
of problem in a local framework.

The algorithm will perform an automatic color adjust-
ment along the lines of ace*' or RSR."” Consequently, if the
change of global white point is not wanted, methods used
in ACE, such as “keep original gray,” to preserve the original
mean values, or “keep original color cast,” to preserve (if
present) a color dominant, can be easily incorporated.”

HDR Image Rendering

Traditionally, high dynamic range (HDR) image rendering
or tone mapping has been considered a specific field of
research on its own. One particularly interesting property
of sTress is that it can be applied directly, without any mod-
ification, as a local tone-rendering operator for high
dynamic range images. That is, HDR images are mapped
according to Eq. (9).

Also this feature is in line with SCA algorithm family."®
It rearranges spatially and locally the relative values accord-
ing to the scene content, preserving edges and compressing
gradients.

Two examples of rendered HDR images are shown in
Figures 4 and 5. It should be noted that not only tone-ren-
dering but also local color adjustment, contrast stretching,
and luminosity normalization are applied. If the overall
color adjustment is not wanted, techniques such as keep
original color cast** can easily be added. In the renderings,
we can see details in both very light and very dark regions
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Figure 4. Rendering of the HDR image memorial. The image size is
512 x 768 pixels, and the parameters used were R= 300, M= 10,
N=100. The small frames show the HDR image at different levels of
exposure.

without the generation of artifacts such as halos. However,
the resulting images can appear a bit like high-pass filtered
images if compressed too much. This is controlled by the
parameters R, M, and N (see discussion below). sTress has
been tested on a larger set of HDR images providing stable
and satisfactory tone rendering.

Spatial Color Gamut Mapping

In Ref. 25, Kolds and Farup presented a spatial color gamut
mapping. First, from the original image with pixel values
Po>» @ gamut clipped image with pixel values p. was con-
structed. The clipping was performed along straight lines
toward a neutral point g on the gray axis such that
pe = (1 — m)py + mg, m being determined for each pixel
independently. Then, the map m was filtered using an
edge-preserving blurring increasing filter (a filter that never
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Figure 5. Rendering of the HDR imoge desk. The image size is
512 x 768 pixels, and the parameters used were R=600, M= 10,
N=100. The small frames show the HDR image af different levels of
exposure.

reduces the original pixel value). The symmetric nearest
neighbor (SNN) filter®® was used for the purpose. The algo-
rithm provided quite nice results, but the filter was found
to be operating in a too local manner when compared to
other spatial color gamut mapping algorithms.*”

The procedure to compute the stress maximum enve-
lope Enmax works as an edge-preserving increasing filter and
can easily be exchanged with the SNN filter. The resulting
spatial gamut mapping procedure is thus to compute
Enax(m) and finally to compute the final gamut mapped
image as a convex linear combination of the original image
and the neutral image,

psgma = (1 - Emax(m))po + Emax(m)g~ (10)

By this mapping, the colors are changed only along straight
lines in the color space from the original pixel color toward
a point on the neutral axis. An example of an image gamut
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Figure 6. Gamut clipped image and spatial gamut mapped image using
the sTRess algorithm.

mapped to the ISO uncoated gamut is shown in Figure 6.
The resulting images are much more natural looking than
the ones produced using the SNN filter®® in that there are
no visible artifacts close to sharp edges and no visible over-
enhancing of details.

Temporal Color Correction of Movies
For moving pictures, the concept of spatial envelopes can
be generalized to the temporal domain. Since the envelopes
are computed using an iterative approach, a better and
even faster solution for moving pictures will be to perform
the iterations over the frame sequence, using a running av-
erage. In this way, the local reference maximum and mini-
mum will not only depend on the current frame itself but
also on the previous frames.

This can be achieved by exchanging the Egs. (5) and
(6) with

7F=or+ (1 — o), (11)

v=oav+ (1—a)vp, (12)

where 7, and v, being the values of 7 and v at the previous
iteration, respectively. How quickly the local reference min-
imum and maximum will change in the image will depend
upon the choice of the o parameter and the number of iter-
ations on each frame.

With this temporal extension, the algorithm realizes
two interesting behaviors: lightness adaptation and after
images. If the video stream ranges from very bright to very
dark, almost nothing will be seen in the dark to begin with,
but after a while, the algorithm will adapt to the darkness
and render the details well. The opposite effect will be seen
when moving from dark to bright. If the scene is changed
from a setting with strong colors or edges to a flat or ho-
mogeneous one, an after-image of the first scene will be
seen as a negative. An example of such an after-image is
shown in Figure 7.
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Figure 7. Afterimage produced by the temporal extension of sTress.

Color to Grayscale Conversion

A problem that has challenged many researchers is convert-
ing a color image to a grayscale image without the loss of
chrominance edges*® and without the introduction of arti-
facts such as halos.

Converting color to grayscale using only the lightness
channel values is a good example of how perceiving a color
in context can differ from the color in void condition. A
classic phenomenon is the following. Take two gray
patches, similar but not identical, and put them on a com-
mon background without contact, at a certain distance.
They will be perceived as identical or much more similar
than if posed on the same background, but in contact on a
side, forming an edge. These differences in appearance are
detectable when adjacent but not detectable when sepa-
rated. The same phenomenon takes place also with colored
patches.

Thus, the presence of edges can change the perceived
lightness. Applying stress will result in a more clear differ-
entiation of the edges, even if isoluminant, according to
their mutual position. Having access to the local reference
minimum and maximum of the image, we can easily define
a local gray axis between these two points, taking into
account that we are using a linear color space. Then, the
pixel color can simply be projected to this local gray axis,
and we have a grayscale image in which also the chromi-
nance edges are kept.

Denote the local white point as w = [ER**EZ*Ep™]
and the local black point as b = [ERiERINERN] | respec-
tively, and let p be the vector of the pixel values of the three
color channels. Then, the gray value of that pixel is com-
puted as

(p—b)-(w-b)

A common example image for testing color to grayscale
algorithms is shown in Figure 8.
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Figure 8. Example of color o grayscale conversion. The image in the
middle has been realized with a simple averaging of the RGB color chan-
nels. Below sTRess output, the image size is 745 x 498 pixels, and the pa-
rameters used were R= 600, M= 10, N=100.

DISCUSSION

Like all the algorithms of the SCA family,'® sTress can have
a varying behavior according to its parameters. Here, we
want to highlight the parameters, together with some com-
ments about the results and visual configuration on which
the human visual system exhibits interesting behaviors.

Sampling

Stochastic sampling is a quick and simple way to explore
the image context around the pixel in search of the local
reference for the pixel adjustment. Changing the sampling
method changes the way the algorithm explores the image
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Figure 9. Details of stress output varying sampling (horizontal] and iterations (vertical). Values are 1, 5, 10,

50, and 100 for both axes.

and consequently its local behavior. The more the samples are
collected, the more the higher and lower values will be repre-
sentative of the neighborhood. This will result in changes in
the locality and also in a decrease of noise. However, to sup-
press noise is more important to increase the number of itera-
tion as will be shortly presented (see Figure 9).

A statistical characterization of the sampling techni-
ques will be the subject of future research. However, an
interesting point is that just one sampled pixel (together
with the pixel itself) is enough to give to the output a
rough noisy version of the image output appearance. This
is the lowest sampling possible and moves the issues about

J. Imaging Sci. Technol.

040503-7

noise and image quality from the computation on a single
image to the effectiveness of the repetition of the computa-
tion across a series of images from the same temporal
sequence. In other words, it is possible to reach a satisfac-
tory steady result with the desired quality, both increasing
the computation on a single image or alternatively keep
computing with a limited number of sampling points and
iterations (computationally non expensive) on temporal se-
ries of images of the same scene.

This point suggests an interesting direction on further
investigation about the model and its possible analogies
with the human visual system.
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Figure 10. Examples of stess filtering changing radius starting from R= 2 upper left, doubling the radius for

every image, ending of R=512 lower right.

In Fig. 9, the effect of increasing the number of the
samples and iterations is presented. A set of combinations
of sTRESS results varying the number of the sampling point
and the number of iteration is presented. First column has
one sample point for each pixel, the second five, the third
10, the fourth 50, and the fifth 100 sampling points. The
first line shows results from one iteration, the second line
five, the third 10, the fourth 50, and the fifth line 100 itera-
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tions for each pixel. The original image is visible on the top.
A low number of sampling points gives the highest local
contrast in the mid tones at the cost of over exposing some
bright details. This effect is also visible in Figs. 2 and 3.
When the number of sampling points increases, the
behavior of the algorithm gets more and more global. In
the limit M — o0, the envelopes will be constant and equal
the global maximum and minimum of the color channels.
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Figure 11. The effect of stress on the lightness histogram.

The strESs algorithm then reduces to global linear contrast
stretching. This can also be observed in Fig. 9.

Iterations

To reduce the sampling chromatic noise, the sampling pro-
cess is iterated several times and averaged. This strongly
decreases the noise level at the cost of increased time of
computation.

Fig. 9 shows the effect of increasing the number of the
samples and iterations. Different from the number of sam-
pling points that is related to the spatial distribution of the
local minima and maxima, the number of iterations affects
more the variance of the computed pixel and is thus merely
a way to reduce noise.

As an initial blind tuning, the number of samples can be
set around ten. Lower values will produce salt and pepper
noise. Increasing the number of iterations is more important.
A number of iterations close to the radius give results with
extremely limited noise. This criterion can be used as maxi-
mization. Lowering this number can be very useful if saving
the computational power is required and down to 10-20 iter-
ations noise presence is not annoying. Parameter tuning, as
visual perception itself, depends also on the image content.

Radius
The radius parameter R is the maximum distance from the
pixel where the stochastic sampling can be done. It controls
the locality of the spatial maxima and minima for the
adjustment. It is not a critical parameter as long as it is large
enough to sample reasonably across the entire image. For all
the example rendered images presented in this article, the
radius is chosen to be large enough to avoid the artifacts
typically resulting from a too small value of the parameter.
If the radius value decreases significantly, the sampling
is localized to a very close and narrow neighborhood around
the center pixel. It is interesting to note from Figure 10 how
the color information derives from spatial comparisons. For
very small radii, only the colors near the edges in the original
image are present. Increasing the radius has the effect of
spreading color. Fig. 10 shows the results with radii of 2, 4,
8, 16, 32, 64, 128, and 256 pixels (in order from left to right
and from top to bottom). The original image is placed on
top, and its dimensions are 480 x 348 pixels.
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For practical purposes with real images, R should be
chosen large enough to cover the entire image, e.g., equal
to the diagonal of the image.

Overall Behavior

The stress algorithm shares some properties with both gray
world algorithms and white patch algorithms for color cor-
rection. The average color of the image is mapped toward
gray, whereas, at the same time, the brightest color in the
image is mapped to white. This is performed locally and in
a way that is edge-preserving.

Like other spatial color algorithms such as Retinex and
ACE, STRESS performs a content driven histogram flattening.
Figure 11 shows the lightness channel histograms of the
original parrot image of Fig. 10 (Fig. 11 top left) and the
same histogram of the stress filtered version (Fig. 11 top
right). If the starting image has a reduced number of colors,
as visible in the histogram of Fig. 11 bottom left, which
refers to the original parrot image converted to 256 colors,
the effect of sTrEss is to produce colors in the larger color
range spatially dequantizing the image. This is an interest-
ing property of the spatial color algorithms.'®

Only one of the three parameters of the algorithms can
be chosen freely. R should be set large enough to cover the
entire image, e.g., by setting it equal to the diagonal of the
image. N should be large enough to avoid visible noise. The
parameter M decides how local the behavior of the algo-
rithm is. For extremely large values, stress will reduce to
global contrast stretching. For extremely low values, STRESS
will act somewhat similar to a high-pass filter.

The stress algorithm also exhibits a simultaneous con-
trast type of behavior caused by the spatial comparisons.
Figure 12 shows the result of running stress with different
parameters on a classic simultaneous contrast configura-
tion. As it is visible from the figure, contrast is enhanced
qualitatively in the way our visual system does as can be
seen from the indicated pixel values.

CONCLUSIONS

In this article, we have presented a new framework for spa-
tially recomputing the color of a digital image. The color of
each pixel is recomputed by scaling its channel lightness
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Figure 12. Example of simulianeous contrast filtering.

value according to two upper and lower envelope functions.
These envelope functions are obtained sampling a limited
number of pixels in the neighbor. The algorithm performs
local color and lightness adjustments in an edge-preserving
manner by means of spatial comparisons.

The framework can be successfully applied to image
processing tasks such as color image equalization and con-
trast stretching, rendering of high dynamic range images,
spatial color gamut mapping, color to grayscale conversion,
and temporal color adjustment of movies. An implementa-
tion for moving images can be particularly efficient, due to
the use of historical data. sTress enhances the image with
minimal user supervision and without any a priori infor-
mation of the input image.

The underlying idea of the framework is simple and
easy to implement, and the algorithm is efficient (linear in
number of pixels) compared to other relevant spatial color
algorithms.
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