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Abstract. Three elliptical skin color models are presented for skin
color detection. The first one is to model the skin color cluster using
a single ellipse ignoring the lightness dependency. It is simple and
efficient, and the skin color detection accuracy may be adequate for
many applications. In the second model, the skin color ellipse is
adapted to different lightness levels to better fit the shape of the skin
color cluster. The model is more complex to train, and the compu-
tation efficiency is lower, but the skin color detection accuracy is
considerably higher. In the third method, an ellipsoid is trained to fit
the skin color cluster. It is almost as simple to train as the first
model, but the skin color detection accuracy is higher. Having skin
color detection accuracy almost as high as the second model,
this model is easier to train and may be more efficient in
computation. © 2011 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2011.55.3.030201 ]

INTRODUCTION

Color rendering is an important factor for judging the per-
ceived quality of the color reproduction of digital images.
Skin tone, as the most important category among memory
colors, plays an important role in the preferred color
reproduction.” Various skin color detection models have
been presented in the past. A simple method is to explicitly
define the range of colors in a specific color space.”” In
general, this method is computationally efficient and low in
hardware cost, yet the accuracy may be compromised. An-
other method is to estimate skin color distribution from
training data without deriving an explicit skin color
model.”"" A skin probability map is constructed and may be
quantized and represented as a lookup table (LUT). The
probability of a color that is not located on a node may be
quantized to the closest node or be computed through in-
terpolation. While the method is fast in training and is theo-
retically independent of the shape of the skin color distribu-
tion, a large storage space may be required.

With the assumption that skin colors spread around a
skin color center due to variations in physical conditions
(e.g., skin types, capturing conditions, etc.), the skin color
distribution may be approximated with a Gaussian-like
function. The idea leads to the proposal of a single Gaussian
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model (SGM), which is formulated by a multivariate normal
distribution function."*™" Although modeling is reasonably
accurate under strict conditions, SGM may cause intolerable
error in estimation and discrimination of skin colors cap-
tured in complex environments. A better approximation can
be obtained using a Gaussian mixture model (GMM) which
mixes a finite number of Gaussian functions.'"® GMM may
be more appropriate than SGM if high correct detection
rates are desired."” However, it is more complex to train and
more expensive in terms of computation.

Storring et al.*’ and Fredembach et al.*' combined stan-
dard red-green-blue (RGB) bands and near-infrared bands
to detect human skin. Their results demonstrate an im-
proved robustness over pure RGB based approaches. The
approach may be generalized for the skin color detection of
multispectral images, yet it is not appropriate for general
consumer imaging.

From the human perception point of view, the shape of
each equal probability distribution locus of a skin color
boundary should be smooth. An elliptical shape may well
approximate each equal probability distribution boundary.
Sanger et al. applied an ellipse distribution function to ex-
press skin colors for face detection.” Lee and Yoo™ con-
cluded that the skin color cluster can be well modeled using
an ellipse. This is similar to the modeling of the human
perceptual color tolerance in a perceptually uniform color
space (UCS) in which the visual color tolerance can be well
modeled with ellipses.”*® Additional evidence to support
elliptical modeling is that colors of an object category dis-
tribute around its prototypical color with a probability den-
sity function.” Due to various physical disturbances (illumi-
nations, camera characteristics, image editing, etc.), the skin
color distribution deviates from a Gaussian distribution.
However, the shape of equal-distribution contours should be
approximately elliptical. Since the boundary of skin colors is
of nearly elliptic shape in uniform color spaces, an elliptical
boundary model is adapted, modified, and expanded to
compensate the lightness dependency in this study.

This article is organized in the following order: Elliptical
modeling is presented first; next is the training of models;
discussion of training results from different ethnic types, dif-
ferent image databases, and different color spaces follows;
and the last section is the conclusion.
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ELLIPTICAL SKIN BOUNDARY MODEL

The cluster of skin colors may be approximated using an
elliptical shape. Let X, ..., X, be distinctive colors (a vector
with two or three coordinates) of a skin color training data
set and f(X;)=f; (i=1,...,n) be the occurrence counts of a
color, X;. An elliptical boundary model® ®(X)=(X,¥,A) is
defined as

d(X) = [X - W]TA[X - W], (1)

where ¥ and A are given by

1 n
v=->X, (2)
ni=1
1 n
A= K]Z fi(X - (X — w7, 3)

where N=2X f; is the total number of occurrences in a
training data set and u=(1/N)2L fX; is the mean of color
vectors.

Given a threshold p and an input color X of a pixel, X is
classified as a skin color if ®(X)<p and as a nonskin color
otherwise. The threshold p trades off correct detections by
false detections. As p increases, the correct detection rate
increases; however, the false detection rate increases as well.
®(X)=p defines an elliptical boundary between skin and
nonskin colors. The center of ellipse is given by  and the
principal axes are determined by A.

Ellipse Skin Color Modeling

Ignoring the lightness coordinate, the cluster of skin colors
may be modeled using a single ellipse. In a two-dimensional
(2D) chrominance space, X is expressed as X :(;), and A7!
is represented in a matrix form,

i (xoo xm) W
Ao Aqp
®(X) can be reorganized in the following form:
D(X) = Noolxx = x0)* + (Ng1 + N 10) (X = %0) (¥ = y)
+ Ny =) (5a)
or
D(x,y) = tg(x = %) + 11 (x = %0)(y = y0) + w2y = 0)°,
(5b)

which is similar to the form used by Shen and Berns.*®
An angle 6 to rotate the x-y coordinates to the principal
axes can be computed” by
—) (6)

6=0.5 arctan(
—Noo+ Ay

The two parameters related to the principal axes are

a = Ngy cos*(6) — Ng; sin(26) + N, sin’(6),
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b = Ngo sin?(6) + \g; sin(26) + Ny, cos*(6). (7)

The lengths of the semi-major and the minor axes are V/a
and V1/b.
The relationship between A~! and a, b, and 6 is

(7\00 x()l)
)\10 )\ll

b—a
a cos*(6) + b sin®(6)

sin(26)

b—a
a sin(0) + b cos*(6)

sin(26)

(8)

To adapt an ellipse to different lightness levels, a set of el-
lipses for different lightness levels may be modeled. The de-
tail will be described in a later section.

Ellipsoid Skin Color Modeling

To consider the lightness dependency of the shape of skin
cluster, the cluster of skin colors in a lightness-chrominance
color space may be modeled with an ellipsoid. In a three-
dimensional (3D) color space, X is expressed as

X

and A7! is represented in a matrix form,

Noo Mot Aoy
A'=| Mo A A ©)
Ao Ay Ay
®(X) in Eq. (1) can be reorganized as

D(x,7,2) = Ngo(x = x0)* + No1 + N1o) (x — x0) (¥ — ¥p)
+ (Nga + Nap)(x — x0) (2 — 20) + N1y (v — y0)?
+ N2+ M)y = y0) (z — 29) + Nyo(z — 2)%.
(10)
According to Eq. (3),

1 n
= XIE fxiyinzi)

(i =x0)* (o= %0) (= yo) (i = x0)(2; — 2o)
x| (e = x0) (v = »0) i =)’ i = y0)(zi — 20)
(x; = x0)(zi — 29) (v = yo)(zi — 2p) (zi— ZO)2
(11)

Comparing Eq. (10) to Eq. (11), Ag;=N\1o and Ay;=N},. The
ellipsoid function (10) can be written as
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D(x,y,2) = ug(x — xo)2 +uy(x = x0) (y — yo) + un(y — }’0)2
+ us(x — x0)(z — z) + uy(y — yo)(z — zp)
+ us(z — z,)%, (12)

where  uy=Ngp, U =N+ N0
uy=N13+N\,, and us=N,,.

A general approach to find the three principal axes of
the ellipsoid is to translate the origin of the coordinate to the
center of the ellipsoid, and then to rotate three coordinates
to overlap with three ellipsoid principal axes. After translat-
ing the origin of the coordinates to the center of the ellip-
soid, the coordinate X(xyz) becomes X'(x'y’z"), where

Uy =Ny, Uz=Ngyt+ Ay,

x'=x-x,
- —

Yy =y=Yo
[

z' =z— z,.

Denote a 3 X 3 rotation matrix as M,; X' =M, X". Equation
(1) can be rewritten as

D(X") = X""TMIAIM,X". (13)

We denote a 3X3 M=M'A~'M,, ®(X")=X""MX". To rotate
X" to X", M, must be such that M becomes a diagonal
matrix. A three-dimensional rotation may be specified with
three Euler angles, «, B, and v, to rotate around the x, y, and
z axes. However, a, B, and 7y cannot be derived and repre-
sented with simple forms so that M becomes a diagonal
matrix. An exhaustive search approach was applied to solve
the problem. Since two points on the ellipsoid surface inter-
cepted by the longest principal axis have the longest distance
to the center, the longest axis can be searched by finding
those two points. Due to the symmetric behavior, it is not
necessary to search the entire gamut, and only a point needs
to be found (the other point is the mirror from the center).
With exhaustive search within a portion of the ellipsoid, a
point that has the longest distance to the center is found. A
vector that connected the center and this point is the longest
principal axis.

Similarly, two points on the ellipsoid surface intercepted
by the shortest principal axis have the shortest distance to
the center. This property was applied to find the shortest
axis. Since the third principal axis is perpendicular to the
other principal axes, its direction is the cross product of the
vectors of the other two axes, and the axis passes through the
ellipsoid center. These properties are used to find the third
principal axis.

CONSTRUCTING AN IMAGE DATABASE TO TRAIN
SKIN MODELS

The aim of the skin color detection determines how to col-
lect training data. For example, if skin detection is to be used
for a specific lighting condition, the training data set should
be created under the same lighting condition. If skin detec-
tion is for general purposes, the training data should be
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Figure 1. A tool to label skin colors.

collected from various images that cover different capturing
conditions and skin types. Since the main purpose of this
study is to develop skin color models for the preferred skin
color enhancement of general digital photographic images,
images captured using different digital cameras under vari-
ous conditions were collected for training skin color models.

An image database, the so-called Halloween database, is
used to train skin color models and is composed of about
2500 digital images that cover Caucasian, Asian, and African
facial tones. About 60% of images were captured between
2001 and 2008 using different professional digital cameras in
indoor studios where the lighting conditions were well con-
trolled, and therefore each image had proper white balance.
Most of other images were captured outdoor in the past few
years using various professional and consumer digital
cameras.

A tool, SkinSelector, was developed to label skin colors
in each image. Figure 1 shows a snapshot of the tool. The
left window shows the original image. Once the mouse is
pointed to a skin color and clicked, the skin color of this
point is applied as the seed color (color center) to grow the
color region. The span of the region is determined by a
range slider that sets a color difference threshold of each
pixel to the seed color. A color difference value is scaled to
an 8 bit mask value between 0 and 255. A seed color has a
color difference of zero and is corresponded to a mask value
of zero. A color difference that equals or is greater than the
threshold set by the range slider corresponds to a mask value
of 255. All other color differences scale to a range of 0-255
accordingly. A mask value of 255 corresponds to nonskin
colors. Pixels selected as skin colors are marked pink on the
center window. The mask values of the image are repre-
sented as a grayscale image shown on the right window.

Although a RGB color space can be used to grow a
region, it was found that results produced in CIELAB color
space™ were more closely correlated with the human visual
perception. Therefore, CIELAB color space was selected in
this study. RGB color values are converted to L*a*b* using
the embedded ICC profile* of each image (or sSRGB ICC
profile if no embedded ICC profile exists).

If the segmentation method, “Color+Object” in the
tool, is selected, the regional growth subjects to the con-
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straint that skin colors must be connected together as a
single object, which prohibits more than one isolated region.
This method is used to construct the skin database for: (1) it
prohibits growing similar colors to other objects and (2) it
enables labeling skins of different persons with different
color centers on an image.

After an object is labeled, the source image (on the left
window), the image with a labeled skin object (on the center
window), the image of the skin mask (on the right window),
and the setting parameters are saved. An image with very
high resolution is resampled to a size of about 2 Mpixels to
avoid the possibility that the image is weighted higher than a
lower resolution image.

Labeled pixels are used to analyze skin colors, and all
other pixels that are not labeled (white pixels in the image
on the right window) are ignored. As a result, labeling all
skin pixels is not necessary.

After labeling all images, a script reads each image (the
image on the left window) and its associated labeled image
(image on the right window) and adds occurrences of skin
colors to a 256 X256 X 256 RGB LUT. The reason for using
256° LUT is the convenience for counting occurrences of 8
bit RGB images. The number on each node of the LUT
represents the occurrences of the RGB color as a skin pixel.
So the number on every nonskin node is zero. Each skin
color from an 8 bit per channel RGB image adds an occur-
rence count to the corresponding bin of the LUT. To remove
noisy pixels and pixels that may be inaccurately selected as
skin pixels, a small percentage of pixels with lowest occur-
rences are excluded from counting occurrences at the time
each image is processed. In this study, the 10% least occur-
rence pixels were removed from each image.

The skin colors of the Halloween image database were
labeled mostly by one person. The bias from the user selec-
tion should be insignificant for two reasons: First, during
counting skin pixel occurrences from each image, a process
was implemented to remove a small percentage of labeled
skin pixels whose color histograms were below a threshold;
and, second, a large number of skin pixels (in the order of
billions) were collected from diverse images. Nevertheless, a
second image database, the Royal Photographic Society
(RPS) database, was created to verify the bias of skin labeling
from different users and the dependency on training data
sets. It is a collection of 626 photographic images from dif-
ferent sources, including indoor and outdoor images and
covering different ethnic types. All images were sampled to a
uniform resolution of 1200 X 1800. Again, SkinSelector was
used to label skin pixels. The skin labeling was mostly done
by a different person. A comparison of training results using
these two databases is presented in the Discussion section.

RESULTS OF THE SKIN COLOR MODELING

Figure 2 shows the cluster of the selected skin colors of the
Halloween database in CIELAB color space. The right one is
the projection in a*-b* coordinates, i.e., the top-down view
of the cluster. The shapes of constant-lightness slices are
close to ellipses, but the sizes and locations of ellipses at
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Figure 2. 3D gamut of all labeled skin pixels of Halloween database.

different lightness are different. If an ellipse is used to fit the
skin boundary on the a*-b* plane, it should be large enough
to cover the dominant midtone skin colors, although smaller
ellipses fit well for lighter and darker tones.

As described in the previous section, each labeled skin
pixel in the database has a mask value between 0 and 255 to
encode skin color likelihood (the higher the value, the lower
the likelihood). However, mask values are binarized to skin
or nonskin color for the skin color modeling in this study.

The RGB color at each node of the RGB skin occur-
rence LUT is converted to CIE L*a*b* color space, and the
white point is adapted to D50 using the linear Bradford
transformation which is the white adaptation algorithm used
to create the official SRGB ICC profile.”””" The LUT is used
to train elliptical models. The count in each bin of the LUT
is the occurrence f; in Eq. (3), and a*b* or L*a*b” of each bin
location is the color X;.

Lightness-Independent Ellipse Model (Single-Ellipse
Model)

By projection of all colors to a*-b* coordinates (i.e., ignoring
each color’s lightness value), an ellipse is trained. Although
the accuracy to fit skin color in an ellipse is sacrificed for
simplicity and efficiency, it is adequate for some applica-
tions. Figure 3 shows the modeled ellipse in a*-b* coordi-
nates to cover 95% of the labeled skin colors of Halloween
database. The center coordinates are (19, 20), together with
the ellipse parameters [a,a/b, 8] of [27, 1.8, —62°], where a
and b are the semimajor and semiminor axes, and 6 is the
orientation angle of the major axis (negative degree means
counterclockwise). For practical applications, the principle
axes may be increased or decreased proportionally (equiva-
lent to adjusting p of the elliptical model) to optimize the
skin color boundary.

Lightness-Dependent Ellipse Model (Multiellipse Model)

The centers, sizes, and orientations of 2D chrominance el-
lipses of the skin color cluster at different lightness levels are
different. Training ellipses separately on different lightness
levels should improve the skin color modeling accuracy. To
train lightness-dependent ellipses, the labeled skin colors of
Halloween database were classified into many subsets, each
containing pixels within a bin of lightness. In this study, the
full range of L* from 0 to 100 was divided into ten buckets,
each occupying an L* increment of 10 units. The training
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Figure 3. The frained skin color ellipse in CIELAB a*-b* coordinates.

data set was sorted into these ten L* buckets. Ellipses in
a*-b* coordinates trained for each bucket are shown in Fig-
ure 4. Each ellipse is fitted to cover 90% of skin colors within
the bucket. There is no ellipse at the bucket of L* within [0,
10]. The upper left one is for the L* bucket of [10, 20] and
the last one is for the L* bucket of [90, 100]. The L* bucket
increases in order from left to right and from top to bottom
in the figure. The skin color centers, sizes of principal axes,
and orientations of ellipses as functions of lightness are de-
scribed in the following subsections.

Skin Color Center

The chroma of each ellipse center is plotted in Figure 5.
There are no data in the first bin where L* is in the range of
0-10. A curve to fit the trained points is plotted as well. The
curve is fitted with the equation C*=-0.000 04L*}
—0.0013L*?+0.4226L*+16.848. Hue angles of ellipse cen-
ters are plotted in Figure 6. Since they are close to a con-
stant, a line is fitted with a constant hue angle of 47.35°
averaged from all hue angles.

Orientations and Sizes of Ellipses

The orientations (6) of the trained major axes (negative
means clockwise rotation) are plotted in Figure 7. The angle
of the last bin for the highlight region does not follow the
global trend. Since the result may be affected by lighting and
white balance, this last point was ignored from curve fitting.
The orientations of the major axes were fitted with a straight
line by an equation: §=49—-0.23L".

The length of the trained semimajor axis in each L* level
and its fitting curve are plotted in Figure 8 where ®(X) was
set to 1 (p=1) as the skin boundary. The semimajor axes
were fitted with a polynomial equation: a=0.000 004L*’
—0.0127L*2+1.3331L*—5.0139.

The length of the trained semiminor axis in each L*
level and its fitting curve are plotted in Figure 9. The points
were fitted with a polynomial equation:
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L*\? L*\? L*
b=65.452 — | +67.657| — | —5.2756| —
100 100 100

+5.5431.

An Alternative Formulation of the Ellipse Model
Based on Eq. (5b), skin colors are bounded within the re-
gion of

ug(x = x0) + 1y (x = x0) (y = yo) + ta(y — yo)* = p.

In this study, p was set to 1 to train u, u;, and u, so that
ellipses covered 90% of skin colors in the database; p may
then be reduced or increased to optimize the skin region.
The trained values of u, u;, and u, are plotted in Figure 10.
In general, each data set is smooth in the midtone area and
is not smooth in shadow and highlight. Since the abrupt
changes in shadow may be the result of noise and the abrupt
changes in highlight may be the result of lighting variation
and white imbalance, no attempt was made to fit the rapid
changes at both ends of the lightness scale. All curves were
to fit midtone areas accurately and extended to both ends
smoothly, and the abrupt behaviors at both ends were ig-
nored. Accordingly, u,, u;, and u, were fitted with the fol-
lowing equations:

L*-60)\*
1ty = 0.005 +0.006{ ——— | ,

L*\? L*\? L*
u; =0.0218) — | —0.0678] — | +0.0684| —
100 100 100

—0.0258,

L*\? L*\? L*
u, =0.0205 — | —0.0055( — | —0.0184{ —
100 100 100

+0.0108.

Ellipsoid Skin Color Model

Instead of modeling lightness-dependent ellipses, modeling
an ellipsoid to fit the skin color boundary considerably sim-
plifies the modeling and training process. Figure 11 shows a
trained ellipsoid that covers 90% of the skin colors (black
dots) in CIELAB color space. It should be noted that skin
colors that are not within the ellipsoid mostly have very low
occurrences. The ellipsoid center is (59, 19, 20); the principal
axis parameters [a,a/b,a/c] are [38, 1.4, 2.5], where a, b,
and ¢ are semiprincipal axes; and the unit vectors of three
principal axes relative to the center are (0.97, —0.14, —0.19),
(0.24, 0.44, 0.87), and (0.04, 0.89, —0.46). The matrix A is

14046  _110.2 —125.8

—110.2 349.1 223.7
—125.8 2237  656.0

The u; (i1=0,1,2,3,4,5) coefficients are (0.000 73, 0.000 36,
0.003 71, 0.000 16, —0.002 46, 0.001 96), with p=1.
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Figure 4. Skin color ellipses in different constantlightness buckets.

Constant-lightness slices of the ellipsoid covering 90%
of the skin colors are shown in Figure 12. There is no ellipse
at L*=15. Ellipses with L* from 25 to 95 at intervals of 10
lightness units are plotted to compare with the ellipses mod-
eled with the lightness-dependent ellipses shown in Fig. 4.
The largest ellipse is at L*=65 in both models (L*=65 in
Fig. 12 is comparable with the L* bucket of [60, 70] in
Fig. 4). Sizes of ellipses reduce gradually as L™ increases or
decreases in both models. The orientations of the ellipses are
very similar, and their eccentricities are similar as well in
both models.
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Skin Color Detection Accuracy

The skin color detection accuracy of a skin model is typically
evaluated using true positive (TP) detection rates and false
positive (FP) detection rates.’> TP is the ratio of the number
of skin pixels detected as skin pixels over the total skin pix-
els. FP is the ratio of the number of nonskin pixels detected
as skin pixels over the total nonskin pixels. Increasing TP
typically forces an increase in FP as well. In other words, to
increase the likelihood that a true skin pixel is detected as a
skin pixel, a nonskin pixel is more likely to be falsely de-
tected as a skin pixel. Optimization of a skin detector should
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Figure 7. Orientations of the major axes.

achieve a TP as high as possible for a given FP. The relation-
ship between TP and FP is plotted as a curve, the receiver
operating characteristic (ROC) curve. The curve is very use-
ful for determining a proper skin detection threshold for a
given trade-off between TP and FP.

To verify detection rates on an image, all skin pixels of
the image must be labeled. Since the Halloween image data-
base used for skin color modeling does not have all skin
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Photoshop. Each skin color model was applied to original
images to detect skin colors, and the corresponding labeled
images were applied to verify whether the skin detection for
each pixel is correct. TP and FP were computed using all
tested images.

By changing p of a skin model, a set of FP versus TP
curves was obtained. Figure 13 shows the ROC curves of the
three elliptical models. The figure shows that increasing TP
is at the cost of increasing FP, as expected.

Figure 13 also shows that the single-ellipse model (the
lightness-independent skin model) has the lowest detection
accuracy in general, and the multiellipse model (lightness-
dependent skin model) has slightly higher detection accu-
racy than the ellipsoid model. Because a fixed ellipse is ap-
plied to cover skin colors at different lightness levels in the
single-ellipse model, a larger portion of dark colors and
highlight colors that are not skin colors must be covered in
order to reach the same TP as the other two models. There-
fore, its FP is higher. As the FP reaches a very high value, the
TP differences among the three models diminish. It demon-
strates that if a high FP is acceptable, optimizing a skin color
model is not critical; instead, choosing a skin color model
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Figure 11. An ellipsoid to cover 90% of skin colors.

with high computation efficiency and low hardware cost may
be more important.

Since the multiellipse model is trained at each lightness
level, it should theoretically achieve a higher detection accu-
racy than the ellipsoid model. It is thus surprising that the
detection accuracy of the ellipsoid model is so close to that
of the multiellipse model, as shown in Fig. 13. Because the
majority of test images have midtone skin colors, the total
number of dark and light skin pixels is much smaller than
the number of midtone skin pixels, and therefore the detec-
tion accuracy of dark and light skin pixels may be negligible.
If both models were well optimized for midtone skin colors,
the differences of detection accuracies in light and dark
tones may have little influence on the overall detection
accuracy.

The ellipsoid model fits skin clouds well for the
midtones but not so well for light and dark tones, while the
multiellipse model should fit skin color clouds well for every
lightness level. To verify this hypothesis, seven dark skin im-
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ages from the 106 images were chosen to compute detection
rates of the three models. Their ROC curves were plotted in
Figure 14. The result, namely, that the difference of detection
rates between the ellipsoid and multiellipse models is larger
in this case than when using all the mages was expected.
Because the multiellipse model was trained on each lightness
bucket, its detection accuracy is the highest. Since the skin
color boundary parameter of the single-ellipse model, p, is
adjusted to fit dark skin colors of the test images, its detec-
tion accuracy is close to that of the multiellipse model.

DISCUSSION

Knowledge of how different factors influence training results
of elliptical modeling should be helpful for training models
accurately and evaluating models confidently. Three impor-
tant factors that will be evaluated in this section are skin
types, image database, and color space.

Skin Color Modeling of Different Skin Types

The RPS database includes three subsets: a Caucasian set
composed of 302 Caucasian images, an Asian set composed
of 285 Asian images, and an African set composed of 28
African images. Each set was used to train a lightness-
independent skin model and an ellipsoid model for each
skin type. A comparison of the three ellipses is shown in
Figure 15. Although the Caucasian skin color region is
shifted slightly toward less chromatic and less yellowish color
region, the Caucasian and Asian skin color regions are very
similar. The African skin color region has a higher mean
chroma, a larger chroma variation, and a smaller hue varia-
tion. Its hue range is in between those of the other two. The
center coordinates, together with the semimajor axis (a), the
eccentricity (a/b), and the orientation of the major axis (6)
(negative @ means counterclockwise) of three ellipses are
listed in Table I.

An ellipsoid was trained for each skin type to cover 95%
of the skin colors. Figure 16 shows a side by side comparison
of Caucasian, Asian, and African skin color ellipsoids in
CIELAB color space and their projection on a*-b* coordi-
nates. The lightness ranges of Caucasian and Asian skin col-
ors are about the same, while the African skin color region is
slightly darker than the other two. The result is consistent
with the 2D ellipse modeling. The Asian skin color region is
slightly more yellowish and slightly more chromatic than the
Caucasian skin colors, and the African skin color region is
more chromatic than the other two skin color types.
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Training with Different Image Databases

To study how training results are influenced by different
image databases, the lightness-independent ellipse trained
earlier using the Halloween database was compared with an
ellipse trained using the RPS database. In Figure 17, the
Halloween and RPS ellipses were trained using the same
configuration parameters. The centers of the two ellipses are
almost the same (the circular orange dot is the center of the
RPS ellipse, and the square green dot is the center of the
Halloween ellipse), the eccentricities of two ellipses are very
close, and the orientations of two ellipses are about the
same. However, the ellipse trained using the RPS database is
larger. However, this result occurred because the person who
labeled the skin pixels in the RPS image database did so
more aggressively. By controlling the threshold value p, we
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can increase or decrease proportionally the size of an ellipse.
With p=1.25, the Halloween ellipse is expanded to the
adjusted-Halloween ellipse which is very close to the RPS
ellipse. The result demonstrates that the results trained using
these two different databases are very consistent, and the
training result can be made independent of skin color label-
ing by different persons.

Skin Color Modeling with Different Color Spaces

Various color spaces (e.g., RGB, r-g, YC,C,, HSV/HIS/HSL,
YUV, YIQ, L*u™v*, L*a*b*, etc.) have been used to define
skin color gamut for skin color detection, face detection, or
skin color enhancement.”™* Zarit et al.” investigated five
color spaces (L*a*b*, Fleck HS, HSV, r-g, and YC,C;) for
skin detection. Their result shows that the goodness of a skin
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model depends on the color space used. Albio et al.”* theo-
retically proved that “separability of the skin and nonskin is
independent of the color space chosen.” This disagrees with
practical experience. Shin et al. evaluated skin detection us-
ing RGB color space and other eight color spaces, normal-
ized RGB, CIE XYZ, CIE L*a*b*, HIS, SCT, YC,C,, YIQ, and
YUYV, and concluded that the RGB color space provided the
best separability between skin and nonskin.*® This result
may, however, only confirm that Shin’s skin detection
method works best in RGB color space.

In summary, a RGB color space may be more suitable
for histogram based models; for a RGB LUT to store the
trained skin colors can be used directly to process RGB pix-
els without additional color transformation. Using a
luminance-chrominance color space for skin color detection
reduces the interaction between luminance and chromi-
nance, and therefore simplifies the process. If the depen-
dence on luminance (or lightness) is ignored, skin color de-
tection using chrominance (e.g., r-g, C,C,, a*b*, or u™v")

J. Imaging Sci. Technol.

030201-10

] 10-
7 /
! /
i ¢ g
/
[ P / P
Loy pi— L
Y A 7
-10 A 0 20 . 30 20 50
LA
~ -

Figure 15. Caucasian, oriental, and African skin ellipses in CIELAB a*-b*
coordinates.

Table 1. Comparison of ellipse coefficients for three different skin types.

Skin center a a/b 0
Caucasion (17, 16) 29 1.7 =52
Asian (18, 21) 3 19 ~60
African (21,29 35 30 -58

Figure 16. Caucasian (color), oriental (black), and African (green) skin
color ellipsoids in CIELAB color space (leff) and their projection in a*-b*
coordinates (right).

further simplifies the process and improves the efficiency.
However, the detection rate may be compromised.

The present study has aimed for the preferred color
enhancement of digital images. Although CIELAB color
space, a profile connection color space in ICC color man-
agement, was chosen for the workflow, a more uniform color
space, CAM02-UCS,"” has also been under our consider-
ation. Therefore, skin color modeling in CIELAB and
CAMO02-UCS was compared.

Since CAM02-UCS is more uniform than CIELAB color
space, the skin color boundary of an elliptical model in
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Figure 17. Skin color ellipses trained using two different databases.

CAMO02-UCS may be closer to circular than in CIELAB
color space. To verify whether this is true, a skin ellipsoid
was trained in CAM02-UCS. The CIE XYZ values computed
from sRGB colors were transformed to CAMO02-UCS for
elliptical modeling. The scene luminance was set to 500 Ix,
and the surround viewing condition was set to average.

The ellipsoid modeling result shows that the longest axis
is almost parallel with the lightness axis in both CIELAB
color space and CAMO02-UCS. This implies that the longest
axis primarily models the lightness dependency. The other
two axes, b and ¢, primarily model the chrominance depen-
dency. The ratio of these two axes, b/c, can be viewed as the
eccentricity of an ellipsoid projected on the chromaticity
axes; b/c=1 means that the ellipse is a circle. We found that
b/c is 0.56 for the ellipsoid in CIELAB color space and is
0.73 for the ellipsoid in CAMO02-UCS. The b/c closer to
unity in CAMO02-UCS evinces that the distribution of skin
colors in CAMO02-UCS is slightly more uniform than in
CIELAB color space.

Skin color detection accuracies in CIELAB and
CIECAMO02-UCS were compared as well. The ROC curves
of ellipsoid modeling in CIELAB and CIECAMO02-USC were
generated using the database used above to study skin de-
tection accuracy. The results plotted in Figure 18 illustrate
that the skin detection accuracy in CIECAMO02-UCS is
higher than that in CIELAB color space. Improved unifor-
mity of skin colors in CAM02-UCS may be the reason that
the skin detection accuracy is more accurate in this color
space.

CONCLUSIONS
Skin color distributions were estimated using three elliptical
models. To model skin colors with a single ellipse is simple
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Figure 18. ROC curves of the ellipsoid modeling in CIELAB and
CAMO2-UCS color spaces.

in training and is efficient in computation. To cover high
chroma skin colors in the midtone region, a large enough
ellipse must be determined, although smaller ellipses better
fit light and dark skin colors. To improve the skin color
detection accuracy, a lightness-dependent ellipse model was
derived to adjust skin color ellipses to fit skin colors in dif-
ferent lightness levels. However, formulation of lightness-
dependent ellipses is complex, and the computation of skin
color boundaries is accordingly less efficient. A third model,
an ellipsoid skin color model, represents a compromise
among modeling complexity, computation efficiency, and
detection accuracy. Unlike single-ellipse modeling, it adapts
skin gamut boundary to different lightness levels. Although
the gamut adaptation to different lightness is not as accurate
as that of the lightness-dependent ellipse model, the ellipsoid
modeling is simpler to train and more efficient in
computation.

The consistent results of skin color ellipses trained with
two different databases verify that the method of construct-
ing databases is reliable for skin color modeling. A separate
training of Caucasian, Asian, and African skin colors dem-
onstrates that the Caucasian skin color gamut and the Asian
skin color gamut are very similar; the Asian skin colors are
slightly more yellowish and slightly more chromatic than the
Caucasian skin colors. The lightness ranges of the Caucasian
and Asian skin types are about the same. Compared to the
other two skin types, the African skin color region is slightly
darker, its center is more chromatic, its chroma variation is
higher, and its hue range is in between those of the other two
skin types. The results of the skin color ellipsoids trained in
CIELAB and CAMO02-UCS color spaces reveal that CAM02-
UCS is slightly more uniform in the skin color area. With
ellipsoid modeling, the skin color detection in CAM02-UCS
is slightly more accurate than in CIELAB color space as well.
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