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bstract. Three elliptical skin color models are presented for skin
olor detection. The first one is to model the skin color cluster using
single ellipse ignoring the lightness dependency. It is simple and

fficient, and the skin color detection accuracy may be adequate for
any applications. In the second model, the skin color ellipse is
dapted to different lightness levels to better fit the shape of the skin
olor cluster. The model is more complex to train, and the compu-
ation efficiency is lower, but the skin color detection accuracy is
onsiderably higher. In the third method, an ellipsoid is trained to fit
he skin color cluster. It is almost as simple to train as the first
odel, but the skin color detection accuracy is higher. Having skin

olor detection accuracy almost as high as the second model,
his model is easier to train and may be more efficient in
omputation. © 2011 Society for Imaging Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.2011.55.3.030201�

NTRODUCTION
olor rendering is an important factor for judging the per-

eived quality of the color reproduction of digital images.
kin tone, as the most important category among memory
olors, plays an important role in the preferred color
eproduction.1,2 Various skin color detection models have
een presented in the past. A simple method is to explicitly
efine the range of colors in a specific color space.3–7 In
eneral, this method is computationally efficient and low in
ardware cost, yet the accuracy may be compromised. An-
ther method is to estimate skin color distribution from
raining data without deriving an explicit skin color

odel.8–11 A skin probability map is constructed and may be
uantized and represented as a lookup table (LUT). The
robability of a color that is not located on a node may be
uantized to the closest node or be computed through in-
erpolation. While the method is fast in training and is theo-
etically independent of the shape of the skin color distribu-
ion, a large storage space may be required.

With the assumption that skin colors spread around a
kin color center due to variations in physical conditions
e.g., skin types, capturing conditions, etc.), the skin color
istribution may be approximated with a Gaussian-like

unction. The idea leads to the proposal of a single Gaussian

IS&T Member.
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. Imaging Sci. Technol. 030201-
odel (SGM), which is formulated by a multivariate normal
istribution function.12–15 Although modeling is reasonably
ccurate under strict conditions, SGM may cause intolerable
rror in estimation and discrimination of skin colors cap-
ured in complex environments. A better approximation can
e obtained using a Gaussian mixture model (GMM) which
ixes a finite number of Gaussian functions.16–18 GMM may

e more appropriate than SGM if high correct detection
ates are desired.19 However, it is more complex to train and

ore expensive in terms of computation.
Storring et al.20 and Fredembach et al.21 combined stan-

ard red-green-blue (RGB) bands and near-infrared bands
o detect human skin. Their results demonstrate an im-
roved robustness over pure RGB based approaches. The
pproach may be generalized for the skin color detection of
ultispectral images, yet it is not appropriate for general

onsumer imaging.
From the human perception point of view, the shape of

ach equal probability distribution locus of a skin color
oundary should be smooth. An elliptical shape may well
pproximate each equal probability distribution boundary.
anger et al. applied an ellipse distribution function to ex-
ress skin colors for face detection.22 Lee and Yoo23 con-
luded that the skin color cluster can be well modeled using
n ellipse. This is similar to the modeling of the human
erceptual color tolerance in a perceptually uniform color
pace (UCS) in which the visual color tolerance can be well

odeled with ellipses.24–26 Additional evidence to support
lliptical modeling is that colors of an object category dis-
ribute around its prototypical color with a probability den-
ity function.27 Due to various physical disturbances (illumi-
ations, camera characteristics, image editing, etc.), the skin
olor distribution deviates from a Gaussian distribution.
owever, the shape of equal-distribution contours should be

pproximately elliptical. Since the boundary of skin colors is
f nearly elliptic shape in uniform color spaces, an elliptical
oundary model is adapted, modified, and expanded to
ompensate the lightness dependency in this study.

This article is organized in the following order: Elliptical
odeling is presented first; next is the training of models;

iscussion of training results from different ethnic types, dif-
erent image databases, and different color spaces follows;
nd the last section is the conclusion.
May-Jun. 20111
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LLIPTICAL SKIN BOUNDARY MODEL
he cluster of skin colors may be approximated using an
lliptical shape. Let X1 , . . . ,Xn be distinctive colors (a vector
ith two or three coordinates) of a skin color training data

et and f�Xi�= fi �i=1, . . . ,n� be the occurrence counts of a
olor, Xi. An elliptical boundary model23 ��X�= �X ,� ,�� is
efined as

��X� = �X − ��T�−1�X − �� , �1�

here � and � are given by

� =
1

n
�
i=1

n

Xi , �2�

� =
1

N
�
i=1

n

fi�Xi − ���Xi − ��T , �3�

here N=�i=1
n fi is the total number of occurrences in a

raining data set and �= �1/N��i=1
n fiXi is the mean of color

ectors.
Given a threshold � and an input color X of a pixel, X is

lassified as a skin color if ��X��� and as a nonskin color
therwise. The threshold � trades off correct detections by

alse detections. As � increases, the correct detection rate
ncreases; however, the false detection rate increases as well.

�X�=� defines an elliptical boundary between skin and
onskin colors. The center of ellipse is given by � and the
rincipal axes are determined by �.

llipse Skin Color Modeling
gnoring the lightness coordinate, the cluster of skin colors

ay be modeled using a single ellipse. In a two-dimensional

2D) chrominance space, X is expressed as X= � x
y

�, and �−1

s represented in a matrix form,

�−1 = ��00 �01

�10 �11
� . �4�

�X� can be reorganized in the following form:

��X� = �00�x − x0�2 + ��01 + �10��x − x0��y − y0�

+ �11�y − y0�2 �5a�

r

��x,y� = u0�x − x0�2 + u1�x − x0��y − y0� + u2�y − y0�2,

�5b�

hich is similar to the form used by Shen and Berns.28

An angle 	 to rotate the x-y coordinates to the principal
xes can be computed29 by

	 = 0.5 arctan� 2�01

− �00 + �11
� . �6�

he two parameters related to the principal axes are

2 2
a = �00 cos �	� − �01 sin�2	� + �11 sin �	� , e

. Imaging Sci. Technol. 030201-
b = �00 sin2�	� + �01 sin�2	� + �11 cos2�	� . �7�

he lengths of the semi-major and the minor axes are �1/a
nd �1/b.

The relationship between �−1 and a, b, and 	 is

��00 �01

�10 �11
�

=	a cos2�	� + b sin2�	�
b − a

2
sin�2	�

b − a

2
sin�2	� a sin2�	� + b cos2�	�
 .

�8�

o adapt an ellipse to different lightness levels, a set of el-
ipses for different lightness levels may be modeled. The de-
ail will be described in a later section.

llipsoid Skin Color Modeling
o consider the lightness dependency of the shape of skin
luster, the cluster of skin colors in a lightness-chrominance
olor space may be modeled with an ellipsoid. In a three-
imensional (3D) color space, X is expressed as

X = 	x

y

z

 ,

nd �−1 is represented in a matrix form,

�−1 = 	�00 �01 �02

�10 �11 �12

�20 �21 �22

 . �9�

�X� in Eq. (1) can be reorganized as

��x,y,z� = �00�x − x0�2 + ��01 + �10��x − x0��y − y0�

+ ��02 + �20��x − x0��z − z0� + �11�y − y0�2

+ ��12 + �21��y − y0��z − z0� + �22�z − z0�2.

�10�

ccording to Eq. (3),

=
1

N
�
i=1

n

f�xi,yi,zi�


	 �xi − x0�2 �xi − x0��yi − y0� �xi − x0��zi − z0�

�xi − x0��yi − y0� �yi − y0�2 �yi − y0��zi − z0�

�xi − x0��zi − z0� �yi − y0��zi − z0� �zi − z0�2 
 .

�11�

omparing Eq. (10) to Eq. (11), �01=�10 and �21=�12. The

llipsoid function (10) can be written as

May-Jun. 20112
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��x,y,z� = u0�x − x0�2 + u1�x − x0��y − y0� + u2�y − y0�2

+ u3�x − x0��z − z0� + u4�y − y0��z − z0�

+ u5�z − z0�2, �12�

here u0 =�00, u1 =�01+�10, u2 =�11, u3 =�02+�20,

4 =�12+�21, and u5 =�22.
A general approach to find the three principal axes of

he ellipsoid is to translate the origin of the coordinate to the
enter of the ellipsoid, and then to rotate three coordinates
o overlap with three ellipsoid principal axes. After translat-
ng the origin of the coordinates to the center of the ellip-
oid, the coordinate X�xyz� becomes X��x�y�z��, where

x� = x − x0,

y� = y − y0,

z� = z − z0.

enote a 3
3 rotation matrix as Mr; X�=MrX�. Equation
1) can be rewritten as

��X�� = X�TMr
T�−1MrX� . �13�

e denote a 3X3 M=Mr
T�−1Mr, ��X��=X�TMX�. To rotate

� to X�, Mr must be such that M becomes a diagonal
atrix. A three-dimensional rotation may be specified with

hree Euler angles, �, �, and , to rotate around the x, y, and
axes. However, �, �, and  cannot be derived and repre-

ented with simple forms so that M becomes a diagonal
atrix. An exhaustive search approach was applied to solve

he problem. Since two points on the ellipsoid surface inter-
epted by the longest principal axis have the longest distance
o the center, the longest axis can be searched by finding
hose two points. Due to the symmetric behavior, it is not
ecessary to search the entire gamut, and only a point needs

o be found (the other point is the mirror from the center).
ith exhaustive search within a portion of the ellipsoid, a

oint that has the longest distance to the center is found. A
ector that connected the center and this point is the longest
rincipal axis.

Similarly, two points on the ellipsoid surface intercepted
y the shortest principal axis have the shortest distance to
he center. This property was applied to find the shortest
xis. Since the third principal axis is perpendicular to the
ther principal axes, its direction is the cross product of the
ectors of the other two axes, and the axis passes through the
llipsoid center. These properties are used to find the third
rincipal axis.

ONSTRUCTING AN IMAGE DATABASE TO TRAIN
KIN MODELS
he aim of the skin color detection determines how to col-

ect training data. For example, if skin detection is to be used
or a specific lighting condition, the training data set should
e created under the same lighting condition. If skin detec-

ion is for general purposes, the training data should be t

. Imaging Sci. Technol. 030201-
ollected from various images that cover different capturing
onditions and skin types. Since the main purpose of this
tudy is to develop skin color models for the preferred skin
olor enhancement of general digital photographic images,
mages captured using different digital cameras under vari-
us conditions were collected for training skin color models.

An image database, the so-called Halloween database, is
sed to train skin color models and is composed of about
500 digital images that cover Caucasian, Asian, and African
acial tones. About 60% of images were captured between
001 and 2008 using different professional digital cameras in
ndoor studios where the lighting conditions were well con-
rolled, and therefore each image had proper white balance.

ost of other images were captured outdoor in the past few
ears using various professional and consumer digital
ameras.

A tool, SkinSelector, was developed to label skin colors
n each image. Figure 1 shows a snapshot of the tool. The
eft window shows the original image. Once the mouse is
ointed to a skin color and clicked, the skin color of this
oint is applied as the seed color (color center) to grow the
olor region. The span of the region is determined by a
ange slider that sets a color difference threshold of each
ixel to the seed color. A color difference value is scaled to
n 8 bit mask value between 0 and 255. A seed color has a
olor difference of zero and is corresponded to a mask value
f zero. A color difference that equals or is greater than the
hreshold set by the range slider corresponds to a mask value
f 255. All other color differences scale to a range of 0–255
ccordingly. A mask value of 255 corresponds to nonskin
olors. Pixels selected as skin colors are marked pink on the
enter window. The mask values of the image are repre-
ented as a grayscale image shown on the right window.

Although a RGB color space can be used to grow a
egion, it was found that results produced in CIELAB color
pace48 were more closely correlated with the human visual
erception. Therefore, CIELAB color space was selected in

his study. RGB color values are converted to L�a�b� using
he embedded ICC profile49 of each image (or sRGB ICC
rofile if no embedded ICC profile exists).

If the segmentation method, “Color+Object” in the

Figure 1. A tool to label skin colors.
ool, is selected, the regional growth subjects to the con-

May-Jun. 20113
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traint that skin colors must be connected together as a
ingle object, which prohibits more than one isolated region.
his method is used to construct the skin database for: (1) it
rohibits growing similar colors to other objects and (2) it
nables labeling skins of different persons with different
olor centers on an image.

After an object is labeled, the source image (on the left
indow), the image with a labeled skin object (on the center
indow), the image of the skin mask (on the right window),

nd the setting parameters are saved. An image with very
igh resolution is resampled to a size of about 2 Mpixels to
void the possibility that the image is weighted higher than a
ower resolution image.

Labeled pixels are used to analyze skin colors, and all
ther pixels that are not labeled (white pixels in the image
n the right window) are ignored. As a result, labeling all
kin pixels is not necessary.

After labeling all images, a script reads each image (the
mage on the left window) and its associated labeled image
image on the right window) and adds occurrences of skin
olors to a 256
256
256 RGB LUT. The reason for using
563 LUT is the convenience for counting occurrences of 8
it RGB images. The number on each node of the LUT
epresents the occurrences of the RGB color as a skin pixel.
o the number on every nonskin node is zero. Each skin
olor from an 8 bit per channel RGB image adds an occur-
ence count to the corresponding bin of the LUT. To remove
oisy pixels and pixels that may be inaccurately selected as
kin pixels, a small percentage of pixels with lowest occur-
ences are excluded from counting occurrences at the time
ach image is processed. In this study, the 10% least occur-
ence pixels were removed from each image.

The skin colors of the Halloween image database were
abeled mostly by one person. The bias from the user selec-
ion should be insignificant for two reasons: First, during
ounting skin pixel occurrences from each image, a process
as implemented to remove a small percentage of labeled

kin pixels whose color histograms were below a threshold;
nd, second, a large number of skin pixels (in the order of
illions) were collected from diverse images. Nevertheless, a
econd image database, the Royal Photographic Society
RPS) database, was created to verify the bias of skin labeling
rom different users and the dependency on training data
ets. It is a collection of 626 photographic images from dif-
erent sources, including indoor and outdoor images and
overing different ethnic types. All images were sampled to a
niform resolution of 1200
1800. Again, SkinSelector was
sed to label skin pixels. The skin labeling was mostly done
y a different person. A comparison of training results using
hese two databases is presented in the Discussion section.

ESULTS OF THE SKIN COLOR MODELING
igure 2 shows the cluster of the selected skin colors of the
alloween database in CIELAB color space. The right one is

he projection in a�-b� coordinates, i.e., the top-down view
f the cluster. The shapes of constant-lightness slices are

lose to ellipses, but the sizes and locations of ellipses at e

. Imaging Sci. Technol. 030201-
ifferent lightness are different. If an ellipse is used to fit the
kin boundary on the a�-b� plane, it should be large enough
o cover the dominant midtone skin colors, although smaller
llipses fit well for lighter and darker tones.

As described in the previous section, each labeled skin
ixel in the database has a mask value between 0 and 255 to
ncode skin color likelihood (the higher the value, the lower
he likelihood). However, mask values are binarized to skin
r nonskin color for the skin color modeling in this study.

The RGB color at each node of the RGB skin occur-
ence LUT is converted to CIE L�a�b� color space, and the
hite point is adapted to D50 using the linear Bradford

ransformation which is the white adaptation algorithm used
o create the official sRGB ICC profile.30,31 The LUT is used
o train elliptical models. The count in each bin of the LUT
s the occurrence fi in Eq. (3), and a�b� or L�a�b� of each bin
ocation is the color Xi.

ightness-Independent Ellipse Model (Single-Ellipse
odel)

y projection of all colors to a�-b� coordinates (i.e., ignoring
ach color’s lightness value), an ellipse is trained. Although
he accuracy to fit skin color in an ellipse is sacrificed for
implicity and efficiency, it is adequate for some applica-
ions. Figure 3 shows the modeled ellipse in a�-b� coordi-
ates to cover 95% of the labeled skin colors of Halloween
atabase. The center coordinates are (19, 20), together with

he ellipse parameters �a ,a /b ,	� of [27, 1.8, �62°], where a
nd b are the semimajor and semiminor axes, and 	 is the
rientation angle of the major axis (negative degree means
ounterclockwise). For practical applications, the principle
xes may be increased or decreased proportionally (equiva-
ent to adjusting � of the elliptical model) to optimize the
kin color boundary.

ightness-Dependent Ellipse Model (Multiellipse Model)
he centers, sizes, and orientations of 2D chrominance el-

ipses of the skin color cluster at different lightness levels are
ifferent. Training ellipses separately on different lightness

evels should improve the skin color modeling accuracy. To
rain lightness-dependent ellipses, the labeled skin colors of

alloween database were classified into many subsets, each
ontaining pixels within a bin of lightness. In this study, the
ull range of L� from 0 to 100 was divided into ten buckets,

�

Figure 2. 3D gamut of all labeled skin pixels of Halloween database.
ach occupying an L increment of 10 units. The training

May-Jun. 20114
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ata set was sorted into these ten L� buckets. Ellipses in
�-b� coordinates trained for each bucket are shown in Fig-
re 4. Each ellipse is fitted to cover 90% of skin colors within

he bucket. There is no ellipse at the bucket of L� within [0,
0]. The upper left one is for the L� bucket of [10, 20] and
he last one is for the L� bucket of [90, 100]. The L� bucket
ncreases in order from left to right and from top to bottom
n the figure. The skin color centers, sizes of principal axes,
nd orientations of ellipses as functions of lightness are de-
cribed in the following subsections.

kin Color Center
he chroma of each ellipse center is plotted in Figure 5.
here are no data in the first bin where L� is in the range of
–10. A curve to fit the trained points is plotted as well. The
urve is fitted with the equation C� =−0.000 04L�3

0.0013L�2 +0.4226L� +16.848. Hue angles of ellipse cen-
ers are plotted in Figure 6. Since they are close to a con-
tant, a line is fitted with a constant hue angle of 47.35°
veraged from all hue angles.

rientations and Sizes of Ellipses
he orientations �	� of the trained major axes (negative
eans clockwise rotation) are plotted in Figure 7. The angle

f the last bin for the highlight region does not follow the
lobal trend. Since the result may be affected by lighting and
hite balance, this last point was ignored from curve fitting.
he orientations of the major axes were fitted with a straight

ine by an equation: 	=49−0.23L�.
The length of the trained semimajor axis in each L� level

nd its fitting curve are plotted in Figure 8 where ��X� was
et to 1 ��=1� as the skin boundary. The semimajor axes
ere fitted with a polynomial equation: a=0.000 004L�3

0.0127L�2 +1.3331L� −5.0139.
The length of the trained semiminor axis in each L�

evel and its fitting curve are plotted in Figure 9. The points

Figure 3. The trained skin color ellipse in CIELAB a�-b� coordinates.
ere fitted with a polynomial equation: 0

. Imaging Sci. Technol. 030201-
b = 65.452� L�

100
�3

+ 67.657� L�

100
�2

− 5.2756� L�

100
�

+ 5.5431.

n Alternative Formulation of the Ellipse Model
ased on Eq. (5b), skin colors are bounded within the re-
ion of

u0�x − x0�2 + u1�x − x0��y − y0� + u2�y − y0�2 � � .

n this study, � was set to 1 to train u0, u1, and u2 so that
llipses covered 90% of skin colors in the database; � may
hen be reduced or increased to optimize the skin region.
he trained values of u0, u1, and u2 are plotted in Figure 10.

n general, each data set is smooth in the midtone area and
s not smooth in shadow and highlight. Since the abrupt
hanges in shadow may be the result of noise and the abrupt
hanges in highlight may be the result of lighting variation
nd white imbalance, no attempt was made to fit the rapid
hanges at both ends of the lightness scale. All curves were
o fit midtone areas accurately and extended to both ends
moothly, and the abrupt behaviors at both ends were ig-
ored. Accordingly, u0, u1, and u2 were fitted with the fol-

owing equations:

u0 = 0.005 + 0.006�L� − 60

30
�2

,

u1 = 0.0218� L�

100
�3

− 0.0678� L�

100
�2

+ 0.0684� L�

100
�

− 0.0258,

u2 = 0.0205� L�

100
�3

− 0.0055� L�

100
�2

− 0.0184� L�

100
�

+ 0.0108.

llipsoid Skin Color Model
nstead of modeling lightness-dependent ellipses, modeling
n ellipsoid to fit the skin color boundary considerably sim-
lifies the modeling and training process. Figure 11 shows a
rained ellipsoid that covers 90% of the skin colors (black
ots) in CIELAB color space. It should be noted that skin
olors that are not within the ellipsoid mostly have very low
ccurrences. The ellipsoid center is (59, 19, 20); the principal
xis parameters �a ,a /b ,a / c� are [38, 1.4, 2.5], where a, b,
nd c are semiprincipal axes; and the unit vectors of three
rincipal axes relative to the center are (0.97, �0.14, �0.19),
0.24, 0.44, 0.87), and (0.04, 0.89, �0.46). The matrix � is

�
1404.6 − 110.2 − 125.8

− 110.2 349.1 223.7

− 125.8 223.7 656.0
� .

he ui �i=0,1 ,2 ,3 ,4 ,5� coefficients are (0.000 73, 0.000 36,

.003 71, 0.000 16, �0.002 46, 0.001 96), with �=1.

May-Jun. 20115
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Constant-lightness slices of the ellipsoid covering 90%
f the skin colors are shown in Figure 12. There is no ellipse
t L� =15. Ellipses with L� from 25 to 95 at intervals of 10
ightness units are plotted to compare with the ellipses mod-
led with the lightness-dependent ellipses shown in Fig. 4.
he largest ellipse is at L� =65 in both models (L� =65 in
ig. 12 is comparable with the L� bucket of [60, 70] in
ig. 4). Sizes of ellipses reduce gradually as L� increases or
ecreases in both models. The orientations of the ellipses are
ery similar, and their eccentricities are similar as well in

Figure 4. Skin color ellipses i
oth models. t

. Imaging Sci. Technol. 030201-
kin Color Detection Accuracy
he skin color detection accuracy of a skin model is typically
valuated using true positive (TP) detection rates and false
ositive (FP) detection rates.32 TP is the ratio of the number
f skin pixels detected as skin pixels over the total skin pix-
ls. FP is the ratio of the number of nonskin pixels detected
s skin pixels over the total nonskin pixels. Increasing TP
ypically forces an increase in FP as well. In other words, to
ncrease the likelihood that a true skin pixel is detected as a
kin pixel, a nonskin pixel is more likely to be falsely de-

ent constant-lightness buckets.
n differ
ected as a skin pixel. Optimization of a skin detector should
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chieve a TP as high as possible for a given FP. The relation-
hip between TP and FP is plotted as a curve, the receiver
perating characteristic (ROC) curve. The curve is very use-

ul for determining a proper skin detection threshold for a
iven trade-off between TP and FP.

To verify detection rates on an image, all skin pixels of
he image must be labeled. Since the Halloween image data-

Figure 5. Chroma of the skin color centers.

Figure 6. Hue angles �deg� of the skin centers.

Figure 7. Orientations of the major axes.
ase used for skin color modeling does not have all skin m

. Imaging Sci. Technol. 030201-
ixels labeled, it cannot be used to compute skin detection
ates. A different image database that consists of 106 images
as constructed to analyze the skin color detection accuracy
f the three elliptical models. The 106 images cover different
kin types and different capturing conditions. The skin pix-
ls of each image were labeled manually using Adobe
hotoshop. Each skin color model was applied to original

mages to detect skin colors, and the corresponding labeled
mages were applied to verify whether the skin detection for
ach pixel is correct. TP and FP were computed using all
ested images.

By changing � of a skin model, a set of FP versus TP
urves was obtained. Figure 13 shows the ROC curves of the
hree elliptical models. The figure shows that increasing TP
s at the cost of increasing FP, as expected.

Figure 13 also shows that the single-ellipse model (the
ightness-independent skin model) has the lowest detection
ccuracy in general, and the multiellipse model (lightness-
ependent skin model) has slightly higher detection accu-
acy than the ellipsoid model. Because a fixed ellipse is ap-
lied to cover skin colors at different lightness levels in the
ingle-ellipse model, a larger portion of dark colors and
ighlight colors that are not skin colors must be covered in
rder to reach the same TP as the other two models. There-

ore, its FP is higher. As the FP reaches a very high value, the
P differences among the three models diminish. It demon-

trates that if a high FP is acceptable, optimizing a skin color

Figure 8. Semimajor axes of skin ellipses.

Figure 9. Semiminor axes of skin ellipses.
odel is not critical; instead, choosing a skin color model
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ith high computation efficiency and low hardware cost may
e more important.

Since the multiellipse model is trained at each lightness
evel, it should theoretically achieve a higher detection accu-
acy than the ellipsoid model. It is thus surprising that the
etection accuracy of the ellipsoid model is so close to that
f the multiellipse model, as shown in Fig. 13. Because the
ajority of test images have midtone skin colors, the total

umber of dark and light skin pixels is much smaller than
he number of midtone skin pixels, and therefore the detec-
ion accuracy of dark and light skin pixels may be negligible.
f both models were well optimized for midtone skin colors,
he differences of detection accuracies in light and dark
ones may have little influence on the overall detection
ccuracy.

The ellipsoid model fits skin clouds well for the
idtones but not so well for light and dark tones, while the
ultiellipse model should fit skin color clouds well for every

Figure 10. u0, u1, a

Figure 11. An ellipsoid to cover 90% of skin colors.
ightness level. To verify this hypothesis, seven dark skin im- m

. Imaging Sci. Technol. 030201-
ges from the 106 images were chosen to compute detection
ates of the three models. Their ROC curves were plotted in
igure 14. The result, namely, that the difference of detection
ates between the ellipsoid and multiellipse models is larger
n this case than when using all the mages was expected.
ecause the multiellipse model was trained on each lightness
ucket, its detection accuracy is the highest. Since the skin
olor boundary parameter of the single-ellipse model, �, is
djusted to fit dark skin colors of the test images, its detec-
ion accuracy is close to that of the multiellipse model.

ISCUSSION
nowledge of how different factors influence training results
f elliptical modeling should be helpful for training models
ccurately and evaluating models confidently. Three impor-
ant factors that will be evaluated in this section are skin
ypes, image database, and color space.

kin Color Modeling of Different Skin Types
he RPS database includes three subsets: a Caucasian set
omposed of 302 Caucasian images, an Asian set composed
f 285 Asian images, and an African set composed of 28
frican images. Each set was used to train a lightness-

ndependent skin model and an ellipsoid model for each
kin type. A comparison of the three ellipses is shown in
igure 15. Although the Caucasian skin color region is
hifted slightly toward less chromatic and less yellowish color
egion, the Caucasian and Asian skin color regions are very
imilar. The African skin color region has a higher mean
hroma, a larger chroma variation, and a smaller hue varia-
ion. Its hue range is in between those of the other two. The
enter coordinates, together with the semimajor axis �a�, the
ccentricity �a /b�, and the orientation of the major axis �	�
negative 	 means counterclockwise) of three ellipses are
isted in Table I.

An ellipsoid was trained for each skin type to cover 95%
f the skin colors. Figure 16 shows a side by side comparison
f Caucasian, Asian, and African skin color ellipsoids in
IELAB color space and their projection on a�-b� coordi-
ates. The lightness ranges of Caucasian and Asian skin col-
rs are about the same, while the African skin color region is
lightly darker than the other two. The result is consistent
ith the 2D ellipse modeling. The Asian skin color region is

lightly more yellowish and slightly more chromatic than the
aucasian skin colors, and the African skin color region is

f skin color ellipses.
ore chromatic than the other two skin color types.
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raining with Different Image Databases
o study how training results are influenced by different

mage databases, the lightness-independent ellipse trained
arlier using the Halloween database was compared with an
llipse trained using the RPS database. In Figure 17, the
alloween and RPS ellipses were trained using the same

onfiguration parameters. The centers of the two ellipses are
lmost the same (the circular orange dot is the center of the
PS ellipse, and the square green dot is the center of the
alloween ellipse), the eccentricities of two ellipses are very

lose, and the orientations of two ellipses are about the
ame. However, the ellipse trained using the RPS database is
arger. However, this result occurred because the person who
abeled the skin pixels in the RPS image database did so

Figure 12. Constant-lightness slices o
ore aggressively. By controlling the threshold value �, we

. Imaging Sci. Technol. 030201-
an increase or decrease proportionally the size of an ellipse.
ith �=1.25, the Halloween ellipse is expanded to the

djusted-Halloween ellipse which is very close to the RPS
llipse. The result demonstrates that the results trained using
hese two different databases are very consistent, and the
raining result can be made independent of skin color label-
ng by different persons.

kin Color Modeling with Different Color Spaces
arious color spaces (e.g., RGB, r-g, YCbCr, HSV/HIS/HSL,
UV, YIQ, L�u�v�, L�a�b�, etc.) have been used to define

kin color gamut for skin color detection, face detection, or
kin color enhancement.33–45 Zarit et al.9 investigated five
olor spaces (L�a�b�, Fleck HS, HSV, r-g, and YCrCb) for
kin detection. Their result shows that the goodness of a skin

llipsoid covering 90% of skin colors.
May-Jun. 20119
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odel depends on the color space used. Albio et al.32 theo-
etically proved that “separability of the skin and nonskin is
ndependent of the color space chosen.” This disagrees with
ractical experience. Shin et al. evaluated skin detection us-

ng RGB color space and other eight color spaces, normal-
zed RGB, CIE XYZ, CIE L�a�b�, HIS, SCT, YCrCb, YIQ, and
UV, and concluded that the RGB color space provided the
est separability between skin and nonskin.46 This result
ay, however, only confirm that Shin’s skin detection
ethod works best in RGB color space.

In summary, a RGB color space may be more suitable
or histogram based models; for a RGB LUT to store the
rained skin colors can be used directly to process RGB pix-
ls without additional color transformation. Using a
uminance-chrominance color space for skin color detection
educes the interaction between luminance and chromi-
ance, and therefore simplifies the process. If the depen-
ence on luminance (or lightness) is ignored, skin color de-

� � � �

Figure 13. ROC curves of three skin elliptical models.

igure 14. ROC curves of three elliptical skin models tested on dark skin
mages.
ection using chrominance (e.g., r-g, CbCr, a b , or u v ) s

. Imaging Sci. Technol. 030201-1
urther simplifies the process and improves the efficiency.
owever, the detection rate may be compromised.

The present study has aimed for the preferred color
nhancement of digital images. Although CIELAB color
pace, a profile connection color space in ICC color man-
gement, was chosen for the workflow, a more uniform color
pace, CAM02-UCS,47 has also been under our consider-
tion. Therefore, skin color modeling in CIELAB and
AM02-UCS was compared.

Since CAM02-UCS is more uniform than CIELAB color

igure 15. Caucasian, oriental, and African skin ellipses in CIELAB a�-b�

oordinates.

Table I. Comparison of ellipse coefficients for three different skin types.

Skin center a a / b 	

Caucasian �17, 16� 29 1.7 −52

Asian �18, 21� 31 1.9 −60

African �21, 29� 35 3.0 −58

igure 16. Caucasian �color�, oriental �black�, and African �green� skin
olor ellipsoids in CIELAB color space �left� and their projection in a�-b�

oordinates �right�.
pace, the skin color boundary of an elliptical model in

May-Jun. 20110
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AM02-UCS may be closer to circular than in CIELAB
olor space. To verify whether this is true, a skin ellipsoid
as trained in CAM02-UCS. The CIE XYZ values computed

rom sRGB colors were transformed to CAM02-UCS for
lliptical modeling. The scene luminance was set to 500 lx,
nd the surround viewing condition was set to average.

The ellipsoid modeling result shows that the longest axis
s almost parallel with the lightness axis in both CIELAB
olor space and CAM02-UCS. This implies that the longest
xis primarily models the lightness dependency. The other
wo axes, b and c, primarily model the chrominance depen-
ency. The ratio of these two axes, b / c, can be viewed as the
ccentricity of an ellipsoid projected on the chromaticity
xes; b / c=1 means that the ellipse is a circle. We found that
/ c is 0.56 for the ellipsoid in CIELAB color space and is
.73 for the ellipsoid in CAM02-UCS. The b / c closer to
nity in CAM02-UCS evinces that the distribution of skin
olors in CAM02-UCS is slightly more uniform than in
IELAB color space.

Skin color detection accuracies in CIELAB and
IECAM02-UCS were compared as well. The ROC curves
f ellipsoid modeling in CIELAB and CIECAM02-USC were
enerated using the database used above to study skin de-
ection accuracy. The results plotted in Figure 18 illustrate
hat the skin detection accuracy in CIECAM02-UCS is
igher than that in CIELAB color space. Improved unifor-
ity of skin colors in CAM02-UCS may be the reason that

he skin detection accuracy is more accurate in this color
pace.

ONCLUSIONS
kin color distributions were estimated using three elliptical

Figure 17. Skin color ellipses trained using two different databases.
odels. To model skin colors with a single ellipse is simple i

. Imaging Sci. Technol. 030201-1
n training and is efficient in computation. To cover high
hroma skin colors in the midtone region, a large enough
llipse must be determined, although smaller ellipses better
t light and dark skin colors. To improve the skin color
etection accuracy, a lightness-dependent ellipse model was
erived to adjust skin color ellipses to fit skin colors in dif-

erent lightness levels. However, formulation of lightness-
ependent ellipses is complex, and the computation of skin
olor boundaries is accordingly less efficient. A third model,
n ellipsoid skin color model, represents a compromise
mong modeling complexity, computation efficiency, and
etection accuracy. Unlike single-ellipse modeling, it adapts
kin gamut boundary to different lightness levels. Although
he gamut adaptation to different lightness is not as accurate
s that of the lightness-dependent ellipse model, the ellipsoid
odeling is simpler to train and more efficient in

omputation.
The consistent results of skin color ellipses trained with

wo different databases verify that the method of construct-
ng databases is reliable for skin color modeling. A separate
raining of Caucasian, Asian, and African skin colors dem-
nstrates that the Caucasian skin color gamut and the Asian
kin color gamut are very similar; the Asian skin colors are
lightly more yellowish and slightly more chromatic than the
aucasian skin colors. The lightness ranges of the Caucasian

nd Asian skin types are about the same. Compared to the
ther two skin types, the African skin color region is slightly
arker, its center is more chromatic, its chroma variation is
igher, and its hue range is in between those of the other two
kin types. The results of the skin color ellipsoids trained in
IELAB and CAM02-UCS color spaces reveal that CAM02-
CS is slightly more uniform in the skin color area. With

llipsoid modeling, the skin color detection in CAM02-UCS
s slightly more accurate than in CIELAB color space as well.
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