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bstract. The present article proposes a new approach for visual
bject class recognition based on exploiting semantic relations in a
isual object class structure. The algorithm uses the hypothesis in
ine with the Gestalt laws of proximity for human vision that, in an
mage, basic semantic structures are formed by line segments (arcs
lso approximated and broken into smaller line segments based on
ixel deviation threshold in the proposed approach) which are in
lose proximity with each other. Further, these basic semantic struc-
ures are hierarchically combined (by brain) until such a point where
semantic meaning of the structure can be extracted. Following the

ame argument, the algorithm in a bottom up approach extracts line
egments in an image and then forms semantic groups of these line
egments based on a minimum distance threshold from each other.
he line segment groups so formed can be differentiated from each
ther by the number of group members and their geometrical prop-
rties. The geometrical properties of these semantic groups are
sed to generate rotation, translation, and scale-invariant histo-
rams used as feature vector for object class recognition tasks in a
-nearest-neighbor framework. The algorithm has been tested on
tandard benchmark database and results are compared with exist-

ng approaches to understand the strengths and weaknesses of the
rouping approach vis-à-vis other approaches. © 2011 Society for

maging Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.2011.55.2.020509�

NTRODUCTION
ecognition of a multitude of objects as dogs, cars, etc., is an
nnoticeable everyday activity, hardly considered an achieve-
ent of any subtle order. In contrast, it is a very active

esearch area in computer world and the capability of com-
uters in this regard makes an interesting reading. In the
reface of the book,1 it is mentioned in these words,

“Object recognition—or, in a broader sense, scene
nderstanding—is the ultimate scientific challenge of com-
uter vision. After 40 years of research, robustly identifying

he familiar objects (chair, person, pet), scene categories
beach, forest, office), and activity patterns (conversation,
ance, picnic) depicted in family pictures, news segments, or

eature films is still far beyond the capabilities of today’s
ision systems.”

It is interesting to note in this context that, for human
ision, the general classification of an object such as a “car”
s usually easier than the identification of the specific make

eceived Jul. 9, 2010; accepted for publication Nov. 22, 2010; published
nline Mar. 10, 2011.
p062-3701/2011/55�2�/020509/9/$20.00.
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f the car.2 In contrast, current computer vision systems can
eal more successfully with the task of recognizing a specific
ar compared with classifying an object into a general cat-
gory as car.3 So the problem in object recognition is to
etermine which, if any, of a given set of objects appear in a
iven image or image sequence. Essentially this is a problem
f matching models from a database with representations of
hose models extracted from the low-level image features
uch as color, texture, shape, or spatial location of image
lements. In the image retrieval literature, we come across
he notion of “semantic gap” at various places.4–6 The
prung up logic as a result of this thought process is very
imple; since we talk about visual solutions (such given by
umans and they are really good at it), we should try to

ollow human’s pattern of understanding an image.
Near the turn of the 21st century, researchers finally

ecame convinced that the next evolution of systems would
eed to understand the semantics of an image, not simply

he low-level underlying computational features, i.e., “bridg-
ng the semantic gap.”7 From a pattern recognition perspec-
ive, this roughly meant translating the easily computable
ow-level content-based media features to high level concepts
r terms which would be intuitive to the user. The result of
his thought process was the focus on the possibilities of
ridging the semantic gap between the man and machine.
he efforts made followed both the top down and bottom
p approaches. The top down approaches studied how the
uman vision makes semantic decisions. Mojsilovic and
ogowitz8 conducted psychophysical experiments to gain in-

ight into the semantic categories that guide the human per-
eption of image similarity. They used these data to discover
ow-level features that best describe each category. Lew et al.7

tudied translating the easily computable low-level content-
ased media features to high level concepts.

In object recognition literature, we also find a similar
hange in approaches as Serre et al.9 presented a set of fea-
ures for object recognition based on a quantitative model of
he visual cortex. Such efforts trying to follow the human
atterns of scene understanding imply that for visual solu-
ions we cannot ignore the underlying principles of human
ision.

This article is an effort with a new perspective to un-
erstand semantic meanings in the images by applying com-

uter vision techniques to a high level image analysis for

Mar.-Apr. 20111
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isual object class recognition. We present a framework that
xploits basic image structure to represent semantic objects
n an image. We have extracted the structure at a microlevel
ased on the criteria of semantic line groupings and applied

t for the visual object class recognition task. A
-nearest-neighbor classifier has been used for the recogni-
ion task. The algorithm has been tested on Caltech 101, a
tandard benchmark database for visual object class recog-
ition, since many publications are available for comparison
sing the same data set. The results have been compared
ith several existing approaches to demonstrate the perfor-
ance and understand the strengths and weaknesses of the

rouping approach vis-à-vis other approaches.

ELATED WORK
ignificant progress has been made in the recent years to-
ard object recognition.1 Early attempts at object recogni-

ion were focused on the use of geometric models of objects
o account for their appearance variation due to viewpoint
nd illumination change. An excellent review on geometry-
ased object recognition research by Mundy can be found in
ef. 10.

In contrast to early efforts on geometric model-based
bject recognition, the focus later shifted to appearance-
ased techniques. Lowe11,12 pioneered this approach using
cale-invariant “scale-invariant feature transform” features.
ince then, there has been a lot of work using appearance-
ased techniques. There is an excellent survey by Teynor13

overing the techniques used so far in the areas of “appear-
nce,” “patch,” or “keypoint-based” approaches. There are
ther good evaluation papers covering strengths and weak-
esses of various aspects of the feature-based
pproaches.14–18

Here we also witness that research inspired by human
iological vision is getting the attention of researchers. A
ew set of biologically inspired features that exhibit a better

rade-off between invariance and selectivity than template-
ased or histogram-based approaches was proposed.9 The

atest work by Mutch and Lowe19 is an extension of the
uantitative model of visual cortex by Serre et al.,9 proposing
ome modifications in the approach with improved
erformance.

The ideas of semantic or perceptual grouping for com-
uter vision have their roots in the well-known work of
estalt psychologists20 in 1920s, who described, among
ther things, the ability of the human visual system to orga-
ize parts of the retinal stimulus into organized structures.
he word Gestalt means “shape” or “configuration.” Gestalt
sychologists observed the tendency of the human visual
ystem to perceive “configurational wholes,” with rules that
overn the uniformity of psychological grouping for percep-
ion and recognition, as opposed to recognition by analysis
f discrete primitive image features. The grouping principles
roposed by Gestalt psychologists embodied such concepts
s grouping by proximity, similarity, continuation, closure,
nd symmetry.
Perceptual organization is a primitive explanation of the c

. Imaging Sci. Technol. 020509-
rocesses that generated the image. Deeper explanations are
onstructed by labeling, elaborating, and refining the primi-
ive ones.21 The goal of perceptual grouping in computer
ision is to organize image primitives into higher level
rimitives, thus explicitly representing structure contained in

he image data.22 The final structure obtained after grouping
ll lower level features to a higher level structure will repre-
ent the shape of an object in an image. A precise model of
he object may still be required for recognition. In case of
umans we obtain that model through learning since birth
nd also through inherited knowledge.

In computer vision, the term “perceptual organization”
as been used by various researchers in various contexts, at
ifferent levels of vision processing, and with respect to dif-

erent feature types. This practice has blurred the meaning of
he term perceptual organization. Perceptual groupings dif-
er from one another with respect to the types of constituent
eatures being organized and the dimensions over which the
rganizations are sought.23 It means that different authors
ave considered different ideas under the banner of percep-

ual groupings, and no two conceptualizations are alike.
The true heart of visual perception is the inference from

he structure of an image about the structure of the real
orld outside.24 Approaches extracting semantic meanings

rom the image structure including line segments, different
hapes such as “L,” “U,” etc., which the line segments make,
nd incorporating other features as color and texture to
ake these more meaningful are found in the literature.
hese approaches basically follow the human visual system,
hich has the ability to link together image features arising

rom the same physical source (e.g., the same object).
temadi25 proposed a framework for low-level grouping of
traight lines following the work in perceptual grouping. He
roposed to group parallel, collinear and intersecting lines in
hierarchical order. He then further subdivided parallel lines

nto overlapping and nonoverlapping line groups and
rouped intersecting lines based on the location of their

unction point if it lies on or away from the lines, further
ubdividing these on the basis if they form a “V,” “T,” “�,”
r “L” shape. He did not, however, take into consideration
he distance or spatial placement of these line segments with
espect to each other.

For detecting manmade objects in nonurban scenes, Lu
nd Aggarwal26 proposed a framework based on perceptual
rganization. The framework grouped low-level image fea-
ures hierarchically into regions-of-interest, likely to enclose

anmade objects or a substantial part of the manmade ob-
ects. For detecting large manmade structures such as build-
ngs, Iqbal and Aggarwal27 proposed a framework based on
erceptual line groupings. The approach was based on the
principle of nonaccidentalness,” meaning that in the case of
anmade features, line segments have an order, whereas in

ther cases the objects lack such an order. To exploit the
nonaccidentalness” nature of manmade structures they
laced the extracted line segments from an image into vari-
us groups such as straight line segments, longer linear lines,

oterminations, L junctions, U junctions, parallel lines, and

Mar.-Apr. 20112
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olygons. Based on these characteristics they trained a clas-
ifier on a database consisting of three classes: structure,
onstructure, and intermediate. The proposed framework

akes an image and computes the line segment groupings
escribed above for the whole image. The algorithm works
lobally and does not take into account spatial arrangements
f the line segments in relation to each other and their con-
ribution to form semantic objects.

MAGE STRUCTURE ANALYSIS FOR SEMANTIC LINE
ROUPINGS
he algorithm builds on the idea that putting a minimum
umber of line segments in close proximity to each other

orms a basic semantic structure. The other important prop-
rties are the relative segment lengths and angles. Hierarchi-
ally combining these basic semantic structures makes it
ossible for the human brain to interpret the whole struc-

ure as something meaningful.
Figure 1(a) shows a simple picture of a semantic object

hose general category is “motorbikes.” Semantically this is
ot a complex category and it has very peculiar structures
uch as “two wheels” and “handle,” which helps in its iden-
ification, even by children, rather quickly. Fig. 1(b) shows
he line segment model or more generally line sketch of the
bject motorbike. For humans it is very easy to categorize
his line segment model. There are hardly any chances that
omeone will describe it with some other name. The line
egments in the figure get semantic meanings when they are
laced at a close distance from each other at certain angles
aving certain lengths with respect to each other. The rela-
ionship of minimum distance remains the same under vari-
us geometric transformations though the segment lengths
nd angles may change.

The basic semantic structure made by one group of line
egments close to another at a certain threshold distance can
ave some lower level or basic semantic meanings. Lower

Figure 1. Original Image and its line segment model.
evel means that the structure may not have any clear seman- c

. Imaging Sci. Technol. 020509-
ic level meanings on its own, without being combined hi-
rarchically with other groups to give true semantic mean-
ngs. The criteria for bottom up hierarchical grouping can be
xplained easily using Figure 2, which shows four closely
laced line segments: “a,” “b,” “c,” and “d.” The approxi-
ate minimum distance between these four line segments

an be determined by visual inspection. The line segment a
s close to b compared to the other line segments. The line
egment b is close to a and c is close to b and d, whereas d
s close to only c.

We can define a binary relationship “is close” denoted
y “R” on the basis of a minimum distance threshold be-
ween line segments for all the line segments (a, b, c, and d)
n the image (X) of Fig. 2. A binary relation R over a set X
s transitive if it holds for all members a, b, and c in X, that
f a is close to b and b is close to c, then a is close to c. Using
redicate logic we can write this transitive relation as

∀a,b,c,d � X, aRb ∧ bRc ∧ cRd ⇒ aRd �1�

r more simply as

if a = b, b = c, and c = d, then a = d. �2�

his way all the four line segments in Fig. 2 form part of a
emantic hierarchical group.

ransforming Image Structure into a Line Segment
odel

n order to get the image structure, we have to obtain an
dge map of the image under process. There are numerous
dge detection algorithms that have been extensively re-
iewed in the literature for performance evaluation. In prac-
ice, the choice of an edge detector is not always driven by
ccurate performance evaluation but rather by an intuitive
r empirical knowledge. We have employed the Canny edge
etector which is widely used for various structure or shape-
ased feature extraction methods. More precisely, the Canny
dge detector is optimal for step edges which are corrupted
y a Gaussian noise process. It provides good detection, lo-

Figure 2. Four closely placed line segments.
alization, and response criteria. The Canny algorithm con-

Mar.-Apr. 20113
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ains a number of adjustable parameters; the size of Gauss-
an filter and thresholds can affect the computation time and
ffectiveness of the algorithm. The manifestation of the
hreshold property is the so-called streaking which refers to
he appearance of broken lines due to edge pixels below and
bove a fixed threshold. Though the Canny detector pro-
uces good results in general, it is not obvious how to select

he parameters. In fact, an automatic determination or se-
ection is most desirable. Various researchers have tried to
ome up with evaluation procedures that can roughly be
lassified into “evaluation methods based on ground truth”
nd “evaluation methods without ground truth.” However,
he subject of automatic parameter selection remains highly
ubjective. We have tuned the parameters by empirically test-
ng the samples from a test database and averaging the best
esults. The results generated only hold for the currently
sed image database. Other sets might need different param-
ters in order to obtain good visual results.

In order to follow the semantic grouping idea, we need
o transform the image structure into a line segment model.

e can think of an image edge map consisting of staggered
ines and curves. Figure 3 shows a binary edge map of an
mage showing different objects. The edges can be general-
zed as consisting of staggered lines, curves, and circles. The
emantic grouping approach discussed above only talked
bout lines and not curves or circles. As the curved shapes
nd circles carry important information about the semantics
f an object, these cannot be ignored. So, the proposed se-
antic grouping approach has to account for curves and

ircles constituting a semantic object.
We have followed the approach of breaking down the

urves and the circles into smaller line segments based on
ixel deviation. This way the general semantic meaning of a
hape or an object remains unchanged and we can imple-

ent the grouping approach. For this purpose we have
dopted the algorithms in Refs. 28 and 29. The algorithm
akes the edge map of an image and performs edge linking,
emoving isolated pixels and edges below a threshold of pixel
ength. In the next step a parameter is introduced which
ontrols the threshold of the maximum allowed line toler-
nce, i.e., pixels that are too far off the line segment. The

Figure 3. Edge pixels in an image.
ixels which are below the tolerance level are grouped into

. Imaging Sci. Technol. 020509-
ine segments. Similarly, all the edge lists are converted into
ine segments. Then we combine the line segments which are
ithin a specified distance and angle tolerance. Figure 4

hows the line segments obtained using this approach.

arameter of Proximity
n order to translate the notion of “close proximity” between
wo line segments into the mathematical domain, we find a
oint on each line segment such that the distance between

he two is minimum compared to other points on respective
ine segments. This will be our “parameter of proximity” for
he grouping approach.

In case of an image domain the line segments are in a
wo-dimensional plain and either are parallel or intersecting.
he parallel line segments can be overlapping or
onoverlapping and in case of intersecting line segments, the
oint of intersection may lie on or away from the line seg-
ents or even outside of the image boundaries. For finding

he minimum distance we use the derivation below.
Using the parametric line equation defined by two

oints we can write

L1:P�s� = P0 + s�P1 − P0� = P0 + su , �3�

L2:Q�t� = Q0 + t�Q1 − Q0� = Q0 + tv , �4�

here P�s� is the line segment on line L1 and Q�t� is the line
egment on line L2. The parameters s and t are real numbers
nd

u = P1 − P0 and v = Q1 − Q0 �5�

re line direction vectors.
We have to find the two points, P and Q, whose distance

s minimum compared to other points on the respective
ines and the points P and Q must lie on the respective line
egments.

Let w�s , t�=P�s�−Q�t� be a vector between points on
he two lines. We want to find the w�s , t� that has a mini-

um length for all s and t.

Figure 4. Extracted line segments.
Minimizing the length of w is the same as minimizing

Mar.-Apr. 20114
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�w�2 = w · w = �w0 + su − tv� · �w0 + su − tv� , �6�

hich is a quadratic function of s and t. In fact, it defines a
arabaloid over the �s , t� plane with a minimum at intersec-
ion point C= �sc , tc� and which is strictly increasing along
ays in the �s , t� plane that start from C and go in any
irection.

We compute where the minimum occurs on each line
egment by substituting s and t for 0 and 1 and solving the
quation for vector w.

Considering the edge s=0, by substituting in Eq. (6), we
et

�w�2 = �w0 − tv� · �w0 − tv� . �7�

aking the derivative with t we get a minimum when

0 =
d

dt
�w�2 = − 2v · �w0 − tv� . �8�

n Eq. (8), v is the line direction vector of Eq. (5) and w0 is
he vector between points on the two lines, discussed after
q. (5). Since Eq. (8) is equal to zero, we take the dot prod-
ct �a ·b=ab cos �� to obtain the solution, which gives us

he value of t shown in Eq. (9). This gives a minimum on
he edge at �s0 , t0� where s0 =0 and t= t0,

t0 = v · w0/v · v . �9�

f 0� t0 �1, then this will be the minimum and P�0� and
�t0� are the two closest points of the two segments. How-

ver, if t0 is outside the edge, then we will have to check
ther cases for the true minimum. Similarly,

for s = 1, t1 = �v · w0 + v · u�/v · v , �10�

for t = 0, s0 = − u · w0/u · u , �11�

and for t = 1, s1 = u · v − u · w0/u · u . �12�

eature Representation
fter line extraction and minimum distance calculation be-

ween line segments, we form the line segment groups using
he transitive relationship of Eq. (1). This gives us semantic
ine groups in an image. For further processing, we have
iscarded lines by setting a threshold on the line lengths, so

hat only prominent lines are considered and the rest, which
ostly provide object details, are discarded.

For feature construction using line segments, we first
ave to consider the effect of various affine transformations,
s the affine transformations do not preserve line lengths
nd angles. A Euclidean distance matrix (EDM) is an n�n
atrix representing the spacing of a set of n points in Eu-

lidean space. If A is a Euclidean distance matrix and the
oints are defined on m-dimensional space, then the ele-
ents of A are given by
A = �aij� , r

. Imaging Sci. Technol. 020509-
aij = �xi − xj�2, �13�

here � · �2 denotes the two norms on Rm.
A common translation of all points will not affect an

DM since the change of the point coordinates is nullified.
imilarly, an EDM is invariant against rotation and also
gainst scaling if the matrix is normalized in the range of [0,
], otherwise it is scale invariant up to a factor S.30 In view of
hese invariance properties, we compute EDM’s from the
eometric properties of the line segments.

For each semantic group, let L= �li � i=1,2 , . . . ,N� be
he set of line segments obtained. Then we can compute
eometric properties of L: the angles formed by all segments
etween each other and the relative length of each segment
ith respect to all other line segments. The relative mini-
um distance between them has already been considered

ased on what we designated as the semantic groups. The
ngle between two line segments can be calculated as

cos � = � u · v

�u� · �v�
� , �14�

here u and v are line direction vectors of two line segments
rom Eq. (5). The length of segment l�i� with end points
x0 ,y0� and �x1 ,y1� is given as

len�li� = ��x0 − x1�2 + �y0 − y1�2. �15�

elative lengths of the line segments for constructing EDM
re calculated as

aij = �li − lj� , �16�

here aij is the element of EDM from Eq. (13) with row i
nd column j. We normalize the relative line length data in
rder to bring it into the [0, 1] range as follows.

Given a lower bound l and an upper bound u for a
eature component x,

x̄ =
x − l

u − l
, �17�

esults in x̄ being in the range of [0, 1]. Now we have angles
n the range of �±�� and relative line lengths in the range of
0, 1].

Since every EDM is symmetric, we extract the upper
riangle matrix and form a histogram from each EDM with
ifferent resolutions based on empirical testing,

Hang = �hba

ang�, bc = �1,2,3, . . . ,Ba� ,

Hlen = �hbl

ang�, bl = �1,2,3, . . . ,Bl� , �18�

here Ba and Bl denote the different number of bins of the
wo histograms. Hang, equal to 72 or 36 bins corresponding
o a 5° or 10° resolution angle, produced the best results.
he resolution for Hlen depends more on the application
ata than Hang does. However, we found out that 25 bins

esult in a robust and compact histogram feature.

Mar.-Apr. 20115
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XPERIMENTS AND RESULTS
n order to test the performance of the proposed algorithm
nd make comparisons of our results with state of the art
lgorithms we chose the classification results of several dif-
erent authors. Many authors have reported the classification
ates of their algorithms on a subset of the data and on
lasswise classification methodologies; i.e., a classifier was
rained in order to discriminate a single class among the
ubset from a background class consisting of arbitrary im-
ges. Multiclass object categorization has been dealt with less
requently.

Our recognition framework is based on a
-nearest-neighbor (k-NN) classifier. The k-NN classifier
eneralizes in a straightforward manner to multiclass classi-
cation. Given a training set E of m labeled patterns, a
earest-neighbor procedure decides, based on a distance

unction, that some new pattern, X, belongs to the same
ategory as its closest neighbors do in E. More precisely a
-nearest-neighbor method assigns a new pattern, X, to that
ategory to which the plurality of its k closest neighbors
elong. We used a relative histogram deviation measure as a
istance function to obtain better performance than the L2

easure. The measure gives the deviation between two his-
ograms as

Figure 5. A few classes
. Imaging Sci. Technol. 020509-
drd�H,H�� =

�	
m=1

M

�Hm − Hm� �2

1

2

�	

m=1

M

Hm
2 +�	

m=1

M

Hm�
2� . �19�

sing relatively large values of k decreases the chance that
he decision will be unduly influenced by a noisy training
attern close to X. However, large values of k also reduce the
cuity of the method. The k-nearest-neighbor method can
e thought of as estimating the values of the probabilities of
he classes given X. Of course the denser the points around

and the larger the value of k the better the estimate. The
heorem of Cover and Hart31 related the performance of the
ingle-nearest-neighbor method (1NN) to the performance
f a minimum probability-of-error classifier and also con-
luded that, for any number n of samples, the single-NN
ule has strictly lower probability of error than any other
-NN rule.

ata Set
or testing the algorithm we have used the Caltech 101 data
et provided by the California Institute of Technology
Caltech) for object class recognition. The Caltech 101 data

Caltech 101 database.
of the
Mar.-Apr. 20116
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et contains 9197 images comprising 101 different object cat-
gories. The data set consists of pictures of objects belonging
o 101 categories. There are about 40–800 images per cat-
gory. Most categories have about 50 images. The size of
ach image is roughly 300�200 pixels. The data set is avail-
ble on the institute’s website.32 Caltech 101 data set is an
xtremely challenging data set with large intraclass variation
n color, pose, and lighting. Second, a number of previously
ublished papers have reported results on this data set. Fig-
re 5 shows few classes from the data set.

ulticlass Categorization Task
e first discuss and compare our results with the published
ork using only a subset of the Caltech 101 database. Table
shows our results along with the results of Fergus et al.33

nd Li et al.34 for comparison.
Li et al.34 additionally reported the class separation per-

ormance for visual object classes in the form of a confusion
atrix. It is obvious that the latter approach is more chal-

enging than a pure one-class problem. The results34 in Table
confirm that for the class motorbikes the classification rate
ropped by about 3% between the one-class and multiclass
roblems. This result suggests that the intercategory separa-
ion is a problem of higher difficulty, but it also gives a
urther insight into the ability to discriminate a feature.

Table I shows that our approach showed better results
ith the subset of the database compared to other methods.
or the class “faces” our approach performs slightly less well
han the one in Ref. 33. For the class motorbikes,34 these
uthors reported a higher classification rate for the one-class
pproach. However, for the class separation task the perfor-
ance drops below ours. The overall classification rate of

ur method is the highest with more than 95%. Better re-
ults are obtained mainly because the semantic structures of
hese classes are very distinct from each other and cannot be

isjudged visually.
For comprehensive comparisons, we have shown results

rom published work on multiclass object categorization us-
ng the whole of the Caltech 101 data set. The algorithm was
ested with the benchmark methodology of Grauman and
arrell,35 where a number (in this case 15 and 30) of images

re taken from each class uniformly at random as the train-
ng image and the rest of the data set is used as test set. The
mean recognition rate per class” is used so that the more
opulous (and easier) classes are not favored. This process is
epeated ten times and the average correctness rate is

able I. Classification results: Comparison with published results on subset of Caltech
01.

Classes Our multiclass Single class33 Multiclass34 Single class34

Airplanes 95.75 90.2 95.4 93.7

Faces 94.2 96.4 93.4 94.4

Motorbikes 95.3 92.5 93.1 96.1

Average class 95.08 93.0 93.96 94.73
eported. a

. Imaging Sci. Technol. 020509-
Figure 6 shows the number of training images per class
n the x-axis and mean recognition rate per class on the
-axis. The best results on the Caltech 101 data set for visual
bject class recognition have been published by Zhang et
l.36 They have shown that a hybrid of support vector ma-
hine (SVM) and k-NN classifier has much better perfor-
ance compared to all others. This work is a continuation

f their previous work,38,39 and in this work they have fo-
used on improved classification using the same features.
his brings up the open question as to which classifier is the
est with which features and distance functions. Figure 6
hows that proposed approach has performed better than
even out of ten algorithms used for comparison.

For the purpose of clarity, we have shown the published
lassification rates (correctness rates) using 15 and 30 train-
ng images per class in a tabular form in Table II. The blank
ells indicate the unavailability of results in that category.
he results for our algorithm are the average of ten indepen-
ent runs using all available test images. The scores shown

able II. Classification results: Comparison with published results using whole of
altech 101.

Model 15 training images/cat 30 training images/cat

Fei-Fei et al.32 18 Results not published

Serre et al.9 35 42

Holub et al.41 37 43

Berg et al.39 45 Results not published

Mutch et al.19 51 56

Grauman and Darrell35 50 58

Berg voting38 52 Results not published

Proposed algorithm 49 60

Wang et al.40 44 63

Lazebnik et al.37 56 65

Zhang et al.36 59 66

Figure 6. Classification rates Caltech 101 database.
re the average of the per-category classification rates.
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Another important feature is the computational time of
he proposed algorithm. In all the reviewed algorithms the
omputational time has not been discussed. This makes the
omparisons with similar approaches and on databases of
imilar computational complexity difficult. For calculating
he computational time of the proposed algorithm the train-
ng time has been considered as an offline task. Only the
ime from submission of a query image until decision has
een considered. Average computational time computed
ver whole of the test database for a single query image
omes out to be 0.0798 s.

When looking at the classification results of individual
isual object categories, we find that our algorithm per-
ormed better for the classes which have distinctive semantic
tructure such as airplane, motorbikes, grand piano, minaret,
tc., or represent coherent natural “scenes” (such as Joshua
ree). Figure 7 shows some examples of categories for which
he system performed well.

Compared to the above, the categories which were dif-
cult to categorize are those which are semantically more
iverse, shown in Figure 8, having greater shape variability
ue to greater intracategory variation and nonrigidity. The

east successful classes are either textureless animals or ani-
als that camouflage well in their environment (such as

rocodile, etc).
Common misclassification errors have been shown in

ome works such as Refs. 19 and 41 in order to understand
he algorithms’ pattern of misclassification. Table III shows
he most common classification errors found. A scrutiny of
hese errors shows that the misclassified objects have struc-

Figure 7. Caltech 101 data set: visual ob

Figure 8. Caltech 101 data set: visual ob
ural similarities, which need additional features to be con- c

. Imaging Sci. Technol. 020509-
idered. The most common confusions are schooner versus
etch (both are sail boats with three or four sails, commonly
ndistinguishable by the uninitiated) and lotus versus water
ily (both are very similar flowers).

ONCLUSION AND FUTURE WORK
new approach for visual object class recognition using

emantic image structure has been proposed. The algorithm
as been implemented and tested using a publicly available
atabase for testing object recognition algorithms. The re-
ults obtained using the algorithm supplement the idea of
he semantic groupings in an image structure. Furthermore,
trengths and weaknesses of the approach have been inves-
igated by comparing with other published results. The com-
arisons show that the approach is better than many of the
ompared results and still comparable in order to the supe-
ior results.

The most important highlight of the comparisons is the

Table III. Most common misclassification errors on the Caltech 101 data set.

Visual object
class1/class2

Class 1 misclassified
as class 2

Class 2 misclassified
as class 1

Ketch/schooner 20.6 18.1

Lotus/water lily 17.2 19.3

Cougar body/wild cat 14.7 17.2

Ibis/flamingo 11.4 8.6

Crayfish/lobster 9.3 8.9

sses on which the system performed better.

sses on which the system performed poor.
ject cla
hoice of a classifier for the object categorization task.
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oiman et al.42 and Zhang et al.36 have proposed to use
odified or hybrid versions of k-NN classifier for better

erformance. In future work we would like to test and im-
rove the algorithm’s performance with modified and im-
roved classifiers and incorporate additional features to re-
uce the classification confusion further down. Since color
nd texture form very important components in recogni-
ion, their inclusion into the proposed features in a semantic
erspective can further improve the performance in
ecognition.
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