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Abstract. The present article proposes a new approach for visual
object class recognition based on exploiting semantic relations in a
visual object class structure. The algorithm uses the hypothesis in
line with the Gestalt laws of proximity for human vision that, in an
image, basic semantic structures are formed by line segments (arcs
also approximated and broken into smaller line segments based on
pixel deviation threshold in the proposed approach) which are in
close proximity with each other. Further, these basic semantic struc-
tures are hierarchically combined (by brain) until such a point where
a semantic meaning of the structure can be extracted. Following the
same argument, the algorithm in a bottom up approach extracts line
segments in an image and then forms semantic groups of these line
segments based on a minimum distance threshold from each other.
The line segment groups so formed can be differentiated from each
other by the number of group members and their geometrical prop-
erties. The geometrical properties of these semantic groups are
used to generate rotation, translation, and scale-invariant histo-
grams used as feature vector for object class recognition tasks in a
k-nearest-neighbor framework. The algorithm has been tested on
standard benchmark database and results are compared with exist-
ing approaches to understand the strengths and weaknesses of the
grouping approach vis-a-vis other approaches. © 2011 Society for
Imaging Science and Technology.
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INTRODUCTION
Recognition of a multitude of objects as dogs, cars, etc., is an
unnoticeable everyday activity, hardly considered an achieve-
ment of any subtle order. In contrast, it is a very active
research area in computer world and the capability of com-
puters in this regard makes an interesting reading. In the
preface of the book,' it is mentioned in these words,

“Object recognition—or, in a broader sense, scene
understanding—is the ultimate scientific challenge of com-
puter vision. After 40 years of research, robustly identifying
the familiar objects (chair, person, pet), scene categories
(beach, forest, office), and activity patterns (conversation,
dance, picnic) depicted in family pictures, news segments, or
feature films is still far beyond the capabilities of today’s
vision systems.”

It is interesting to note in this context that, for human
vision, the general classification of an object such as a “car”
is usually easier than the identification of the specific make
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of the car.® In contrast, current computer vision systems can
deal more successfully with the task of recognizing a specific
car compared with classifying an object into a general cat-
egory as car.” So the problem in object recognition is to
determine which, if any, of a given set of objects appear in a
given image or image sequence. Essentially this is a problem
of matching models from a database with representations of
those models extracted from the low-level image features
such as color, texture, shape, or spatial location of image
elements. In the image retrieval literature, we come across
the notion of “semantic gap” at various places.”® The
sprung up logic as a result of this thought process is very
simple; since we talk about visual solutions (such given by
humans and they are really good at it), we should try to
follow human’s pattern of understanding an image.

Near the turn of the 21st century, researchers finally
became convinced that the next evolution of systems would
need to understand the semantics of an image, not simply
the low-level underlying computational features, i.e., “bridg-
ing the semantic gap.”” From a pattern recognition perspec-
tive, this roughly meant translating the easily computable
low-level content-based media features to high level concepts
or terms which would be intuitive to the user. The result of
this thought process was the focus on the possibilities of
bridging the semantic gap between the man and machine.
The efforts made followed both the top down and bottom
up approaches. The top down approaches studied how the
human vision makes semantic decisions. Mojsilovic and
Rogowitz® conducted psychophysical experiments to gain in-
sight into the semantic categories that guide the human per-
ception of image similarity. They used these data to discover
low-level features that best describe each category. Lew et al.”
studied translating the easily computable low-level content-
based media features to high level concepts.

In object recognition literature, we also find a similar
change in approaches as Serre et al.’ presented a set of fea-
tures for object recognition based on a quantitative model of
the visual cortex. Such efforts trying to follow the human
patterns of scene understanding imply that for visual solu-
tions we cannot ignore the underlying principles of human
vision.

This article is an effort with a new perspective to un-
derstand semantic meanings in the images by applying com-
puter vision techniques to a high level image analysis for
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visual object class recognition. We present a framework that
exploits basic image structure to represent semantic objects
in an image. We have extracted the structure at a microlevel
based on the criteria of semantic line groupings and applied
it for the visual object class recognition task. A
k-nearest-neighbor classifier has been used for the recogni-
tion task. The algorithm has been tested on Caltech 101, a
standard benchmark database for visual object class recog-
nition, since many publications are available for comparison
using the same data set. The results have been compared
with several existing approaches to demonstrate the perfor-
mance and understand the strengths and weaknesses of the
grouping approach vis-a-vis other approaches.

RELATED WORK

Significant progress has been made in the recent years to-
ward object recognition.! Early attempts at object recogni-
tion were focused on the use of geometric models of objects
to account for their appearance variation due to viewpoint
and illumination change. An excellent review on geometry-
based object recognition research by Mundy can be found in
Ref. 10.

In contrast to early efforts on geometric model-based
object recognition, the focus later shifted to appearance-
based techniques. Lowe'"'> pioneered this approach using
scale-invariant “scale-invariant feature transform” features.
Since then, there has been a lot of work using appearance-
based techniques. There is an excellent survey by Teynor'
covering the techniques used so far in the areas of “appear-
ance,” “patch,” or “keypoint-based” approaches. There are
other good evaluation papers covering strengths and weak-
nesses of various aspects of the feature-based
approaches.'*™'®

Here we also witness that research inspired by human
biological vision is getting the attention of researchers. A
new set of biologically inspired features that exhibit a better
trade-off between invariance and selectivity than template-
based or histogram-based approaches was proposed.” The
latest work by Mutch and Lowe' is an extension of the
quantitative model of visual cortex by Serre et al.,” proposing
some modifications in the approach with improved
performance.

The ideas of semantic or perceptual grouping for com-
puter vision have their roots in the well-known work of
Gestalt psychologists® in 1920s, who described, among
other things, the ability of the human visual system to orga-
nize parts of the retinal stimulus into organized structures.
The word Gestalt means “shape” or “configuration.” Gestalt
psychologists observed the tendency of the human visual
system to perceive “configurational wholes,” with rules that
govern the uniformity of psychological grouping for percep-
tion and recognition, as opposed to recognition by analysis
of discrete primitive image features. The grouping principles
proposed by Gestalt psychologists embodied such concepts
as grouping by proximity, similarity, continuation, closure,
and symmetry.

Perceptual organization is a primitive explanation of the
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processes that generated the image. Deeper explanations are
constructed by labeling, elaborating, and refining the primi-
tive ones.”’ The goal of perceptual grouping in computer
vision is to organize image primitives into higher level
primitives, thus explicitly representing structure contained in
the image data.** The final structure obtained after grouping
all lower level features to a higher level structure will repre-
sent the shape of an object in an image. A precise model of
the object may still be required for recognition. In case of
humans we obtain that model through learning since birth
and also through inherited knowledge.

In computer vision, the term “perceptual organization”
has been used by various researchers in various contexts, at
different levels of vision processing, and with respect to dif-
ferent feature types. This practice has blurred the meaning of
the term perceptual organization. Perceptual groupings dif-
fer from one another with respect to the types of constituent
features being organized and the dimensions over which the
organizations are sought.” It means that different authors
have considered different ideas under the banner of percep-
tual groupings, and no two conceptualizations are alike.

The true heart of visual perception is the inference from
the structure of an image about the structure of the real
world outside.** Approaches extracting semantic meanings
from the image structure including line segments, different
shapes such as “L,” “U,” etc., which the line segments make,
and incorporating other features as color and texture to
make these more meaningful are found in the literature.
These approaches basically follow the human visual system,
which has the ability to link together image features arising
from the same physical source (e.g., the same object).
Etemadi® proposed a framework for low-level grouping of
straight lines following the work in perceptual grouping. He
proposed to group parallel, collinear and intersecting lines in
a hierarchical order. He then further subdivided parallel lines
into overlapping and nonoverlapping line groups and
grouped intersecting lines based on the location of their
junction point if it lies on or away from the lines, further
subdividing these on the basis if they form a “V,” “T,” “L,”
or “L” shape. He did not, however, take into consideration
the distance or spatial placement of these line segments with
respect to each other.

For detecting manmade objects in nonurban scenes, Lu
and Aggarwal®® proposed a framework based on perceptual
organization. The framework grouped low-level image fea-
tures hierarchically into regions-of-interest, likely to enclose
manmade objects or a substantial part of the manmade ob-
jects. For detecting large manmade structures such as build-
ings, Igbal and Aggarwal®” proposed a framework based on
perceptual line groupings. The approach was based on the
“principle of nonaccidentalness,” meaning that in the case of
manmade features, line segments have an order, whereas in
other cases the objects lack such an order. To exploit the
“nonaccidentalness” nature of manmade structures they
placed the extracted line segments from an image into vari-
ous groups such as straight line segments, longer linear lines,
coterminations, L junctions, U junctions, parallel lines, and
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Figure 1. Original Image and its line segment model.

polygons. Based on these characteristics they trained a clas-
sifier on a database consisting of three classes: structure,
nonstructure, and intermediate. The proposed framework
takes an image and computes the line segment groupings
described above for the whole image. The algorithm works
globally and does not take into account spatial arrangements
of the line segments in relation to each other and their con-
tribution to form semantic objects.

IMAGE STRUCTURE ANALYSIS FOR SEMANTIC LINE
GROUPINGS

The algorithm builds on the idea that putting a minimum
number of line segments in close proximity to each other
forms a basic semantic structure. The other important prop-
erties are the relative segment lengths and angles. Hierarchi-
cally combining these basic semantic structures makes it
possible for the human brain to interpret the whole struc-
ture as something meaningful.

Figure 1(a) shows a simple picture of a semantic object
whose general category is “motorbikes.” Semantically this is
not a complex category and it has very peculiar structures
such as “two wheels” and “handle,” which helps in its iden-
tification, even by children, rather quickly. Fig. 1(b) shows
the line segment model or more generally line sketch of the
object motorbike. For humans it is very easy to categorize
this line segment model. There are hardly any chances that
someone will describe it with some other name. The line
segments in the figure get semantic meanings when they are
placed at a close distance from each other at certain angles
having certain lengths with respect to each other. The rela-
tionship of minimum distance remains the same under vari-
ous geometric transformations though the segment lengths
and angles may change.

The basic semantic structure made by one group of line
segments close to another at a certain threshold distance can
have some lower level or basic semantic meanings. Lower
level means that the structure may not have any clear seman-

J. Imaging Sci. Technol.

020509-3

Figure 2. Four closely placed line segments.

tic level meanings on its own, without being combined hi-
erarchically with other groups to give true semantic mean-
ings. The criteria for bottom up hierarchical grouping can be
explained easily using Figure 2, which shows four closely
placed line segments: “a,” “b,” “c,” and “d.” The approxi-
mate minimum distance between these four line segments
can be determined by visual inspection. The line segment a
is close to b compared to the other line segments. The line
segment b is close to a and c is close to b and d, whereas d
is close to only c.

We can define a binary relationship “is close” denoted
by “R” on the basis of a minimum distance threshold be-
tween line segments for all the line segments (a, b, ¢, and d)
in the image (X) of Fig. 2. A binary relation 2R over a set X
is transitive if it holds for all members a, b, and ¢ in X, that
if a is close to b and b is close to ¢, then a is close to c. Using
predicate logic we can write this transitive relation as

Ya,b,c,d e X, aRbAbRcAcRd= aRd (1)
or more simply as
if a=b, b=¢, and ¢c=d, then a=d. (2)

This way all the four line segments in Fig. 2 form part of a
semantic hierarchical group.

Transforming Image Structure into a Line Segment
Model

In order to get the image structure, we have to obtain an
edge map of the image under process. There are numerous
edge detection algorithms that have been extensively re-
viewed in the literature for performance evaluation. In prac-
tice, the choice of an edge detector is not always driven by
accurate performance evaluation but rather by an intuitive
or empirical knowledge. We have employed the Canny edge
detector which is widely used for various structure or shape-
based feature extraction methods. More precisely, the Canny
edge detector is optimal for step edges which are corrupted
by a Gaussian noise process. It provides good detection, lo-
calization, and response criteria. The Canny algorithm con-
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Figure 3. Edge pixels in an image.

tains a number of adjustable parameters; the size of Gauss-
ian filter and thresholds can affect the computation time and
effectiveness of the algorithm. The manifestation of the
threshold property is the so-called streaking which refers to
the appearance of broken lines due to edge pixels below and
above a fixed threshold. Though the Canny detector pro-
duces good results in general, it is not obvious how to select
the parameters. In fact, an automatic determination or se-
lection is most desirable. Various researchers have tried to
come up with evaluation procedures that can roughly be
classified into “evaluation methods based on ground truth”
and “evaluation methods without ground truth.” However,
the subject of automatic parameter selection remains highly
subjective. We have tuned the parameters by empirically test-
ing the samples from a test database and averaging the best
results. The results generated only hold for the currently
used image database. Other sets might need different param-
eters in order to obtain good visual results.

In order to follow the semantic grouping idea, we need
to transform the image structure into a line segment model.
We can think of an image edge map consisting of staggered
lines and curves. Figure 3 shows a binary edge map of an
image showing different objects. The edges can be general-
ized as consisting of staggered lines, curves, and circles. The
semantic grouping approach discussed above only talked
about lines and not curves or circles. As the curved shapes
and circles carry important information about the semantics
of an object, these cannot be ignored. So, the proposed se-
mantic grouping approach has to account for curves and
circles constituting a semantic object.

We have followed the approach of breaking down the
curves and the circles into smaller line segments based on
pixel deviation. This way the general semantic meaning of a
shape or an object remains unchanged and we can imple-
ment the grouping approach. For this purpose we have
adopted the algorithms in Refs. 28 and 29. The algorithm
takes the edge map of an image and performs edge linking,
removing isolated pixels and edges below a threshold of pixel
length. In the next step a parameter is introduced which
controls the threshold of the maximum allowed line toler-
ance, i.e., pixels that are too far off the line segment. The
pixels which are below the tolerance level are grouped into
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Figure 4. Extracted line segments.

line segments. Similarly, all the edge lists are converted into
line segments. Then we combine the line segments which are
within a specified distance and angle tolerance. Figure 4
shows the line segments obtained using this approach.

Parameter of Proximity

In order to translate the notion of “close proximity” between
two line segments into the mathematical domain, we find a
point on each line segment such that the distance between
the two is minimum compared to other points on respective
line segments. This will be our “parameter of proximity” for
the grouping approach.

In case of an image domain the line segments are in a
two-dimensional plain and either are parallel or intersecting.
The parallel line segments can be overlapping or
nonoverlapping and in case of intersecting line segments, the
point of intersection may lie on or away from the line seg-
ments or even outside of the image boundaries. For finding
the minimum distance we use the derivation below.

Using the parametric line equation defined by two
points we can write

LIZP(S):P0+5(P1_P0):P0+Su, (3)

Ly:Q(1) = Qp+ Q) — Q) = Qq + tv, (4)

where P(s) is the line segment on line L, and Q(¢) is the line
segment on line L,. The parameters s and t are real numbers
and

u:P1_P0 and V:QI_QO (5)

are line direction vectors.

We have to find the two points, P and Q, whose distance
is minimum compared to other points on the respective
lines and the points P and Q must lie on the respective line
segments.

Let w(s,f)=P(s)—Q(t) be a vector between points on
the two lines. We want to find the w(s,t) that has a mini-
mum length for all s and .

Minimizing the length of w is the same as minimizing
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[w)? =w-w=(wy+su—tv) - (wy+su—tv), (6)

which is a quadratic function of s and . In fact, it defines a
parabaloid over the (s,#) plane with a minimum at intersec-
tion point C=(s.,t,) and which is strictly increasing along
rays in the (s,?) plane that start from C and go in any
direction.

We compute where the minimum occurs on each line
segment by substituting s and ¢ for 0 and 1 and solving the
equation for vector w.

Considering the edge s=0, by substituting in Eq. (6), we
get

[wl? = (wo— tv) - (wo — tv). (7)

Taking the derivative with t we get a minimum when

d
0=—|wl>==2v-(wy—tv). (8)
dt

In Eq. (8), v is the line direction vector of Eq. (5) and w; is
the vector between points on the two lines, discussed after
Eq. (5). Since Eq. (8) is equal to zero, we take the dot prod-
uct (a-b=ab cos O) to obtain the solution, which gives us
the value of ¢ shown in Eq. (9). This gives a minimum on
the edge at (sy, ) where s,=0 and =1,

to=v-wylv-v. 9)

If 0=1y=1, then this will be the minimum and P(0) and
Q(1,) are the two closest points of the two segments. How-
ever, if t; is outside the edge, then we will have to check
other cases for the true minimum. Similarly,

for s=1, t;=@W-wy+v-u)lv-v, (10)
for t=0, so=—u-wylu-u, (11)
and for t=1, s;=u-v—u-wylu-u. (12)

Feature Representation

After line extraction and minimum distance calculation be-
tween line segments, we form the line segment groups using
the transitive relationship of Eq. (1). This gives us semantic
line groups in an image. For further processing, we have
discarded lines by setting a threshold on the line lengths, so
that only prominent lines are considered and the rest, which
mostly provide object details, are discarded.

For feature construction using line segments, we first
have to consider the effect of various affine transformations,
as the affine transformations do not preserve line lengths
and angles. A Euclidean distance matrix (EDM) is an n X n
matrix representing the spacing of a set of n points in Eu-
clidean space. If A is a Euclidean distance matrix and the
points are defined on m-dimensional space, then the ele-
ments of A are given by

A=(ay),
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a;; = i — x5, (13)

where |||, denotes the two norms on R™.

A common translation of all points will not affect an
EDM since the change of the point coordinates is nullified.
Similarly, an EDM is invariant against rotation and also
against scaling if the matrix is normalized in the range of [0,
1], otherwise it is scale invariant up to a factor 8. In view of
these invariance properties, we compute EDM’s from the
geometric properties of the line segments.

For each semantic group, let L={[;|i=1,2,...,N} be
the set of line segments obtained. Then we can compute
geometric properties of L: the angles formed by all segments
between each other and the relative length of each segment
with respect to all other line segments. The relative mini-
mum distance between them has already been considered
based on what we designated as the semantic groups. The
angle between two line segments can be calculated as

u-v

cos 6= , (14)

luf - v

where # and v are line direction vectors of two line segments
from Eq. (5). The length of segment I(i) with end points
(x9>¥0) and (x;,y;) is given as

len(L) = \(xo — %)% + (yo — y1)*. (15)
Relative lengths of the line segments for constructing EDM
are calculated as

a;

j:|li_lj|> (16)

where a;; is the element of EDM from Eq. (13) with row i
and column j. We normalize the relative line length data in
order to bring it into the [0, 1] range as follows.

Given a lower bound I and an upper bound u for a
feature component x,

x—1
X=—, (17)
u—1

results in X being in the range of [0, 1]. Now we have angles
in the range of () and relative line lengths in the range of
[0, 1].

Since every EDM is symmetric, we extract the upper
triangle matrix and form a histogram from each EDM with
different resolutions based on empirical testing,

Ho =), b={1,23,....B,},

Hlen:{hzln 5 bl:{1,2,3, ""Bl}’ (18)
where B, and B, denote the different number of bins of the
two histograms. H,,,,, equal to 72 or 36 bins corresponding
to a 5° or 10° resolution angle, produced the best results.
The resolution for Hj,, depends more on the application
data than H,,, does. However, we found out that 25 bins
result in a robust and compact histogram feature.
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Figure 5. A few classes

EXPERIMENTS AND RESULTS

In order to test the performance of the proposed algorithm
and make comparisons of our results with state of the art
algorithms we chose the classification results of several dif-
ferent authors. Many authors have reported the classification
rates of their algorithms on a subset of the data and on
classwise classification methodologies; i.e., a classifier was
trained in order to discriminate a single class among the
subset from a background class consisting of arbitrary im-
ages. Multiclass object categorization has been dealt with less
frequently.

Our recognition framework is based on a
k-nearest-neighbor (k-NN) classifier. The k-NN classifier
generalizes in a straightforward manner to multiclass classi-
fication. Given a training set E of m labeled patterns, a
nearest-neighbor procedure decides, based on a distance
function, that some new pattern, X, belongs to the same
category as its closest neighbors do in E. More precisely a
k-nearest-neighbor method assigns a new pattern, X, to that
category to which the plurality of its k closest neighbors
belong. We used a relative histogram deviation measure as a
distance function to obtain better performance than the L,
measure. The measure gives the deviation between two his-
tograms as
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Now

of the Caltech 101 database.

M
\/ > (H,-H,)

1 M M :
: \/ S H:,f)
2 m=1 m=1

Using relatively large values of k decreases the chance that
the decision will be unduly influenced by a noisy training
pattern close to X. However, large values of k also reduce the
acuity of the method. The k-nearest-neighbor method can
be thought of as estimating the values of the probabilities of
the classes given X. Of course the denser the points around
X and the larger the value of k the better the estimate. The
theorem of Cover and Hart”' related the performance of the
single-nearest-neighbor method (INN) to the performance
of a minimum probability-of-error classifier and also con-
cluded that, for any number #n of samples, the single-NN
rule has strictly lower probability of error than any other
k-NN rule.

d,(HH') =

(19)

Data Set

For testing the algorithm we have used the Caltech 101 data
set provided by the California Institute of Technology
(Caltech) for object class recognition. The Caltech 101 data

Mar.-Apr. 2011



Ahmad and Park: Defining semantic structure features for content-based visual object class recognition

Table 1. Classification results: Comparison with published results on subset of Caltech
101.

Classes Our multiclass ~ Single closs®®  Muliiclass® ~ Single class™
Airplanes 95.75 90.2 95.4 93.7
Faces 94.2 96.4 93.4 944
Motorbikes 95.3 925 93.1 96.1
Average class 95.08 93.0 93.96 9473

set contains 9197 images comprising 101 different object cat-
egories. The data set consists of pictures of objects belonging
to 101 categories. There are about 40-800 images per cat-
egory. Most categories have about 50 images. The size of
each image is roughly 300 X 200 pixels. The data set is avail-
able on the institute’s website.’”> Caltech 101 data set is an
extremely challenging data set with large intraclass variation
in color, pose, and lighting. Second, a number of previously
published papers have reported results on this data set. Fig-
ure 5 shows few classes from the data set.

Multiclass Categorization Task

We first discuss and compare our results with the published
work using only a subset of the Caltech 101 database. Table
I shows our results along with the results of Fergus et al.”®
and Li et al.** for comparison.

Li et al.** additionally reported the class separation per-
formance for visual object classes in the form of a confusion
matrix. It is obvious that the latter approach is more chal-
lenging than a pure one-class problem. The results® in Table
I confirm that for the class motorbikes the classification rate
dropped by about 3% between the one-class and multiclass
problems. This result suggests that the intercategory separa-
tion is a problem of higher difficulty, but it also gives a
further insight into the ability to discriminate a feature.

Table 1 shows that our approach showed better results
with the subset of the database compared to other methods.
For the class “faces” our approach performs slightly less well
than the one in Ref. 33. For the class motorbikes,™* these
authors reported a higher classification rate for the one-class
approach. However, for the class separation task the perfor-
mance drops below ours. The overall classification rate of
our method is the highest with more than 95%. Better re-
sults are obtained mainly because the semantic structures of
these classes are very distinct from each other and cannot be
misjudged visually.

For comprehensive comparisons, we have shown results
from published work on multiclass object categorization us-
ing the whole of the Caltech 101 data set. The algorithm was
tested with the benchmark methodology of Grauman and
Darrell,” where a number (in this case 15 and 30) of images
are taken from each class uniformly at random as the train-
ing image and the rest of the data set is used as test set. The
“mean recognition rate per class” is used so that the more
populous (and easier) classes are not favored. This process is
repeated ten times and the average correctness rate is
reported.
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Caltech 101 Dataset Classification results
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Figure 6. Classification rafes Caltech 101 database.

Table II. Classification results: Comparison with published results using whole of
Caltech 101.

Model 15 fraining images/cat 30 fraining images/cat
Fei-Fei ef al*? 18 Results not published
Serre ef al’ 35 42
Holub ef al.* 37 43
Berg ef ol ¥ 45 Results not published
Mutch et al” 51 56
Grauman and Darrell®® 50 58
Berg voting®® 52 Results not published
Proposed algorithm 49 60
Wang ef ol 44 63
Lazebnik ef ol 56 65
Thang ef ol 59 66

Figure 6 shows the number of training images per class
on the x-axis and mean recognition rate per class on the
y-axis. The best results on the Caltech 101 data set for visual
object class recognition have been published by Zhang et
al.”® They have shown that a hybrid of support vector ma-
chine (SVM) and k-NN classifier has much better perfor-
mance compared to all others. This work is a continuation
of their previous work,”* and in this work they have fo-
cused on improved classification using the same features.
This brings up the open question as to which classifier is the
best with which features and distance functions. Figure 6
shows that proposed approach has performed better than
seven out of ten algorithms used for comparison.

For the purpose of clarity, we have shown the published
classification rates (correctness rates) using 15 and 30 train-
ing images per class in a tabular form in Table II. The blank
cells indicate the unavailability of results in that category.
The results for our algorithm are the average of ten indepen-
dent runs using all available test images. The scores shown
are the average of the per-category classification rates.
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Figure 8. Caltech 101 data set: visual object classes on which the system performed poor.

Another important feature is the computational time of
the proposed algorithm. In all the reviewed algorithms the
computational time has not been discussed. This makes the
comparisons with similar approaches and on databases of
similar computational complexity difficult. For calculating
the computational time of the proposed algorithm the train-
ing time has been considered as an offline task. Only the
time from submission of a query image until decision has
been considered. Average computational time computed
over whole of the test database for a single query image
comes out to be 0.0798 s.

When looking at the classification results of individual
visual object categories, we find that our algorithm per-
formed better for the classes which have distinctive semantic
structure such as airplane, motorbikes, grand piano, minaret,
etc., or represent coherent natural “scenes” (such as Joshua
tree). Figure 7 shows some examples of categories for which
the system performed well.

Compared to the above, the categories which were dif-
ficult to categorize are those which are semantically more
diverse, shown in Figure 8, having greater shape variability
due to greater intracategory variation and nonrigidity. The
least successful classes are either textureless animals or ani-
mals that camouflage well in their environment (such as
crocodile, etc).

Common misclassification errors have been shown in
some works such as Refs. 19 and 41 in order to understand
the algorithms’ pattern of misclassification. Table III shows
the most common classification errors found. A scrutiny of
these errors shows that the misclassified objects have struc-
tural similarities, which need additional features to be con-
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Table I11. Most common misclassification errors on the Caltech 101 data set.

Visual object Class 1 misclossified Class 2 misclassified
closs1/class2 as class 2 as class 1
Ketch/schooner 20.6 18.1
Lotus/water lily 17.2 19.3
Cougar hody/wild cat 147 17.2
Ibis/flamingo 11.4 8.6
Crayfish/lobster 9.3 8.9

sidered. The most common confusions are schooner versus
ketch (both are sail boats with three or four sails, commonly
indistinguishable by the uninitiated) and lotus versus water
lily (both are very similar flowers).

CONCLUSION AND FUTURE WORK
A new approach for visual object class recognition using
semantic image structure has been proposed. The algorithm
has been implemented and tested using a publicly available
database for testing object recognition algorithms. The re-
sults obtained using the algorithm supplement the idea of
the semantic groupings in an image structure. Furthermore,
strengths and weaknesses of the approach have been inves-
tigated by comparing with other published results. The com-
parisons show that the approach is better than many of the
compared results and still comparable in order to the supe-
rior results.

The most important highlight of the comparisons is the
choice of a classifier for the object categorization task.
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Boiman et al.** and Zhang et al.’*® have proposed to use
modified or hybrid versions of k-NN classifier for better
performance. In future work we would like to test and im-
prove the algorithm’s performance with modified and im-
proved classifiers and incorporate additional features to re-
duce the classification confusion further down. Since color
and texture form very important components in recogni-
tion, their inclusion into the proposed features in a semantic
perspective can further improve the performance in
recognition.
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