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bstract. This work employs principal component regression
PCR) to improve tone prediction accuracy for color electrophotog-
aphy (EP). During calibration, primary color patches at different
alf-tone levels are printed on a belt and measured using on-board
ensors. Regression models are developed to predict primary color
one values on output media from these on-board sensor measure-
ents. The prediction accuracy of the regression models directly

mpacts the quality and consistency of color reproduction. Analyses
ave revealed a high degree of correlation among the on-board sen-
or measurements of the calibration patches from the same primary
olor. This indicates that multiple on-board sensor measurements
re linearly correlated and using multiple on-board sensor measure-
ents to predict the tone value may improve prediction accuracy if

he collinearity of the measurements is taken into consideration. In
his study, a PCR-based approach is applied to handle the multicol-
inear measurements in estimating the regression model coeffi-
ients. Experimental results show the proposed PCR models reduce
oot-mean-squared error by 24.7% over ordinary least-squares re-
ression models. © 2010 Society for Imaging Science and
echnology.
DOI: 10.2352/J.ImagingSci.Technol.2010.54.5.050302�

NTRODUCTION
color electrophotographic (EP) printing system typically

ses four primary colors—cyan, magenta, yellow, and black.
alibrations are performed to maintain consistent color re-
roduction under different throughputs and operating con-
itions. During a calibration, multiple patches of different
alf-tone levels of the same primary color are printed on an

ntermediate media, and are measured with on-board sen-
ors, such as densitometers (see Figure 1). Calibration mod-
ls are used to predict the primary color tone values on the
utput media from these on-board sensor measurements.

IS&T Member.

eceived Dec. 23, 2009; accepted for publication Jul. 3, 2010; published
nline Aug. 16, 2010.
062-3701/2010/54�5�/050302/9/$20.00.

. Imaging Sci. Technol. 050302-
he prediction accuracy of the calibration models directly
mpacts the performance of the calibration. In this study,
ur aim is to improve the prediction accuracy of the calibra-
ion models through a principal component regression
PCR) approach for color EP systems.

The calibration models are developed with data col-
ected in printer life tests. In a typical life test, various tasks
re performed under specified operating conditions. The re-
ults are recorded and analyzed to ensure that the design
pecification is met and sufficiently reliable performance is
ttained. During the life test, additional color patches are
rinted on output media immediately following a calibra-
ion. Their tone values, also referred to in this study as out-
ut tone values, are measured offline with devices such as a
pectrophotometer. Calibration models are then developed
s a mapping of the on-board sensor measurements to the
utput tone values.1 When a calibration is performed while
he product is in use, on-board sensor measurements are
aken to predict tone values with the calibration models.
ppropriate tone correction is then performed by adjusting
ias voltages or modifying the tone correction mapping.
ince tone value measurements on the output media are not
vailable to typical customers, it is crucial to ensure the pre-
iction accuracy of the calibration model under different
Figure 1. A typical electrophotographic process.
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emperature, humidity and/or other environmental
onditions.2

Half-toned color images are composed of arrays of
losely spaced microdots. Changes in operating conditions
r different EP parameter settings will impact the sizes of the
icrodots. Assuming the impact on the sizes of the
icrodots is consistent for a given print, the on-board sen-

or measurements from different half-tone patches of the
ame color should be consistently higher or lower. This re-
ults in increased correlation among the on-board sensor

easurements, i.e., multicollinearities. The multicollinearity
ndicates that multiple on-board sensor measurements are
inearly correlated with a tone value and using multiple on-
oard sensor measurements for tone value prediction can
otentially improve the prediction accuracy. However, it is
ell known that using collinear measurements as explana-

ory variables to identify model coefficients directly through
rdinary least-squares regression (OLSR) will result in sub-
ptimal model coefficients that will degrade prediction
ccuracy.3 Hence, existing calibration models are developed
sing a single-response regression approach, i.e., the output

one value at a particular half-tone level is regressed only
ith the on-board sensor measurement at the same half-

one level.
Recent research in regression analysis has shown im-

roved prediction accuracy of regression models using mul-
iple explanatory variables as compared to single-response
egression models.4–6 In this study, a principal component
egression (PCR) approach7 is proposed to address the

ulticollinearities associated with multiple on-board sensor
easurements. PCR avoids the numerical issues associated
ith OLSR by transforming multicollinear sensor measure-
ents into a set of orthogonal principal components (PC)

asis. In addition, it achieves biased regression by determin-
ng an optimal subset of PCs to be retained while discarding
Cs that have less statistical significance. By properly select-

ng explanatory variables and the associated PCs, a more
ccurate calibration model can be developed. To illustrate
he utility of the proposed approach, a first-order linear cali-
ration model for an off-the-shelf in-line color EP printer is
eveloped using existing life test data. Cross-validation re-
ults demonstrate a 24.7% improvement in prediction accu-
acy compared with the existing OLSR calibration models
or a particular target color EP laser printer model.

The organization of this article is outlined as follows. In
he next section, problem formulation and PCR methodol-
gy are described. Then a case study with the proposed
ethod and its experimental validation through statistical

nalyses is illustrated. Concluding remarks are given in the
ast section.

ETHOD
alibration Model
ince each primary color is printed independently for an
n-line color EP process, a calibration model is developed for
ach primary color. A calibration model G can be written as

=G�w ,d�, where y is tone values on paper, w is sensor a

. Imaging Sci. Technol. 050302-
easurements from on-board densitometers, and d is un-
ontrollable but measurable factors/disturbances collected in
ife test, such as temperature, humidity, and throughput.8

he tone values y are the measured reflectances of the re-
roduced color patches printed at the designated half-tone

evels. In this study, a tone value is defined as the Euclidian
istance ��E� in CIE L�a�b� space9 between the color point
f a primary color printed at a particular half-tone level and
he substrate color. A static linear calibration model is
ssumed.

roblem Formulation
ife test data are used to identify the calibration models. For
ne observation, a set of on-board sensor measurements,
easurable disturbances, and the corresponding tone values
easured on paper are collected. Denote wij �R, yij �R,

nd dij �R as the jth on-board sensor measurement, the jth
one value measurement, and the jth measurable distur-
ances, respectively, in the ith observation. In this work, the
alibration model G is formulated as a linear transformation
elating the tone value measurements yi = �yi1yi2 . . .yij� to the
ensor measurements wi = �wi1wi2 . . .wij� and the distur-
ances di = �di1di2 . . .dij�.

Consider p�N on-board sensor measurements, q�N
easurable disturbances, and l�N tone value measure-
ents are made in one observation, and n�N observations

re gathered. Denote W= �wij��Rn�p as the sensor mea-
urement matrix and D= �dij��Rn�q as the measurable dis-
urbance matrix. Let X�Rn�r denote the explanatory vari-
ble matrix, which is a concatenation of matrices W and D,
.e., X= �W �D� and r=p+q. Denote Y= �yij��Rn�l as the
esponse variable matrix containing the tone value measure-

ents. Note that here the upper case letters represent the
oncatenation of measurements from n observations, e.g.,

D = �
d1

d2

]

dn

� . �1�

he calibration model G�Rr�l can be written as Y=XG.
ote that the matrices are assumed to be centered and stan-
ardized columnwise.10 Hence no intercept term is required

n the regression model development.

rdinary Least-Squares Regression
onsider a standard multivariate regression model,

Y = XG + E , �2�

here the error matrix E satisfies the usual assumption of
eing independent and identically distributed. The number
f observations typically is much more than the number of
alibration color patches printed in a calibration, i.e., n� r.
he OLSR solution to the overdetermined problem stated

bove minimizes the squared error, i.e.,

Sep.-Oct. 20102
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G = arg min�Y − XG�2 = arg min�Y − �W�D�G�2

= arg min	Y − �W�D�
GW

GD
�	2

, �3�

here the calibration model G can be split into two matrices

W and GD with proper dimensions corresponding to the
ensor measurement matrix W and the disturbance mea-
urement matrix D, respectively. The OLSR solution to Eq.
3) is given by

G = �XTX�−1XTY . �4�

he explanatory variable matrix X is not of full rank since
he column vectors are collinear. The calculation of the ma-
rix �XTX�−1 is computationally challenging especially for

atrices with lower conditioning number. This yields larger
ariance in the model coefficient estimation.

rincipal Component Regression (PCR)
he key idea of PCR is to linearly transform the multicol-

inear sensor measurement matrix W to a principal compo-
ent (PC) matrix that consists of a set of orthogonal vectors.
hen the model coefficient estimation can be directly carried
ut following Eq. (4). Note that the disturbance measure-
ent matrix D does not need to be included in the trans-

ormation since the disturbances should adequately span the
ntire dynamic range for a complete experimental design.
ence, the sensor measurement matrix D should be associ-

ted with minimum multicollinearity.
A singular value decomposition (SVD) on the sensor

easurement matrix W is performed as the first step to
alculate the PC matrix, i.e.,

W = U�VT = �
i=1

p

�iuivi
T , �5�

here �=diag��1 ,�2 , . . . ,�p��Rn�p is a diagonal matrix
f singular values �i associated with the ith principal com-
onent PCi, and U�Rn�n and V�Rp�p are left and right
nitary matrices of the corresponding singular vectors ui

nd vi, respectively. The PC matrix ��Rn�p can be ob-
ained by multiplying the sensor measurement matrix W
ith the right unitary matrix V, i.e., �=WV. Hence the
rincipal components PCi are linear combination of the raw
ensor measurements with the coefficients in the associated
ow vector vi. Note that the singular values are usually ar-
anged in descending order, i.e., �1 ��2 � . . . ��p. The

agnitude of a singular value represents the variance along
he direction of the associated PC. The fraction of the total
ariance accounted for by PCi can be calculated by dividing
he associated singular value �i by the sum of singular val-
es, i.e., �i /��i.

Next, the PC matrix is augmented with the disturbance
easurement matrix as the explanatory variable matrix in

he subsequent multivariate regression, i.e., X= �� �D�. The
esulting coefficient matrix can be obtained by solving a

tandard least-squares optimization problem, m

. Imaging Sci. Technol. 050302-
� = arg min�Y − ���D���2 = arg min	Y − ���D�
��

�D
�	2

,

�6�

here ��Rr�l is the coefficient matrix to be determined.
he coefficient matrix � can be split into two matrices ��

nd �D with proper dimensions corresponding to the PC
atrix � and the disturbance measurement matrix D, re-

pectively. Since the PC matrix � is of full rank, the solution
f the coefficient matrix � in Eq. (6) can be carried out
irectly following Eq. (4). Matching the response variable
atrix Y in Eqs. (3) and (6), one can obtain

Y = ���D�
��

�D
� = �VTV�� + D�D = WGW + DGD

= �W�D�
GW

GD
� = Y . �7�

he calibration model is written as

G = 
GW

GD
� = 
V��

�D
� . �8�

iased Principal Component Regression
oise in sensor measurements can result in bias in regres-

ion analysis and increase the uncertainty in model coeffi-
ient estimation. Biased PCR identifies PCs that do not im-
rove prediction accuracy and excludes them from being
sed in the regression. Assume the noise in the sensor mea-
urement matrix W is additive. The sensor measurement

atrix can be then decomposed into two matrices—an exact
ignal matrix S and a noise perturbation matrix N—so that

W = S + N = US�SVS
T + UN�NVN

T , �9�

here �S, US, and VS, and �N, UN, and VN are the singular
alue matrix, left unitary matrix, and right unitary matrix
rom the SVD of the signal matrix S and the noise pertur-
ation matrix N, respectively. If a principal component PCi

oes not improve model performance based on a set of pre-
etermined criteria, the corresponding singular value �i, left
ingular vectors ui, and right singular vectors vi are put to
he noise perturbation matrix N. The biased PC matrix,

S =WVS, is used in the subsequent regression. Note that
ectors in the PC matrix � are orthogonal. Partial regres-
ion coefficients and the rank of marginal statistics remain
table when adding or removing PCs in the regression.11

orward Selection
forward selection algorithm is used to determine the PCs

o be included in the regression. PC selection in the PCR is
ddressed by several studies in the literature.12–15 Some stud-
es have pointed out that PCs associated with small singular
alues may be well correlated with the response
ariables.16–18 Instead of using traditional top-down selec-
ion methods, this study utilizes the forward selection

19
ethod proposed by Xie and Kalivas. The forward selec-
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ion tries out the PCs one by one and includes one PC in the
odel if it is statistically significant to the response variables.
he Bayesian information criterion (BIC),20

BIC = n lnRSS

n
� + k ln�n� , �10�

s used as the selection criterion, where n is the number of
bservations, RSS is the residual sum of squares from the
stimated model, and k is the number of PCs to be included
n the forward selection. The BIC is a tradeoff between

odel accuracy, i.e., the residual sum of squares (RSS), and
odel complexity �k�, i.e., the number of PCs to be in-

luded. Ideally a model with a low BIC value is preferred.
IC is known to be more conservative compared to other

nformation criteria.21 Hence, the chance of overfitting can
e reduced by using BIC as the selection criterion. The PC
election procedure can be summarized in the following four
teps:

Step 1: Compute all of the PCs through SVD.
Step 2: Determine the first PC producing the minimum

election criterion by following Eq. (10). Call this the first
C subset.

Step 3: Identify the second PC subset as the subset of
Cs providing the minimum selection criterion from all
ossible combinations containing the first PC subset and
ne more PC that has not been included in the first PC
ubset. Compute the selection criterion of the second PC
ubset following Eq. (10).

Step 4: The process stops when the selection criterion of
he second subset is larger than that of the first subset or
hen all PCs are included in the regression. Otherwise, re-
lace the contents of the first subset by the contents of the
econd subset and continue from step 3.

The PC selection should be performed separately for
ach response variable. Each response variable is regressed
ith its own set of selected PCs to generate a set of model

oefficients. The calibration model is the concatenation of
he model coefficients for each response variable. The signal

atrix of the selected PCs for the mth response variable can
e expressed as

S�m� = US
�m��S

�m��VS
�m��T . �11�

he biased PC matrix of the mth response variable �S
�m� can

e obtained by multiplying the sensor measurement matrix

with the right unitary matrix VS
�m� from Eq. (11), i.e.,

S
�m� =WVS

�m�. Let y�m��Rn denote the mth column vector
n the response variable matrix Y. The coefficient vector that

inimizes a least-squares loss function for the mth response
ariable can be obtained as

��m� = arg min�y�m� − ��S
�m��D���m��2

= arg min	y�m� − ��S
�m��D�
�S

�m�

�D
�m��	2

, �12�

�m� r�1
here � �R is the coefficient vector corresponding to t

. Imaging Sci. Technol. 050302-
�m� to be determined in the regression. The coefficient vec-

or ��m� can be split into two vectors, �S
�m� and �D

�m�, with
roper dimensions corresponding to the biased PC matrix

S
�m� and the disturbance measurement matrix D, respec-

ively. The solution of the coefficient vector ��m� can be car-
ied out directly following Eq. (4). The calibration model
an be obtained by concatenating the product vectors ob-

ained by multiplying the coefficient vectors �S
�m� from Eq.

12) and the associated right unitary matrix VS
�m� from Eq.

11), with the coefficient vectors �D
�m�, i.e.,

G = 
�VS
�1��S

�1�� ¯ �VS
�l��S

�l��

��D
�1�� ¯ ��D

�l�� � . �13�

Remark. The proposed forward selection algorithm can
e applied to determine the disturbances to be included in
he regression. Once the optimal PC subset for a tone value
s obtained, the algorithm can be used to check whether
ncluding any of the disturbances can improve the prediction
ccuracy.

XPERIMENT
xperiment Setup
n off-the-shelf one-pass color EP laser printer model is
sed in the experiment. The printer generates nine calibra-

ion patches at different half-tone levels for each primary
olor during a calibration, i.e., p=9. These half-tone levels
re labeled as hj, where j=1. . .9, corresponding to gray val-
es from light to dark. Patches identical to those printed in

he calibration are printed on 75 g/m2 paper (Xerox® 4200
usiness) for each primary color immediately following a
alibration. Their tone value measurements are made with a
et of spectrophotometers (X-Rite® DTP-70) with D65 il-
uminant and 2° observer. Note that the D65 illumination
nd �E76 metrics are adopted in this work to meet the spon-
or’s requirements and specification. Changing the metrics is
ot likely to impact the validity of the improvement intro-
uced by the work.

xperiment
he experiment is performed on 20 printers across a wide

ange of environmental conditions. The temperature ranges
rom 15 to 30°C, and the relative humidity ranges from 10%
o 80%. Several cartridge sets with various lives remaining
re used. A total of 419 observations are made for each
rimary color. Temperature, humidity ratio, and cartridge

ife remaining are measured and treated as measurable dis-
urbances. The models are identified following the proposed
CR procedure using MATLAB

®.

ulticollinearity of the Sensor Measurements
ariance inflation factor20 (VIF) is commonly used to mea-
ure the severity of multicollinearity among explanatory
ariables. It is defined as

�VIF�j =
1

1 − Rj
2

, �14�

here Rj
2 is the unadjusted coefficient of determination of
he jth explanatory variable when it is regressed with the

Sep.-Oct. 20104
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ther explanatory variables. If the jth explanatory variable is
inearly correlated with any of the other explanatory vari-
bles in the model, the corresponding Rj

2 and VIF value will
e large. VIF values that exceed 10 are often regarded as

ndicating strong multicollinearity22 among the explanatory
ariables, implying that ordinary least-squares regression
ay not be a good approach.

Table I lists the VIF values of the experimental on-board
ensor measurements. It is shown that more than 50% of the
ensor measurements are associated with a high degree of

ulticollinearity, particularly those sensor measurements as-
ociated with half-tone levels in the midtone range (half-
one levels h5 to h8). The large VIF values also confirm the
onsistently higher or lower tone values across half-tone lev-
ls due to changes in operating conditions (see magenta
RCs illustrated in Figure 2).

ingular Value Decomposition on Sensor Measurements
ingular value decomposition is performed on the sensor
easurement matrix W. Table II shows the contribution to-
ard total variation in percentage by each PC. PC1 alone
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T
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Magenta Tone Reproduction Curve
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Figure 2. Magenta tone reproduction curves.

able I. Variance inflation factor values of the sensor measurements at each half-tone
evel �hj�.

Cyan Magenta Yellow Black

1 1.3 1.2 1.3 1.3

2 3.9 2.6 4.6 2.2

3 7.4 5.3 7.6 4.7

4 8.8 7.2 22.5 8.6

5 11.6 13.8 26.3 10.7

6 17.9 14.6 27.0 14.9

7 19.9 16.4 53.0 23.7

8 18.9 16.2 31.9 15.8

9 11.2 7.6 14.1 12.9
ccounts for at least 85% of the total variation for all pri- m

. Imaging Sci. Technol. 050302-
ary colors. The considerable contribution of PC1 corre-
ponds with the high degree of multicollinearity shown by
he large VIF values.

Remark. Each principal component is a linear combina-
ion of different sensor measurements. The large contribu-
ion associated with PC1 indicates that all the sensor mea-
urements from different half-tone levels of the same
rimary color contain a large share of information in com-
on, which is most likely to be the degree of size fluctuation

f the half-tone microdots.

rincipal Component Selection
he proposed forward PC selection is performed using the
xperimental data. Table III lists the selected PCs at each
alf-tone level hj. As expected, PC1 is always selected and is
lways the most significant PC. However, PC2, which ac-
ounts for the second largest variance, is not always the sec-
nd significant PC (see magenta and black). In addition,

ncluding PC4, PC5, or PC6 improves the model prediction
ccuracy at certain half-tone levels, in spite of the fact that
heir contributions to the total variance are small. The in-
lusion of PC4, PC5, or PC6 suggests that they may contain
mportant information regarding the local tone value varia-
ion. These facts indicate that using a conventional top-
own selection procedure to determine the optimal set of
Cs may not be appropriate for this particular application.

isturbance Selection
he proposed forward selection algorithm is also applied to
etermine the disturbances to be included in the regression.
he results show that only the humidity ratio is of statistical

ignificance.
Remark. The exclusion of the temperature or the car-

ridge life remaining suggests that either their impact on
one value variation is adequately captured by the on-board
ensor measurements, or they are not well correlated with
he variation of the tone values. Hence including them as
xplanatory variables in the calibration model does not im-
rove the prediction accuracy.

odel Comparison
he calibration models generated by the proposed PCR

able II. Contribution to total variation in percentage by each principal component
PC�.

Cyan
�%�

Magenta
�%�

Yellow
�%�

Black
�%�

C1 87.0 85.6 93.6 86.8

C2 4.5 4.0 2.2 3.9

C3 3.0 3.8 1.4 2.7

C4 2.0 2.5 0.8 2.4

C5 1.2 1.2 0.8 1.5

C6 1.0 1.1 0.5 1.0

C7 0.6 0.8 0.3 0.7

C8 0.5 0.6 0.3 0.5

C9 0.4 0.4 0.2 0.4
ethods, also referred to in this study as PCR models, are

Sep.-Oct. 20105
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ompared with the models generated by ordinary least-
quares regression methods, referred to as OLSR models,
roposed by Yang et al.8 In each of the OLSR models, a
ingle sensor measurement wj and selected disturbances dij

re used as explanatory variables to predict the tone value yj

t each half-tone level, i.e.,

yj = �jwj + �
i

�ijdij , �15�

here �j and �ij are model coefficients to be determined in
he OLSR. Note that a major difference between the two
ypes of models is the number of on-board sensor measure-

ents included as explanatory variables. A PCR model in-
ludes multiple on-board sensor measurements as explana-
ory variables. In contrast, an OLSR model includes only
ne. Performance indices are used to compare the two mod-
ls in the following sections.

ross-validation
tenfold cross-validation without replacement is performed

n the PCR model with the proposed forward selection, the
CR model with conventional top-down selection,23 and the
LSR models. In the conventional top-down selection, only

he first two PCs are included as explanatory variables due to
he small contribution to total variance of the remaining PCs
see Table II). The results of the cross-validation (CV) are
ummarized by comparing the root-mean-squared errors
RMSE) for the three models (see Figure 3). It is shown that
verall the PCR model with forward selection gives the least
V RMSEs. This indicates that the forward selection is su-
erior in this application, particularly for magenta and
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SE� of the ordinary least-squares regression �OLSR�
with top-down selection, and the PCR models with
able III. Forward selection chosen principal components �PC� at each half-tone level
hj�.

Cyan Magenta

1 PC1, PC2, PC6 h1 PC1

2 PC1, PC2 h2 PC1, PC3, PC5, PC6

3 PC1, PC2, PC3 h3 PC1, PC3

4 PC1, PC2, PC3 h4 PC1, PC3

5 PC1, PC2, PC3 h5 PC1, PC3

6 PC1, PC2, PC3 h6 PC1, PC3, PC2

7 PC1, PC2 h7 PC1, PC3

8 PC1, PC2 h8 PC1, PC3

9 PC1, PC2 h9 PC1, PC3

Yellow Black

1 PC1 h1 PC1, PC4, PC6

2 PC1, PC2, PC6, PC5, PC4 h2 PC1, PC4, PC6

3 PC1, PC2, PC6, PC5, PC4 h3 PC1, PC4, PC3

4 PC1, PC2 h4 PC1, PC4, PC3

5 PC1, PC2 h5 PC1, PC4, PC3

6 PC1, PC2 h6 PC1, PC4

7 PC1, PC2, PC6 h7 PC1

8 PC1, PC2 h8 PC1

9 PC1, PC2 h9 PC1
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Figure 3. Cross-validation root-mean-squared error �CVRM
models, the principal component regression �PCR� models
Sep.-Oct. 20106



b
g
(
t
a

e
l

w
a
a
3
P
r
2

t
m
i
n
l
f
�
o

S
T
v
e
m
c
i

t
h
I

a
a
s
i
h

M
T
t
r
r

w
s
m
a
T
s

m
a
t
c
h
t
h
t

fi
o
p
s
t
e
t
r
e

T
t

h

h

h

h

h

h

h

h

h

Kuo et al.: Improving tone prediction in calibration of electrophotographic printers by linear regression…

J

lack. This is because PC3 and PC4 are significant to ma-
enta and black, respectively, in predicting their tone values
see Table II). Conventional top-down selection can ignore
hese significant PCs and results in suboptimal prediction
ccuracy.

The average percentage improvement of the PCR mod-
ls with forward selection over the OLSR models is calcu-
ated by

Improvement =
eOLSR

Total − ePCR
Total

eOLSR
Total

� 100%, �16�

here eOLSR
Total and ePCR

Total are the total CV RMSE of the OLSR
nd the PCR models with forward selection, respectively, for
ll colorants and at all half-tone levels. They are 40.37 and
0.38 �E76 units, respectively. The average CV RMSE of the
CR and the OLSR models are 1.12 and 0.84 �E76 units,
espectively. The average improvement of the PCR models is
4.7%.

Note that the PCR models for magenta and yellow at
he first half-tone level h1 do not show significant improve-

ent. This is due that the fact that the first half-tone level h1

s in the dead-band range of the half-tone level where almost
o tone reproduction occurs. The dead-band range for yel-

ow is particularly large (see Figure 4). The mean tone values
or yellow and magenta at the first half-tone level h1 are 0.2
E76 units. These tone values are beyond the dynamic range
f the on-board sensors.

tatistical partial F-test
he cross-validation study shows that PCR models can pro-
ide better prediction accuracy compared to the OLSR mod-
ls. However, the PCR models include more on-board sensor
easurements as explanatory variables. Complex models

ould provide a better fit without necessarily bearing any
nterpretable relationship to the underlying process.

Statistical partial F-tests20 are conducted to determine if
he improvements yielded by the PCR models are not due to
igher model complexity. The resulting p-values (see Table
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Figure 4. Yellow tone reproduction curves.
V) show that the improvements yielded by the PCR models s

. Imaging Sci. Technol. 050302-
re significant at a 99% confidence level for almost all colors
t all half-tone levels. Here the 99% confidence level corre-
ponds to a threshold of 0.01 for the significance test of
mprovement. The only exception is the model of yellow at
alf-tone level h1.

odel selection index
wo information-theoretic model selection indices are used
o compare the two models: the Bayesian information crite-
ion (BIC), see Eq. (10), and the Akaike information crite-
ion (AIC),20

AIC = n lnRSS

n
� + 2 ln�n� , �17�

here n is the number of observations and RSS is the re-
idual sum of squares from the regression model. These

odel selection indices intend to identify the best model as
tradeoff between model accuracy and model complexity.

ypically, a model is preferred if it is associated with a
maller index value.

Figure 5 shows the AIC and the BIC values of the two
odels at each half-tone level. Overall the PCR models are

ssociated with smaller AIC and BIC values, despite the fact
hat the PCR models are associated with a higher level of
omplexity. The AIC or the BIC values of the PCR models at
alf-tone level h1 for yellow or magenta are slightly higher

han those of the OLSR models due to the fact that the
alf-tone level h1 is in the dead-band of the tone reproduc-
ion for these two colors, as can be seen from Figs. 2 and 4.

Remark. The numerical uncertainty of the model coef-
cient estimation in regression caused by the multicollinear
n-board sensor measurements may be solved with im-
roved computational accuracy. Indeed, with double preci-
ion, most calibration models may be developed directly
hrough OLSR without considering multicollinearity. How-
ver, the proposed PCR method provides two advantages
hat are not achievable by using OLSR. First, biased PCR can
educe the chance that the calibration model is overfitted by
xcluding insignificant PCs from being used in the regres-

able IV. p-values of partial F-test to determine the significance of improvement of
he PCR models.

Cyan Magenta Yellow Black

1 	10−9 0.0004 0.8978 	10−9

2 	10−9 	10−9 	10−9 	10−9

3 	10−9 	10−9 	10−9 	10−9

4 	10−9 	10−9 	10−9 	10−9

5 	10−9 	10−9 	10−9 	10−9

6 	10−9 	10−9 	10−9 	10−9

7 	10−9 	10−9 	10−9 	10−9

8 	10−9 	10−9 	10−9 	10−9

9 	10−9 	10−9 	10−9 	10−9
ion. In addition, the principal components can provide in-
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ight into the importance of the on-board sensor measure-
ents. For example, PC1 of cyan is

PC1 = 0.0323w1 − 0.0002w2 − 0.1562w3 + 0.2999w4

+ 0.6528w5 − 0.3603w6 + 0.2437w7 − 0.5180w8

− 0.0308w9 �18�

he coefficients of the equation indicate that the normalized
n-board sensor measurements associated with half-tone

evels in the midtone range (w4 through w8) are more
trongly correlated with PC1, compared to those associated
ith half-tone levels in the highlight or shadow region. PC1

s the most significant PC to all models at different half-tone
evels (see Table III). This suggests that using an on-board
ensor measurement associated with a half-tone level in the

idtone range, e.g., h5, can more accurately predict a tone
alue associated with a half-tone level in the highlight range,
.g., h1 (see correlation coefficients between the on-board
ensor measurements and the tone values shown in Table V
or verification). Note that principal components have been
reviously used to interpret underlying physical
rocesses.24,25 Following the PCR procedure, the current
ork may also be extended in further research to investigate

he correlation between the PCs and the physical character-
stics, such as developability or transfer efficiency, of an EP
ystem.
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Figure 5. The Akaike information criterion �AIC� va
the ordinary least-squares regression �OLSR� models
each half-tone level hj.
. Imaging Sci. Technol. 050302-
ONCLUSION
PCR method is proposed to improve tone prediction ac-

uracy of calibration models for color EP systems. A high
egree of multicollinearity among calibration color patch
easurements is verified through experiments and statistical

nalyses. This motivates using PCR for calibration model
dentification. The proposed method includes a forward se-
ection algorithm to determine the optimal subset of PCs to
e retained in biased PCR. The effectiveness of the proposed
CR method is verified with experimental data collected un-
er different environmental conditions and consumable us-
ge levels. Statistical tests and model selection indexes dem-
nstrate that the proposed PCR models outperform existing
LSR models. The PCR models provide 24.7% improve-
ent on average in root-mean-squared predication accuracy

ver existing models based on cross-validation.

able V. Correlation coefficients between the on-board sensor measurements and the
one values associated with half-tone level h1 in highlight range and h5 in the midtone
ange.

Correlation coefficient

On-board sensor measurement �wj�

h1 h5

one value �yj� h1 0.319 0.758

h5 0.297 0.886
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