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Abstract. This work employs principal component regression
(PCR) to improve tone prediction accuracy for color electrophotog-
raphy (EP). During calibration, primary color patches at different
half-tone levels are printed on a belt and measured using on-board
sensors. Regression models are developed to predict primary color
tone values on output media from these on-board sensor measure-
ments. The prediction accuracy of the regression models directly
impacts the quality and consistency of color reproduction. Analyses
have revealed a high degree of correlation among the on-board sen-
sor measurements of the calibration patches from the same primary
color. This indicates that multiple on-board sensor measurements
are linearly correlated and using multiple on-board sensor measure-
ments to predict the tone value may improve prediction accuracy if
the collinearity of the measurements is taken into consideration. In
this study, a PCR-based approach is applied to handle the multicol-
linear measurements in estimating the regression model coeffi-
cients. Experimental results show the proposed PCR models reduce
root-mean-squared error by 24.7% over ordinary least-squares re-
gression models. © 2010 Society for Imaging Science and
Technology.

[DOI: 10.2352/J.ImagingSci.Technol.2010.54.5.050302]

INTRODUCTION

A color electrophotographic (EP) printing system typically
uses four primary colors—cyan, magenta, yellow, and black.
Calibrations are performed to maintain consistent color re-
production under different throughputs and operating con-
ditions. During a calibration, multiple patches of different
half-tone levels of the same primary color are printed on an
intermediate media, and are measured with on-board sen-
sors, such as densitometers (see Figure 1). Calibration mod-
els are used to predict the primary color tone values on the
output media from these on-board sensor measurements.
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The prediction accuracy of the calibration models directly
impacts the performance of the calibration. In this study,
our aim is to improve the prediction accuracy of the calibra-
tion models through a principal component regression
(PCR) approach for color EP systems.

The calibration models are developed with data col-
lected in printer life tests. In a typical life test, various tasks
are performed under specified operating conditions. The re-
sults are recorded and analyzed to ensure that the design
specification is met and sufficiently reliable performance is
attained. During the life test, additional color patches are
printed on output media immediately following a calibra-
tion. Their tone values, also referred to in this study as out-
put tone values, are measured offline with devices such as a
spectrophotometer. Calibration models are then developed
as a mapping of the on-board sensor measurements to the
output tone values." When a calibration is performed while
the product is in use, on-board sensor measurements are
taken to predict tone values with the calibration models.
Appropriate tone correction is then performed by adjusting
bias voltages or modifying the tone correction mapping.
Since tone value measurements on the output media are not
available to typical customers, it is crucial to ensure the pre-
diction accuracy of the calibration model under different
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Figure 1. A typical electrophotographic process.
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temperature, and/or other environmental
conditions.”

Half-toned color images are composed of arrays of
closely spaced microdots. Changes in operating conditions
or different EP parameter settings will impact the sizes of the
microdots. Assuming the impact on the sizes of the
microdots is consistent for a given print, the on-board sen-
sor measurements from different half-tone patches of the
same color should be consistently higher or lower. This re-
sults in increased correlation among the on-board sensor
measurements, i.e., multicollinearities. The multicollinearity
indicates that multiple on-board sensor measurements are
linearly correlated with a tone value and using multiple on-
board sensor measurements for tone value prediction can
potentially improve the prediction accuracy. However, it is
well known that using collinear measurements as explana-
tory variables to identify model coefficients directly through
ordinary least-squares regression (OLSR) will result in sub-
optimal model coefficients that will degrade prediction
accuracy.” Hence, existing calibration models are developed
using a single-response regression approach, i.e., the output
tone value at a particular half-tone level is regressed only
with the on-board sensor measurement at the same half-
tone level.

Recent research in regression analysis has shown im-
proved prediction accuracy of regression models using mul-
tiple explanatory variables as compared to single-response
regression models.*® In this study, a principal component
regression (PCR) approach” is proposed to address the
multicollinearities associated with multiple on-board sensor
measurements. PCR avoids the numerical issues associated
with OLSR by transforming multicollinear sensor measure-
ments into a set of orthogonal principal components (PC)
basis. In addition, it achieves biased regression by determin-
ing an optimal subset of PCs to be retained while discarding
PCs that have less statistical significance. By properly select-
ing explanatory variables and the associated PCs, a more
accurate calibration model can be developed. To illustrate
the utility of the proposed approach, a first-order linear cali-
bration model for an off-the-shelf in-line color EP printer is
developed using existing life test data. Cross-validation re-
sults demonstrate a 24.7% improvement in prediction accu-
racy compared with the existing OLSR calibration models
for a particular target color EP laser printer model.

The organization of this article is outlined as follows. In
the next section, problem formulation and PCR methodol-
ogy are described. Then a case study with the proposed
method and its experimental validation through statistical
analyses is illustrated. Concluding remarks are given in the
last section.

humidity

METHOD

Calibration Model

Since each primary color is printed independently for an
in-line color EP process, a calibration model is developed for
each primary color. A calibration model G can be written as
y=G(w,d), where y is tone values on paper, w is sensor
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measurements from on-board densitometers, and d is un-
controllable but measurable factors/disturbances collected in
life test, such as temperature, humidity, and throughput.®
The tone values y are the measured reflectances of the re-
produced color patches printed at the designated half-tone
levels. In this study, a tone value is defined as the Euclidian
distance (AE) in CIE L*a*b* spalce9 between the color point
of a primary color printed at a particular half-tone level and
the substrate color. A static linear calibration model is
assumed.

Problem Formulation

Life test data are used to identify the calibration models. For
one observation, a set of on-board sensor measurements,
measurable disturbances, and the corresponding tone values
measured on paper are collected. Denote wj; € R, y;; € R,
and d;; € R as the jth on-board sensor measurement, the jth
tone value measurement, and the jth measurable distur-
bances, respectively, in the ith observation. In this work, the
calibration model G is formulated as a linear transformation
relating the tone value measurements y;=[y; y;...y;] to the
sensor measurements w;=[w;;w;...w;] and the distur-
bances d;=[d;\d;,...d;].

Consider p € N on-board sensor measurements, g € N
measurable disturbances, and /e N tone value measure-
ments are made in one observation, and # € N observations
are gathered. Denote W=[w;] € R"*? as the sensor mea-
surement matrix and D= [d,-j] € R4 as the measurable dis-
turbance matrix. Let X € R"*" denote the explanatory vari-
able matrix, which is a concatenation of matrices W and D,
i.e, X=[W|D] and r=p+q. Denote Y=[y;] € R"*! as the
response variable matrix containing the tone value measure-
ments. Note that here the upper case letters represent the
concatenation of measurements from n observations, e.g.,

d,
d;

d,

The calibration model G € "™ can be written as Y=XG.
Note that the matrices are assumed to be centered and stan-
dardized columnwise."’ Hence no intercept term is required
in the regression model development.

Ordinary Least-Squares Regression
Consider a standard multivariate regression model,

Y=XG+E, (2)

where the error matrix E satisfies the usual assumption of
being independent and identically distributed. The number
of observations typically is much more than the number of
calibration color patches printed in a calibration, i.e., n>r.
The OLSR solution to the overdetermined problem stated
above minimizes the squared error, i.e.,
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G = arg min||Y — XG||* = arg min||Y - [W|D]G|]*
2

G
y-[wp]| — || , (3)

= arg min C
D

where the calibration model G can be split into two matrices
Gy and Gp with proper dimensions corresponding to the
sensor measurement matrix W and the disturbance mea-
surement matrix D, respectively. The OLSR solution to Eq.
(3) is given by

G=X"X)"'XTy. (4)

The explanatory variable matrix X is not of full rank since
the column vectors are collinear. The calculation of the ma-
trix (XTX)™! is computationally challenging especially for
matrices with lower conditioning number. This yields larger
variance in the model coefficient estimation.

Principal Component Regression (PCR)
The key idea of PCR is to linearly transform the multicol-
linear sensor measurement matrix W to a principal compo-
nent (PC) matrix that consists of a set of orthogonal vectors.
Then the model coefficient estimation can be directly carried
out following Eq. (4). Note that the disturbance measure-
ment matrix D does not need to be included in the trans-
formation since the disturbances should adequately span the
entire dynamic range for a complete experimental design.
Hence, the sensor measurement matrix D should be associ-
ated with minimum multicollinearity.

A singular value decomposition (SVD) on the sensor
measurement matrix W is performed as the first step to
calculate the PC matrix, i.e.,

P
W= UEVT:EO'I'“{V;T, (5)

i=1

where % =diag(o,,0,, ...,crp) e R"? is a diagonal matrix
of singular values o; associated with the ith principal com-
ponent PC;, and U € R"*" and V € RP*? are left and right
unitary matrices of the corresponding singular vectors u;
and v;, respectively. The PC matrix W e R"*P can be ob-
tained by multiplying the sensor measurement matrix W
with the right unitary matrix V, i.e., W =WYV. Hence the
principal components PC; are linear combination of the raw
sensor measurements with the coefficients in the associated
row vector v;. Note that the singular values are usually ar-
ranged in descending order, ie., 0y>0,>...>0, The
magnitude of a singular value represents the variance along
the direction of the associated PC. The fraction of the total
variance accounted for by PC; can be calculated by dividing
the associated singular value o; by the sum of singular val-
ues, i.e., 0;/20;

Next, the PC matrix is augmented with the disturbance
measurement matrix as the explanatory variable matrix in
the subsequent multivariate regression, i.e., X=[W|D]. The
resulting coefficient matrix can be obtained by solving a
standard least-squares optimization problem,
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2
I' = arg min||Y — [W|D]I||* = arg min

>

r
y - [W|D]| —
r,

(6)

where I' e R/ is the coefficient matrix to be determined.
The coefficient matrix I' can be split into two matrices I'y
and I'p with proper dimensions corresponding to the PC
matrix W and the disturbance measurement matrix D, re-
spectively. Since the PC matrix W is of full rank, the solution
of the coefficient matrix I' in Eq. (6) can be carried out
directly following Eq. (4). Matching the response variable
matrix Y in Egs. (3) and (6), one can obtain

I'y
Y=[¥|D]| — | =¥V VI'y + DI', = WGy, + DG,

G
=[wWD]| — | =Y. (7)

The calibration model is written as

Gy VI
G=|—|=|—1. (8)
GD l—‘D

Biased Principal Component Regression

Noise in sensor measurements can result in bias in regres-
sion analysis and increase the uncertainty in model coeffi-
cient estimation. Biased PCR identifies PCs that do not im-
prove prediction accuracy and excludes them from being
used in the regression. Assume the noise in the sensor mea-
surement matrix W is additive. The sensor measurement
matrix can be then decomposed into two matrices—an exact
signal matrix § and a noise perturbation matrix N—so that

W=S8+N=UVi+ U\ Vi, (9)

where g, U, and Vi, and 2, Uy, and V) are the singular
value matrix, left unitary matrix, and right unitary matrix
from the SVD of the signal matrix S and the noise pertur-
bation matrix N, respectively. If a principal component PC;
does not improve model performance based on a set of pre-
determined criteria, the corresponding singular value o, left
singular vectors u;, and right singular vectors v; are put to
the noise perturbation matrix N. The biased PC matrix,
W=WVs, is used in the subsequent regression. Note that
vectors in the PC matrix W are orthogonal. Partial regres-
sion coefficients and the rank of marginal statistics remain
stable when adding or removing PCs in the regression."'

Forward Selection

A forward selection algorithm is used to determine the PCs
to be included in the regression. PC selection in the PCR is
addressed by several studies in the literature.'”™” Some stud-
ies have pointed out that PCs associated with small singular
values may be well correlated with the response
variables."*™® Instead of using traditional top-down selec-
tion methods, this study utilizes the forward selection
method proposed by Xie and Kalivas."” The forward selec-
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tion tries out the PCs one by one and includes one PC in the
model if it is statistically significant to the response variables.
The Bayesian information criterion (BIC),”

RSS
BIC=n1n<—) + k In(n), (10)

n

is used as the selection criterion, where 7 is the number of
observations, RSS is the residual sum of squares from the
estimated model, and k is the number of PCs to be included
in the forward selection. The BIC is a tradeoff between
model accuracy, i.e., the residual sum of squares (RSS), and
model complexity (k), i.e., the number of PCs to be in-
cluded. Ideally a model with a low BIC value is preferred.
BIC is known to be more conservative compared to other
information criteria.”' Hence, the chance of overfitting can
be reduced by using BIC as the selection criterion. The PC
selection procedure can be summarized in the following four
steps:

Step 1: Compute all of the PCs through SVD.

Step 2: Determine the first PC producing the minimum
selection criterion by following Eq. (10). Call this the first
PC subset.

Step 3: Identify the second PC subset as the subset of
PCs providing the minimum selection criterion from all
possible combinations containing the first PC subset and
one more PC that has not been included in the first PC
subset. Compute the selection criterion of the second PC
subset following Eq. (10).

Step 4: The process stops when the selection criterion of
the second subset is larger than that of the first subset or
when all PCs are included in the regression. Otherwise, re-
place the contents of the first subset by the contents of the
second subset and continue from step 3.

The PC selection should be performed separately for
each response variable. Each response variable is regressed
with its own set of selected PCs to generate a set of model
coefficients. The calibration model is the concatenation of
the model coefficients for each response variable. The signal
matrix of the selected PCs for the mth response variable can
be expressed as

S = UV, (n

The biased PC matrix of the mth response variable \I’(Sm) can
be obtained by multiplying the sensor measurement matrix
W with the right unitary matrix V(Sm) from Eq. (11), ie.,
\p(s’”): WV(Sm). Let y" € M" denote the mth column vector
in the response variable matrix Y. The coefficient vector that
minimizes a least-squares loss function for the mth response
variable can be obtained as

") = arg minfy" - (W{ D]y
2
, (12)

7"

(1)
D

¥ — [{"|D]

= arg min

where Y e R"™! is the coefficient vector corresponding to
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y'" to be determined in the regression. The coefficient vec-
tor %™ can be split into two vectors, 'yém) and 'y(Dm), with
proper dimensions corresponding to the biased PC matrix
‘Ifgm) and the disturbance measurement matrix D, respec-
tively. The solution of the coefficient vector 9™ can be car-
ried out directly following Eq. (4). The calibration model
can be obtained by concatenating the product vectors ob-
tained by multiplying the coefficient vectors Y from Eq.
(12) and the associated right unitary matrix Vim) from Eq.

(11), with the coefficient vectors 'y(Dm), ie.,

[V ] (V9]
ERNLE

Remark. The proposed forward selection algorithm can
be applied to determine the disturbances to be included in
the regression. Once the optimal PC subset for a tone value
is obtained, the algorithm can be used to check whether
including any of the disturbances can improve the prediction
accuracy.

(13)

EXPERIMENT

Experiment Setup

An off-the-shelf one-pass color EP laser printer model is
used in the experiment. The printer generates nine calibra-
tion patches at different half-tone levels for each primary
color during a calibration, i.e., p=9. These half-tone levels
are labeled as hj, where j=1...9, corresponding to gray val-
ues from light to dark. Patches identical to those printed in
the calibration are printed on 75 g/m? paper (Xerox~ 4200
Business) for each primary color immediately following a
calibration. Their tone value measurements are made with a
set of spectrophotometers (X-Rite” DTP-70) with D65 il-
luminant and 2° observer. Note that the D65 illumination
and AE,¢ metrics are adopted in this work to meet the spon-
sor’s requirements and specification. Changing the metrics is
not likely to impact the validity of the improvement intro-
duced by the work.

Experiment

The experiment is performed on 20 printers across a wide
range of environmental conditions. The temperature ranges
from 15 to 30°C, and the relative humidity ranges from 10%
to 80%. Several cartridge sets with various lives remaining
are used. A total of 419 observations are made for each
primary color. Temperature, humidity ratio, and cartridge
life remaining are measured and treated as measurable dis-
turbances. The models are identified following the proposed
PCR procedure using MATLAB'.

Multicollinearity of the Sensor Measurements

Variance inflation factor” (VIF) is commonly used to mea-
sure the severity of multicollinearity among explanatory
variables. It is defined as

(VIF) = —, (14)
1 -R;

where Rj2 is the unadjusted coefficient of determination of

the jth explanatory variable when it is regressed with the
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Table 1. Variance inflation factor values of the sensor measurements at each half-tone

Table II. Contribution to total variation in percentage by each principal component

level (h). (PO).
Cyan Magenta Yellow Black Cyan Magenta Yellow Black
(%) (%) (%) (%)

hy 13 12 13 13

" Iy ” y 2 B, 87.0 85.6 936 86.8
h . 03 . o PG, 45 40 22 39
h iy . ns y PG, 30 38 14 27
b 116 128 %3 107 PG 20 25 08 24
by 179 146 270 149 PGs 12 12 08 15
by 199 164 530 237 PGy 10 1 05 10
by 189 162 319 158 PG 06 08 03 07
ho 112 76 141 129 PGy 05 0.4 03 05
PGy 04 04 02 04
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Figure 2. Magenfa fone reproduction curves.

other explanatory variables. If the jth explanatory variable is
linearly correlated with any of the other explanatory vari-
ables in the model, the corresponding Rj2 and VIF value will
be large. VIF values that exceed 10 are often regarded as
indicating strong multicollinearity*> among the explanatory
variables, implying that ordinary least-squares regression
may not be a good approach.

Table I lists the VIF values of the experimental on-board
sensor measurements. It is shown that more than 50% of the
sensor measurements are associated with a high degree of
multicollinearity, particularly those sensor measurements as-
sociated with half-tone levels in the midtone range (half-
tone levels h5 to hg). The large VIF values also confirm the
consistently higher or lower tone values across half-tone lev-
els due to changes in operating conditions (see magenta
TRCs illustrated in Figure 2).

Singular Value Decomposition on Sensor Measurements

Singular value decomposition is performed on the sensor
measurement matrix W. Table II shows the contribution to-
ward total variation in percentage by each PC. PC,; alone
accounts for at least 85% of the total variation for all pri-
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mary colors. The considerable contribution of PC; corre-
sponds with the high degree of multicollinearity shown by
the large VIF values.

Remark. Each principal component is a linear combina-
tion of different sensor measurements. The large contribu-
tion associated with PC, indicates that all the sensor mea-
surements from different half-tone levels of the same
primary color contain a large share of information in com-
mon, which is most likely to be the degree of size fluctuation
of the half-tone microdots.

Principal Component Selection

The proposed forward PC selection is performed using the
experimental data. Table III lists the selected PCs at each
half-tone level h;. As expected, PC, is always selected and is
always the most significant PC. However, PC,, which ac-
counts for the second largest variance, is not always the sec-
ond significant PC (see magenta and black). In addition,
including PC,, PC;, or PC4 improves the model prediction
accuracy at certain half-tone levels, in spite of the fact that
their contributions to the total variance are small. The in-
clusion of PCy, PCs, or PCy suggests that they may contain
important information regarding the local tone value varia-
tion. These facts indicate that using a conventional top-
down selection procedure to determine the optimal set of
PCs may not be appropriate for this particular application.

Disturbance Selection

The proposed forward selection algorithm is also applied to
determine the disturbances to be included in the regression.
The results show that only the humidity ratio is of statistical
significance.

Remark. The exclusion of the temperature or the car-
tridge life remaining suggests that either their impact on
tone value variation is adequately captured by the on-board
sensor measurements, or they are not well correlated with
the variation of the tone values. Hence including them as
explanatory variables in the calibration model does not im-
prove the prediction accuracy.

Model Comparison
The calibration models generated by the proposed PCR
methods, also referred to in this study as PCR models, are
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Table 111, Forward selection chosen principal components (PC) at each half-tone level

(yan Magenta
h PC;, PGy, PGy h1 P(,
hy PG, PG hy PG, PG, PGy, PG,
hs PG, PGy, PG5 hs PG, PG
hy PG, PGy, PGy hy PG, PG
hs PC;, PGy, PGy hs PG, PG
hy PC;, PGy, PGy hy PC;, PG, PGy
hy PG, PG b PG, PG
hg PG, PG hs PG, PG
hy PG, PGy hy PC;, PG
Yellow Black
h PG h PC;, PGy, PGy
hy PC;, Py, PGy, PG5, PG4 hy PC;, PGy, PGy
hs PG;, PGy, Py, PG, Py hs PG, PGy, PGy
hy PG, PGy hy PG, PGy, PG,
hs PG, PG hs PG, PCy, PGy
he PG, PG hy PG, PG,
hy PC;, PGy, PGy b P(,
hg PG, PG hs P(,
hy PG, PGy hy P(;

1.4
"2 1.05 1
58]
d
g 07 :
=
=
O 035 4 - ® -OLSR I
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O 1 1 1 T T T T T T
h h h, h h_ h h, h, h
1 2 3 4 5 6 7 8 9
Halftone level
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1.8
’,I-—-I—‘.’_‘.\\
%.“2 1.35) 1
& 09 ]
=
=
o 045r ’ - ® —OLSR i
y —x=-PCR w/ top—down selection
—o— PCR w/ forward selection
O L L L T T T T T T
hl h2 h? h4 hS h6 h7 hS h9

" Halftone level

compared with the models generated by ordinary least-
squares regression methods, referred to as OLSR models,
proposed by Yang et al.® In each of the OLSR models, a
single sensor measurement w; and selected disturbances d;;
are used as explanatory variables to predict the tone value y;

at each half-tone level, i.e.,
yj=aw;+ 2 Biidij, (15)

where @; and B;; are model coefficients to be determined in
the OLSR. Note that a major difference between the two
types of models is the number of on-board sensor measure-
ments included as explanatory variables. A PCR model in-
cludes multiple on-board sensor measurements as explana-
tory variables. In contrast, an OLSR model includes only
one. Performance indices are used to compare the two mod-
els in the following sections.

Cross-validation

A tenfold cross-validation without replacement is performed
on the PCR model with the proposed forward selection, the
PCR model with conventional top-down selection,” and the
OLSR models. In the conventional top-down selection, only
the first two PCs are included as explanatory variables due to
the small contribution to total variance of the remaining PCs
(see Table II). The results of the cross-validation (CV) are
summarized by comparing the root-mean-squared errors
(RMSE) for the three models (see Figure 3). It is shown that
overall the PCR model with forward selection gives the least
CV RMSEs. This indicates that the forward selection is su-
perior in this application, particularly for magenta and

Magenta
1.8 " " s
2135
82}
2
& 09
=
=
o 0457
—x— PCR w/ top—down selection
—=— PCR w/ forward selection
O 1 1 1 T T T T T T
h h h h h_ h h h, h
1 2 3 4 5 6 7 8 9
Halftone level
Black
1.4
P |
a
e 105
2
g5 07
=
S ,
O 0357 - = -OLSR
—x— PCR w/ top—down selection
—&— PCR w/ forward selection
0 L L L T T T T T T
hl hZ h3 h4 h5 hé h7 h8 h‘)

Halftone level

Figure 3. Cross-validation rootmean-squared error (CVRMSE) of the ordinary leastsquares regression (OLSR)
models, the principal component regression (PCR) models with fop-down selection, and the PCR models with

forward selection at each halHone level h;.
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Yellow Tone Reproduction Curve
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Figure 4. Yellow tone reproduction curves.

black. This is because PC; and PC, are significant to ma-
genta and black, respectively, in predicting their tone values
(see Table II). Conventional top-down selection can ignore
these significant PCs and results in suboptimal prediction
accuracy.

The average percentage improvement of the PCR mod-
els with forward selection over the OLSR models is calcu-
lated by
ot - b

Total
€0LSR

Improvement = X 100%, (16)

where el0d and ep% are the total CV RMSE of the OLSR
and the PCR models with forward selection, respectively, for
all colorants and at all half-tone levels. They are 40.37 and
30.38 AE¢ units, respectively. The average CV RMSE of the
PCR and the OLSR models are 1.12 and 0.84 AE,4 units,
respectively. The average improvement of the PCR models is
24.7%.

Note that the PCR models for magenta and yellow at
the first half-tone level h; do not show significant improve-
ment. This is due that the fact that the first half-tone level h,
is in the dead-band range of the half-tone level where almost
no tone reproduction occurs. The dead-band range for yel-
low is particularly large (see Figure 4). The mean tone values
for yellow and magenta at the first half-tone level h; are 0.2
AE ¢ units. These tone values are beyond the dynamic range
of the on-board sensors.

Statistical partial F-test
The cross-validation study shows that PCR models can pro-
vide better prediction accuracy compared to the OLSR mod-
els. However, the PCR models include more on-board sensor
measurements as explanatory variables. Complex models
could provide a better fit without necessarily bearing any
interpretable relationship to the underlying process.
Statistical partial P-tests® are conducted to determine if
the improvements yielded by the PCR models are not due to
higher model complexity. The resulting p-values (see Table
IV) show that the improvements yielded by the PCR models
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Table IV. p-values of partial F-test to determine the significance of improvement of
the PCR models.

(yan Magenta Yellow Black
h] <10”? 0.0004 0.8978 <10”?
hy <10”? <10”? <10”* <10”?
hy <10 <10 <10-* <10
hy <107 <107 <107 <10”?
hs <107 <107 <10”* <107
he <107 <107 <107 <107
hy <10 <10 <10~ <10
hg <10 <1077 <10-* <10
b <10 <10 <10~ <10

are significant at a 99% confidence level for almost all colors
at all half-tone levels. Here the 99% confidence level corre-
sponds to a threshold of 0.01 for the significance test of
improvement. The only exception is the model of yellow at
half-tone level h;.

Model selection index

Two information-theoretic model selection indices are used

to compare the two models: the Bayesian information crite-
rion (BIC), see Eq. (10), and the Akaike information crite-
. 20

rion (AIC),

( RSS)
AIC=nlIn| — | + 2 In(n), (17)
n

where n is the number of observations and RSS is the re-
sidual sum of squares from the regression model. These
model selection indices intend to identify the best model as
a tradeoff between model accuracy and model complexity.
Typically, a model is preferred if it is associated with a
smaller index value.

Figure 5 shows the AIC and the BIC values of the two
models at each half-tone level. Overall the PCR models are
associated with smaller AIC and BIC values, despite the fact
that the PCR models are associated with a higher level of
complexity. The AIC or the BIC values of the PCR models at
half-tone level h; for yellow or magenta are slightly higher
than those of the OLSR models due to the fact that the
half-tone level h; is in the dead-band of the tone reproduc-
tion for these two colors, as can be seen from Figs. 2 and 4.

Remark. The numerical uncertainty of the model coef-
ficient estimation in regression caused by the multicollinear
on-board sensor measurements may be solved with im-
proved computational accuracy. Indeed, with double preci-
sion, most calibration models may be developed directly
through OLSR without considering multicollinearity. How-
ever, the proposed PCR method provides two advantages
that are not achievable by using OLSR. First, biased PCR can
reduce the chance that the calibration model is overfitted by
excluding insignificant PCs from being used in the regres-
sion. In addition, the principal components can provide in-
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Figure 5. The Akaike information criterion (AIC) values and the Bayesian information criterion (BIC) values of
the ordinary leastsquares regression (OLSR) models and the principal component regression (PCR) models at

each halftone level h;.

sight into the importance of the on-board sensor measure-
ments. For example, PC; of cyan is

PC, = 0.0323w, — 0.0002w, — 0.1562w; + 0.2999w,
+0.6528ws — 0.3603w, + 0.2437w, — 0.5180wg

—0.0308w, (18)

The coefficients of the equation indicate that the normalized
on-board sensor measurements associated with half-tone
levels in the midtone range (w, through wg) are more
strongly correlated with PC,, compared to those associated
with half-tone levels in the highlight or shadow region. PC,
is the most significant PC to all models at different half-tone
levels (see Table III). This suggests that using an on-board
sensor measurement associated with a half-tone level in the
midtone range, e.g., s, can more accurately predict a tone
value associated with a half-tone level in the highlight range,
e.g., hy (see correlation coefficients between the on-board
sensor measurements and the tone values shown in Table V
for verification). Note that principal components have been
previously used to interpret underlying physical
processes.”*” Following the PCR procedure, the current
work may also be extended in further research to investigate
the correlation between the PCs and the physical character-
istics, such as developability or transfer efficiency, of an EP
system.

J. Imaging Sci. Technol.
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Table V. Correlation coefficients hetween the on-hoard sensor measurements and the
tone values associated with half-tone level h; in highlight range and hs in the midtone
range.

On-board sensor measurement (w;)

Correlation coefficient h hs
Tone value (y)) h 0319 0.758
he 0.297 0.886
CONCLUSION

A PCR method is proposed to improve tone prediction ac-
curacy of calibration models for color EP systems. A high
degree of multicollinearity among calibration color patch
measurements is verified through experiments and statistical
analyses. This motivates using PCR for calibration model
identification. The proposed method includes a forward se-
lection algorithm to determine the optimal subset of PCs to
be retained in biased PCR. The effectiveness of the proposed
PCR method is verified with experimental data collected un-
der different environmental conditions and consumable us-
age levels. Statistical tests and model selection indexes dem-
onstrate that the proposed PCR models outperform existing
OLSR models. The PCR models provide 24.7% improve-
ment on average in root-mean-squared predication accuracy
over existing models based on cross-validation.
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