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Abstract. The authors present a new framework for algorithms for a
wide range of image enhancement and reproduction applications,
named STRESS—Spatio-Temporal Retinex-inspired Envelope with
Stochastic Sampling. The algorithms work by recalculating each
pixel using envelopes for local upper and lower bounds in the image.
The envelopes are obtained sampling neighbor pixels and can be
interpreted as local reference maximum and minimum. This
approach derives from a computational simplification of previous
spatial color algorithms like Retinex or ACE. With the proposed
method, various tasks such as local contrast stretching, automatic
color correction, high dynamic range image rendering, spatial color
gamut mapping, and color to grayscale conversion can be performed
with good results. The algorithm exhibits behaviors in line with some
aspects of the human visual system, e.g., simultaneous contrast.
VC 2011 Society for Imaging Science and Technology.
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INTRODUCTION
Our vision system collects the meaningful information to

produce its final perception, not from the stimulus coming

from each single point in the scene, but rather from the

spatial relationships among various stimuli.1 This is at the

origin of several well-known visual effects including local

contrast enhancement, simultaneous contrast, etc. As a

direct consequence of this, with the same stimulus, prop-

erly arranged in the space, we can form nearly all possible

color sensations.2

One of the earliest models able to deal with locality of

perception is Retinex, as presented by Land and McCann.3

The scientific community has continued to be interested in

this model and its various applications, as reported in

Ref. 4. In the basic implementation of Retinex by Land and

McCann, locality is achieved by long paths scanning across

images. Different implementations and analysis have fol-

lowed after this first work. These can be divided into two

major groups and differs in the way they achieve locality.

The first group5–10 explores the image using paths or

extracting random pixels around the pixel in question. The

second group11–16 computes values over the image with

convolution mask, distance weighting, or variational tech-

niques. All the sampling implementations use a high num-

ber of samples in order to lower the amount of noise.

A recent implementation, in order to investigate the

effects of different spatial samplings, replaces paths with

random sprays, i.e., two-dimensional (2D) point distribu-

tions across the image, hence the name “Random Spray

Retinex” (RSR).17 The random sprays replaced the paths

with some advantages, but still the required number of

sampled points is very high. A high number of points mean

long computational time, which has been always the weak

point of this family of algorithms.18

An edge-preserving version of Retinex was proposed

by Sobol19 for high dynamic range images. The edge-

preserving behavior was obtained by introducing a ratio

modification operator. Shaked and Keshet have proposed

to use envelope operators for Retinex.20 In order to obtain

a fast implementation, the envelopes were represented as

2D infinite impulse response filters.

In this article, we present an alternative technique

implemented with an extremely small number of sample

points, using two envelopes to characterize the local visual

context. The envelopes are two signals: Emax and Emin,

which are constructed such that the image signal is always

between the two (see Figure 1 and “The STRESS Framework”

section). The envelopes are calculated using stochastic sam-

pling technique that is a simpler alternative to the approach

in Ref. 20. By using a simple weighting of the sample val-

ues, an edge-preserving method is obtained without the

need of introducing any ratio modification operator as in

Ref. 19. The properties of the proposed approach are in line

with other spatial color algorithms (SCA).18 The algorithm
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framework is called STRESS: Spatio-Temporal Retinex-

inspired Envelope with Stochastic Sampling. STRESS cannot

be considered as one of the many Retinex implementations.

It inherits from Retinex the idea of local white reference,

but it implements a very different pixel value stretching. In

contrast with ACE, it is based on linear averages and sam-

pling only a few pixel values in each iteration.

The structure of the article is the following: First, the

STRESS framework is presented in “The STRESS Framework”

section. Then, its details and properties are demonstrated

through a set of image processing algorithms derived from

the STRESS framework. Finally, the STRESS parameters and its

behavior are discussed.

THE STRESS FRAMEWORK

Basic Idea

By the human visual system, a relatively bright detail in a

very bright part of an image can appear darker than a

darker detail in a very dark part of the same image. The

central part of the STRESS framework is to calculate, for each

pixel, the local reference lightness and darkness points in

each chromatic channel. This is done through calculating

two envelope functions, the maximum and minimum enve-

lopes, completely containing the image signal. The enve-

lopes are slowly varying functions, such that the image

signal is always in between the envelopes or equal to one of

them.

In calculating the envelopes (that serve as the local ref-

erence maximum and minimum values), the most nearby

parts of the image have the strongest influence on the enve-

lopes at that point. In agreement with Rizzi et al.,21 this de-

pendency should be related to the distance. In order to

avoid checking all image pixels in recomputing every pixel,

resulting in an OðN 2Þ algorithm, stochastic sampling will

be used as in Ref. 17. All computations are assumed to be

performed in a space that is close to perceptually uniform.

In practice, this means, at least, that gamma corrected

images are used. Since the gamma correction work more or

less as a logarithm, this means that the pixel differences

involved in the calculations are similar to lightness ratios.

However, this is not mandatory. The algorithm shows

goods results on linearly scaled images as well.

Formal Definition of the Envelope Computation

For each pixel, p0, the values of the maximum and mini-

mum envelopes, Emax and Emin at the corresponding posi-

tions, are computed in an iterative manner using N

iterations. In every iteration, M pixels intensity values

pj ; i 2 f1;…;Mg, are sampled at random with a probabil-

ity proportional to 1=d, d being the Euclidean distance in

the image from the sampled pixel to the pixel in question.

The intensity value of the center pixel, p0, is not eligible for

random sampling but is always included in the sampled set.

The pixels are sampled only from a disk with radius R

around the center pixel. When using such a random spray

to sample the image, the strategy we have chosen when a

sample outside the image is attempted is simply to try

again until a sample within the image is found. From these

samples, the maximum and minimum samples in the spray

are found:

smax
i ¼ max

j2f0;…;Mg
pj ; (1)

smin
i ¼ min

j2f0;…;Mg
pj : (2)

Since p0 is always one of the sample points,

smax
i � p0 � smax

i always. The range ri of the samples and

the relative value vi of the center pixel are then given as

ri ¼ smax
i � smin

i ; (3)

vi ¼
1=2 if ri ¼ 0;

ðp0 � smin
i Þ=ri else:

�
(4)

Thus, vi 2 ½0; 1� always. These quantities are averaged over

the N iterations in order to get a better estimate:

�r ¼ 1

N

XN

i¼1

ri; (5)

�v ¼ 1

N

XN

i¼1

vi: (6)

Averaging ri and vi instead of averaging smax
i and smin

i

directly makes sure that the algorithm is edge-preserving

and does not introduce haloing artifacts. If smax and smin

had been averaged directly, too much weight would have

been given to pixels with pixel values distant from the value

of the center pixel. Averaging vi instead, the inverse of the

sample range 1=ri , acts as a weighting factor, giving more

weight to collection of samples with a narrow range. Thus,

pixel collections where all pixels come from the same side

of some nearby edge are given higher weight. The envelopes

Figure 1. Illustration of the envelopes of one scan-line of an image. We
see the scan-line (blue), Emin (green), and Emax (red). Notice that the exact
shape of the envelopes will depend not only on the single scan-line but
also on the content of the whole image due to the intrinsic 2D properties
of the image.
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are finally computed from the estimated average range, the

average value, and the pixel value as follows:

Emin ¼ p0 � �v�r; (7)

Emax ¼ p0 þ ð1� �vÞ�r ¼ Emin þ �r: (8)

Since vi 2 ½0; 1�, also �v 2 ½0; 1� always. Thus, we are sure

that Emin � p0 � Emax. We also notice that with this defini-

tion Emax ¼ p0 at the global maximum of the image and

Emin ¼ p0 at the global minimum. It is also possible but

not necessary that the envelopes touch the local extrema.

How closely the envelopes will follow the image will depend

on the choice of R, N, and M. An illustration of the enve-

lopes for one scan-line of an image is shown in Fig. 1. For

color images, this is done three times separately for each

chromatic channel.

Implementation Issues

There are different possible ways to perform the random

sampling of the pixels needed for calculating the envelope.

One could precalculate various “sprays”17 or one could use

the same spray for all pixel positions. In agreement with

the discussion of Ref. 17, we use individual sprays.

The position of the pixel is chosen in polar coordinates

as follows: First the distance from the center pixel to the

sample pixel is chosen as a random number d 2 ½0;R�, R

being the radius of the spray, using a uniform probability

distribution. Then, the polar angle of the sample pixel is

chosen from a uniform distribution, h 2 ½�p; p�. This

results in a probability density that is inversely proportional

to the distance to the center pixel of the spray.17 In order

to speed up the calculation of the spray, we use precom-

puted look-up tables for the conversion between polar and

Cartesian coordinates.

The computational complexity of the algorithm is

OðNMnÞ, where n is the number of pixels in the image. In

other words, the algorithm is linear in the number of image

pixels. However, for practical purposes, the radius of the spray,

R, has to be increased as Oð ffiffiffinp Þ when increasing the image

size. Doing this, the density of sampling points gets lower, so

N or M, or both, have to be increased somewhat in order to

obtain results of similar perceptual quality, in practice, making

the algorithm heavier than a simple linear one. As a reference,

calculating the image of Figure 2 (512� 779 pixels) took

approximately 8 s using a C implementation running on a

T7700 2.4 GHz Intel Core2 Duo CPU, under Linux.

We have implemented STRESS in CUDA 1.1 on a

Quadro FX3700 graphic card, without any optimization

(CUDA and Quadro are provided by NVIDIA, see

http:==www.nvidia.com=). For a 512� 1024 pixel image,

with 10 sampling points and 100 iterations, the computa-

tion takes about 2 s.

The complexity of the proposed method is comparable

to other SCAs.18 Like many of them, the efficiency can be

greatly improved by techniques such as using subsampling

and subsequent upscaling with a local linear lut.22

APPLICATIONS
In this section, we present STRESS details and properties,

through the description of a set of possible applications.

Local Contrast Enhancement of Grayscale Images

A straightforward application of STRESS is local contrast

enhancement of grayscale images. Since the envelopes can

be interpreted as local reference maximum and minimum

points, to obtain a local effect, the pixel value should be

compared to these quantities. In this way, a bright pixel

should have a low value if it is close to a local reference

minimum, and a dark pixel should have a high intensity

value if it is close to a local reference maximum.

This is implemented assigning the values 0 to the local

reference minimum and 1 to the local reference maximum

and performing a linear scaling between these extrema.

Again, it is important to remember that all computations

are performed in a gamma corrected or perceptually uni-

form space. This corresponds exactly to calculating the rela-

tive position within the envelope (see Fig. 1 for an

illustration):

pstress ¼
p0 � Emin

Emax � Emin

(9)

An example contrast stretched grayscale image is shown in

Fig. 2.

Local Color Correction of Color Images

The same approach can be used for color images. If the cal-

culation is performed independently for each color chan-

nel, the three maximum envelopes together will define a

local reference maximum and the three minimum enve-

lopes will define a local reference minimum in the three

chromatic channels, respectively. As in other algorithms of

the same family,18 in case of a global or local color cast, it

will result in an automatic color adjustment. An example

image is shown in Figure 3. This kind of automatic color

Figure 2. The STRESS algorithm applied to the grayscale image on the left.
The image size is 512�779 pixels, and the parameters used were
R¼300, M¼3, N¼100.
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correction will, as for Retinex and ACE, tend to remove color

casts if present, where wanted or not.

The local reference minimum and maximum together

define the extremes of a local color cube in the linear RGB

color space containing the pixel to compute (for the same

reasons as in the 1D case). One way to describe locality of

the envelope in color, is considering it as a local color space.

This means that for each point in the image, the RGB color

space changes locally according to the spatial neighbor-

hood. With local color spaces, we can deal with a classic set

of problem in a local framework.

The algorithm will perform an automatic color adjust-

ment along the lines of ACE
21 or RSR.17 Consequently, if the

change of global white point is not wanted, methods used

in ACE, such as “keep original gray,” to preserve the original

mean values, or “keep original color cast,” to preserve (if

present) a color dominant, can be easily incorporated.23

HDR Image Rendering

Traditionally, high dynamic range (HDR) image rendering

or tone mapping has been considered a specific field of

research on its own. One particularly interesting property

of STRESS is that it can be applied directly, without any mod-

ification, as a local tone-rendering operator for high

dynamic range images. That is, HDR images are mapped

according to Eq. (9).

Also this feature is in line with SCA algorithm family.18

It rearranges spatially and locally the relative values accord-

ing to the scene content, preserving edges and compressing

gradients.

Two examples of rendered HDR images are shown in

Figures 4 and 5. It should be noted that not only tone-ren-

dering but also local color adjustment, contrast stretching,

and luminosity normalization are applied. If the overall

color adjustment is not wanted, techniques such as keep

original color cast24 can easily be added. In the renderings,

we can see details in both very light and very dark regions

without the generation of artifacts such as halos. However,

the resulting images can appear a bit like high-pass filtered

images if compressed too much. This is controlled by the

parameters R, M, and N (see discussion below). STRESS has

been tested on a larger set of HDR images providing stable

and satisfactory tone rendering.

Spatial Color Gamut Mapping

In Ref. 25, Kolås and Farup presented a spatial color gamut

mapping. First, from the original image with pixel values

p0, a gamut clipped image with pixel values pc was con-

structed. The clipping was performed along straight lines

toward a neutral point g on the gray axis such that

pc ¼ ð1�mÞp0 þmg , m being determined for each pixel

independently. Then, the map m was filtered using an

edge-preserving blurring increasing filter (a filter that never

Figure 3. The STRESS algorithm applied to the color image on the left. The
image size is 512�779 pixels, and the parameters used were R¼300,
M¼3, N¼100.

Figure 4. Rendering of the HDR image memorial. The image size is
512�768 pixels, and the parameters used were R¼300, M¼10,
N¼100. The small frames show the HDR image at different levels of
exposure.
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reduces the original pixel value). The symmetric nearest

neighbor (SNN) filter26 was used for the purpose. The algo-

rithm provided quite nice results, but the filter was found

to be operating in a too local manner when compared to

other spatial color gamut mapping algorithms.27

The procedure to compute the stress maximum enve-

lope Emax works as an edge-preserving increasing filter and

can easily be exchanged with the SNN filter. The resulting

spatial gamut mapping procedure is thus to compute

EmaxðmÞ and finally to compute the final gamut mapped

image as a convex linear combination of the original image

and the neutral image,

psgma ¼ ð1� EmaxðmÞÞp0 þ EmaxðmÞg : (10)

By this mapping, the colors are changed only along straight

lines in the color space from the original pixel color toward

a point on the neutral axis. An example of an image gamut

mapped to the ISO uncoated gamut is shown in Figure 6.

The resulting images are much more natural looking than

the ones produced using the SNN filter25 in that there are

no visible artifacts close to sharp edges and no visible over-

enhancing of details.

Temporal Color Correction of Movies

For moving pictures, the concept of spatial envelopes can

be generalized to the temporal domain. Since the envelopes

are computed using an iterative approach, a better and

even faster solution for moving pictures will be to perform

the iterations over the frame sequence, using a running av-

erage. In this way, the local reference maximum and mini-

mum will not only depend on the current frame itself but

also on the previous frames.

This can be achieved by exchanging the Eqs. (5) and

(6) with

�r ¼ ar þ ð1� aÞ�rp; (11)

�v ¼ av þ ð1� aÞ�vp; (12)

where �rp and �vp being the values of �r and �v at the previous

iteration, respectively. How quickly the local reference min-

imum and maximum will change in the image will depend

upon the choice of the a parameter and the number of iter-

ations on each frame.

With this temporal extension, the algorithm realizes

two interesting behaviors: lightness adaptation and after

images. If the video stream ranges from very bright to very

dark, almost nothing will be seen in the dark to begin with,

but after a while, the algorithm will adapt to the darkness

and render the details well. The opposite effect will be seen

when moving from dark to bright. If the scene is changed

from a setting with strong colors or edges to a flat or ho-

mogeneous one, an after-image of the first scene will be

seen as a negative. An example of such an after-image is

shown in Figure 7.

Figure 5. Rendering of the HDR image desk. The image size is
512�768 pixels, and the parameters used were R¼600, M¼10,
N¼100. The small frames show the HDR image at different levels of
exposure.

Figure 6. Gamut clipped image and spatial gamut mapped image using
the STRESS algorithm.
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Color to Grayscale Conversion

A problem that has challenged many researchers is convert-

ing a color image to a grayscale image without the loss of

chrominance edges28 and without the introduction of arti-

facts such as halos.

Converting color to grayscale using only the lightness

channel values is a good example of how perceiving a color

in context can differ from the color in void condition. A

classic phenomenon is the following. Take two gray

patches, similar but not identical, and put them on a com-

mon background without contact, at a certain distance.

They will be perceived as identical or much more similar

than if posed on the same background, but in contact on a

side, forming an edge. These differences in appearance are

detectable when adjacent but not detectable when sepa-

rated. The same phenomenon takes place also with colored

patches.

Thus, the presence of edges can change the perceived

lightness. Applying STRESS will result in a more clear differ-

entiation of the edges, even if isoluminant, according to

their mutual position. Having access to the local reference

minimum and maximum of the image, we can easily define

a local gray axis between these two points, taking into

account that we are using a linear color space. Then, the

pixel color can simply be projected to this local gray axis,

and we have a grayscale image in which also the chromi-

nance edges are kept.

Denote the local white point as w ¼ ½Emax
R Emax

G Emax
B �

and the local black point as b ¼ ½Emin
R Emin

G Emin
B �, respec-

tively, and let p be the vector of the pixel values of the three

color channels. Then, the gray value of that pixel is com-

puted as

g ¼ ðp� bÞ � ðw � bÞ
jw � bj2

: (13)

A common example image for testing color to grayscale

algorithms is shown in Figure 8.

DISCUSSION
Like all the algorithms of the SCA family,18

STRESS can have

a varying behavior according to its parameters. Here, we

want to highlight the parameters, together with some com-

ments about the results and visual configuration on which

the human visual system exhibits interesting behaviors.

Sampling

Stochastic sampling is a quick and simple way to explore

the image context around the pixel in search of the local

reference for the pixel adjustment. Changing the sampling

method changes the way the algorithm explores the image

Figure 7. After-image produced by the temporal extension of STRESS.

Figure 8. Example of color to grayscale conversion. The image in the
middle has been realized with a simple averaging of the RGB color chan-
nels. Below STRESS output, the image size is 745�498 pixels, and the pa-
rameters used were R¼600, M¼10, N¼100.
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and consequently its local behavior. The more the samples are

collected, the more the higher and lower values will be repre-

sentative of the neighborhood. This will result in changes in

the locality and also in a decrease of noise. However, to sup-

press noise is more important to increase the number of itera-

tion as will be shortly presented (see Figure 9).

A statistical characterization of the sampling techni-

ques will be the subject of future research. However, an

interesting point is that just one sampled pixel (together

with the pixel itself) is enough to give to the output a

rough noisy version of the image output appearance. This

is the lowest sampling possible and moves the issues about

noise and image quality from the computation on a single

image to the effectiveness of the repetition of the computa-

tion across a series of images from the same temporal

sequence. In other words, it is possible to reach a satisfac-

tory steady result with the desired quality, both increasing

the computation on a single image or alternatively keep

computing with a limited number of sampling points and

iterations (computationally non expensive) on temporal se-

ries of images of the same scene.

This point suggests an interesting direction on further

investigation about the model and its possible analogies

with the human visual system.

Figure 9. Details of STRESS output varying sampling (horizontal) and iterations (vertical). Values are 1, 5, 10,
50, and 100 for both axes.
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In Fig. 9, the effect of increasing the number of the

samples and iterations is presented. A set of combinations

of STRESS results varying the number of the sampling point

and the number of iteration is presented. First column has

one sample point for each pixel, the second five, the third

10, the fourth 50, and the fifth 100 sampling points. The

first line shows results from one iteration, the second line

five, the third 10, the fourth 50, and the fifth line 100 itera-

tions for each pixel. The original image is visible on the top.

A low number of sampling points gives the highest local

contrast in the mid tones at the cost of over exposing some

bright details. This effect is also visible in Figs. 2 and 3.

When the number of sampling points increases, the

behavior of the algorithm gets more and more global. In

the limit M !1, the envelopes will be constant and equal

the global maximum and minimum of the color channels.

Figure 10. Examples of STRESS filtering changing radius starting from R¼2 upper left, doubling the radius for
every image, ending at R¼512 lower right.
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The STRESS algorithm then reduces to global linear contrast

stretching. This can also be observed in Fig. 9.

Iterations

To reduce the sampling chromatic noise, the sampling pro-

cess is iterated several times and averaged. This strongly

decreases the noise level at the cost of increased time of

computation.

Fig. 9 shows the effect of increasing the number of the

samples and iterations. Different from the number of sam-

pling points that is related to the spatial distribution of the

local minima and maxima, the number of iterations affects

more the variance of the computed pixel and is thus merely

a way to reduce noise.

As an initial blind tuning, the number of samples can be

set around ten. Lower values will produce salt and pepper

noise. Increasing the number of iterations is more important.

A number of iterations close to the radius give results with

extremely limited noise. This criterion can be used as maxi-

mization. Lowering this number can be very useful if saving

the computational power is required and down to 10–20 iter-

ations noise presence is not annoying. Parameter tuning, as

visual perception itself, depends also on the image content.

Radius

The radius parameter R is the maximum distance from the

pixel where the stochastic sampling can be done. It controls

the locality of the spatial maxima and minima for the

adjustment. It is not a critical parameter as long as it is large

enough to sample reasonably across the entire image. For all

the example rendered images presented in this article, the

radius is chosen to be large enough to avoid the artifacts

typically resulting from a too small value of the parameter.

If the radius value decreases significantly, the sampling

is localized to a very close and narrow neighborhood around

the center pixel. It is interesting to note from Figure 10 how

the color information derives from spatial comparisons. For

very small radii, only the colors near the edges in the original

image are present. Increasing the radius has the effect of

spreading color. Fig. 10 shows the results with radii of 2, 4,

8, 16, 32, 64, 128, and 256 pixels (in order from left to right

and from top to bottom). The original image is placed on

top, and its dimensions are 480� 348 pixels.

For practical purposes with real images, R should be

chosen large enough to cover the entire image, e.g., equal

to the diagonal of the image.

Overall Behavior

The STRESS algorithm shares some properties with both gray

world algorithms and white patch algorithms for color cor-

rection. The average color of the image is mapped toward

gray, whereas, at the same time, the brightest color in the

image is mapped to white. This is performed locally and in

a way that is edge-preserving.

Like other spatial color algorithms such as Retinex and

ACE, STRESS performs a content driven histogram flattening.

Figure 11 shows the lightness channel histograms of the

original parrot image of Fig. 10 (Fig. 11 top left) and the

same histogram of the STRESS filtered version (Fig. 11 top

right). If the starting image has a reduced number of colors,

as visible in the histogram of Fig. 11 bottom left, which

refers to the original parrot image converted to 256 colors,

the effect of STRESS is to produce colors in the larger color

range spatially dequantizing the image. This is an interest-

ing property of the spatial color algorithms.18

Only one of the three parameters of the algorithms can

be chosen freely. R should be set large enough to cover the

entire image, e.g., by setting it equal to the diagonal of the

image. N should be large enough to avoid visible noise. The

parameter M decides how local the behavior of the algo-

rithm is. For extremely large values, STRESS will reduce to

global contrast stretching. For extremely low values, STRESS

will act somewhat similar to a high-pass filter.

The STRESS algorithm also exhibits a simultaneous con-

trast type of behavior caused by the spatial comparisons.

Figure 12 shows the result of running STRESS with different

parameters on a classic simultaneous contrast configura-

tion. As it is visible from the figure, contrast is enhanced

qualitatively in the way our visual system does as can be

seen from the indicated pixel values.

CONCLUSIONS
In this article, we have presented a new framework for spa-

tially recomputing the color of a digital image. The color of

each pixel is recomputed by scaling its channel lightness

Figure 11. The effect of STRESS on the lightness histogram.
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value according to two upper and lower envelope functions.

These envelope functions are obtained sampling a limited

number of pixels in the neighbor. The algorithm performs

local color and lightness adjustments in an edge-preserving

manner by means of spatial comparisons.

The framework can be successfully applied to image

processing tasks such as color image equalization and con-

trast stretching, rendering of high dynamic range images,

spatial color gamut mapping, color to grayscale conversion,

and temporal color adjustment of movies. An implementa-

tion for moving images can be particularly efficient, due to

the use of historical data. STRESS enhances the image with

minimal user supervision and without any a priori infor-

mation of the input image.

The underlying idea of the framework is simple and

easy to implement, and the algorithm is efficient (linear in

number of pixels) compared to other relevant spatial color

algorithms.
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25 Ø. Kolås and I. Farup, “Efficient hue-preserving and edge-preserving
spatial color gamut mapping”, Proc. IS&T/SID 15th Color Imaging Con-
ference (IS&T, Springfield, VA, 2007), pp. 207–212.

26 D. Harwood, M. Subbarao, H. Hakalathi, and L. S. Davis, “A new class
of edge-preserving smoothing filters”, Pattern Recogn. Lett., 6, 155–162
(1987).

27 F. Dugay, I. Farup, and J. Y. Hardeberg, “Perceptual evaluation of color
gamut mapping algorithms”, Color Res. Appl., 33, 470–476 (2008).

28 R. Bala and R. Eschbach, “Spatial color-to-grayscale transform preserv-
ing chrominance edge information”, Proc. IS&T=SID 12th Color Imaging
Conference (IS&T, Springfield, VA, 2005), pp. 82–86.

Figure 12. Example of simultaneous contrast filtering.
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