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Abstract. This article describes a method for analyzing omnidirec-
tional color signals in a natural scene, which contains direct illumi-
nations of daylights and indirect illuminations of the reflected lights
from different object surfaces. A multiband omnidirectional imaging
system is used for capturing high resolution images in the omnidi-
rectional observations at a particular point in a natural scene. The
spectral-power distributions of color signals are recovered from the
captured six-band images. The authors investigate the spectral
composition of the omnidirectional scene illumination based on the
principal component analysis of the whole set of color signals ac-
quired at the same location in a fixed time of day in five months of a
year. It is found that all the omnidirectional color signals can be
expressed in a linear combination of only three principal compo-
nents. This property has the potential for high data compression.
Moreover, the authors analyze the chromaticity distribution of omni-
directional color signals. Experimental results are presented for om-
nidirectional color signals obtained in an outdoor scene of university
campus. The reliability of the proposed method is examined from
various points of view. An application to image rendering is
shown. © 2010 Society for Imaging Science and Technology.
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INTRODUCTION

Spectral analysis of a natural scene is definitely one of the
most important areas of research in the recent field of color
imaging science and technology. Some representative works
on the spectral analysis are listed in Refs. 1-8. These works
are mainly classified into two types of analysis: (1) surface-
spectral reflectances as physical properties of materials and
(2) daylight spectra as effects of natural light. Historically,
the properties of reflectance spectra of natural and artificial
objects were investigated by many researchers, such as
Krinov,” Malony,'’ Parkkinen et al.,'" and Vrhel et al.'* Re-
cently, reflectance spectra in forests and coral reefs were in-
vestigated by Chiao et al.,' in which a multispectral imaging
device was used to sample the spectra from many locations
in a single scene. Concerning daylight spectra, the article by
Judd et al.® is well known as a historical work, where most
daylight spectra could be estimated by linearly combining
the mean spectrum and two basis functions. Chiao et al.”
analyzed natural illuminants in the forest, where the images
of white cardboard were captured by a color camera. Re-
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cently, Herndndez-Andrés et al.” analyzed a large set of
hemispheric daylight spectra measured during two years in
southern Europe. Kohonen et al.” introduced useful data-
bases for different surfaces and daylight.

However, these previous works are limited to spectral
analysis of object surfaces sampled in natural scenes and of
daylight at specific areas in a scene of interest like a sky. It
should be noted that the light source forming color images
in a natural scene is not a single light source, but a mixture
of a point light source such as sunlight and of an area light
source with a spatially changing spectral distribution. More-
over, note that an object surface in a natural scene is illumi-
nated not only by such a light source but also by all the
reflected lights from the surrounding object surfaces. Spec-
tral analysis based on omnidirectional observations in a
natural scene was not considered so far.

There are many studies in the literature that use a
mirror-like ball to estimate the illumination in natural
scenes.” " Debevec'” developed a technique using a mir-
rored ball in computer graphics called a light probe. He
captured color images of an omnidirectional scene and cre-
ated the images of synthetic objects in the real scene. The
image rendering was based on RGB color values. Dror et
al." studied the statistical properties of real-world illumina-
tion for facilitating the understanding of human material
perception. The regularity and variability of illumination
patterns were examined using distributions of illumination
intensities. Tominaga et al."”” proposed a method for estimat-
ing an omnidirectional distribution of the scene illuminant
spectra. This kind of system using a mirrored ball, however,
has several problems, such as low and non-uniform spatial
resolution and a dead region due to imaging the camera
itself."°

The present article describes a method for analyzing
omnidirectional spectra in a natural scene, which contains
direct illuminations of different light sources from the sky
and indirect illuminations of the lights reflected from differ-
ent object surfaces. The spatial distribution of illuminations
is obtained from omnidirectional observations at a particu-
lar point of a natural scene. A multiband omnidirectional
imaging device is used for capturing high resolution images
in the omnidirectional observations. The spectral-power dis-
tributions for both the direct and indirect illuminations that
reach the imaging system are called the color signals in this
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article. The spectral composition of the omnidirectional il-
lumination is investigated based on the principal component
analysis (PCA) of the set of color signals recovered from the
captured multiband images. Next, we analyze the omnidirec-
tional color signals obtained at a fixed place over different
seasons of a year. Several basis functions of the spectral com-
ponents are extracted from the PCA of the whole set of color
signals. Then, it is found that all the omnidirectional color
signals can be expressed in a linear combination of a small
number of spectral bases. Our analysis suggests that the es-
timated spectra of omnidirectional illumination have the po-
tential for high data compression.

Moreover, we analyze the chromaticity of omnidirec-
tional color signals. It is known that daylight illuminants are
characterized by correlated color temperature. However, be-
cause natural real-world illumination includes indirect illu-
mination, the chromaticities of color signals do not always
fall on the chromaticity locus of blackbody radiator. The set
of color signals must include season characteristics of the
natural scene. In this sense the chromaticity analysis is
meaningful.

The remainder of this article is organized as follows: we
first present the image acquisition technique using a multi-
band imaging system to measure omnidirectional color sig-
nals. Second, we describe the analysis methods. The spectral-
power distributions of color signals are recovered via a
Wiener estimator from the multiband images. The PCA
analysis is applied to the spectral data set for approximating
the detailed shape of spectral distributions. The chromaticity
distribution of color signals is also analyzed. Third, we
present experimental results for omnidirectional color sig-
nals obtained in an outdoor scene of a university campus.
The reliability of the proposed method is examined from
various points of view. An application to image rendering is
shown.

MEASUREMENTS

Imaging System

Figure 1 shows a measuring system for acquiring ambient
light properties at an arbitrary location in a natural scene.
We use an imaging system for capturing multiband omnidi-
rectional images and a spectroradiometer for directly acquir-
ing illuminant spectral-power distribution in a particular di-
rection. The imaging system is realized with a trichromatic
digital camera, a fisheye lens, color filters, and a rotating
table (see Ref. 16 for the details). The camera is a Canon
EOS camera with the image size of 4082 X 2718 pixels and
the bit depth of 12 bits. The fisheye lens is a SIGMA circular
fisheye lens based on the equi-solid-angle projection. Two
additional color filters with different characteristics of spec-
tral transmittance are used for multispectral image acquisi-
tion. Each filter is placed between the lens and the camera
body. Combining these color filters to the original camera
spectral sensitivities leads to different sets of trichromatic
spectral sensitivity functions. Therefore, two sets of the
modified trichromatic spectral sensitivities result in an im-
aging system with six spectral bands. Figure 2 shows the
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Figure 2. Spectral sensitivity functions of the imaging system.

overall spectral-sensitivity functions of the present multi-
spectral imaging system.

Since the present fisheye system takes pictures of a scene
in a hemisphere, we need at least two sets of images in
opposite viewing directions for completing an omnidirec-
tional image. To eliminate a certain distortion at the edge of
the image plane, we can combine three sets of images ob-
served at rotation angle intervals of 120°.

Collections of Omnidirectional Images

The collections of omnidirectional images were conducted
on campus in Chiba University for a one year duration dur-
ing 2008-2009. There are four seasons in Japan. Each of the
four seasons has its characteristics of the natural scene. In
principle the spectral compositions of omnidirectional color
signals are acquired at a particular location change depend-
ing on the seasons. The multiband omnidirectional images
with six-spectral channels were captured at the same loca-
tion at a fixed time of morning in April (spring) 2008,
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(a) April 4, 2008

(d) December 3, 2008

(e) February 6, 2009

Figure 3. Omnidirectional images captured with the 120° visual field in
di?ferem seasons. (a) April 4, 2008, (b) August 6, 2008, (c) October 4,
2008, (d) December 3, 2008, and (e) February 6, 2009. Each red dot
indicates the solar position behind buildings.

August (summer) 2008, October (autumn) 2008, December
(winter) 2008, and February (winter) 2009. The weather of
all the days was clear. A set of three images during each day
were captured with the 120° visual field at three horizontal
directions. Figure 3 shows the color images, converted from
the original six-band images acquired in different seasons.
The camera was held at about 1 m above the ground. The
scenes contain direct illuminations from the sky and indirect
illuminations from the surrounding various object surfaces.
Table I lists the measurement dates and the solar positions
with azimuth and elevation angle. In Fig. 3, each red dot
indicates the solar position in the corresponding image. Be-
cause the omnidirectional images were captured soon after
the sunrise, the sun is hiding behind buildings in the images.

Even if they do not include strong sunlight, the range of
light intensities in a natural scene is very large so that the
image intensities vary greatly on pixels. In the present image
acquisition, 15 images of the same scene were taken with the
camera at shutter speeds of 2, 1, 1/2,..., 1/8000 s, which were
combined into high dynamic range (HDR) images with 22
bits. The omnidirectional image is composed of three HDR
images obtained at three directions with the separation of
120° as shown in Fig. 3.

We can see seasonal characteristics of the natural scene.
The cherry blossom of the image in April is a feature of
spring time. The second image in August reflects the season
of green leaves. The images in winter are characterized by
dry vegetation.
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Table 1. Measurement dates and the solar positions.

Measurement date Azimuth Elevation angle
2008/04/04 6:22 97.8 154
2008/08/06 5:51 84.8 228
2008/10/04 6:37 109.3 1.5
2008/12/03 7:32 129.6 73
2009/02/06 7:35 122.2 8.6

ANALYSIS METHODS

Estimation of Color Signals

Omnidirectional color signals to be estimated are not only
direct illuminations from light sources around the observa-
tion point but also indirect illuminations of the lights re-
flected from all the surrounding object surfaces. The ob-
served images can include various noise on sensors and
optical process. The image sensor outputs are modeled as a
linear system

700
p,:f EORMNdN+n, (i=1,2,...,6), (1)
400

where E(\) is the color signal, R;(\) is the spectral sensitivity
function of the ith sensor, and n; is the noise component
with zero mean. We sample each spectral function at n
points with an equal interval AN in [400, 700 nm]. Let e be
an n-dimensional column vector representing the color sig-
nal E(\) and let R be a 6 X#n matrix with the element
r;7=Ri(\j)JAN. Moreover, define a six-dimensional column
vector p representing a set of the sensor outputs p;. Then the
above imaging relationships are summarized in a linear ma-
trix equation

p=Re+n. (2)

When the signal e and the noise n are uncorrelated, the
Wiener estimate € is given as

é=C.R'(RCR'+3)'p, (3)

where Cg is the correlation matrix of illumination signals
C.=E[ee'] and 3 is the covariance matrix of noises
3 =E[nn']. We can assume that the noises in each spectral
channel are statistically independent. In this case, the cova-
riance matrix is reduced to be diagonal as
3 =diag(o7, 03, ...,0%). In the real computation of spectral
estimation, each spectral-power distribution is usually
sampled at 61 equally spaced wavelength points as n=61.
The noise component includes image sensor noises
based on thermal noise and shot noise and an approxima-
tion error in the model. Although estimation of the noise
properties is not easy, there are some proposals to do this.
Shimano'” proposed a method for estimating the noise co-
variance ¥, by evaluating the error of spectral reflectance
estimates in the spectral domain. However, this method is
computationally complicated and rather tedious. Since the
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Table 1I. Set of object surfaces measured on campus.

Object name Number of measurement points
Green leaves 448
Dead leaves 34
Tree frunks 265
Flower petals 8
Stones 9
Soil ground 53
Asphalt ground 25
Concrete ground 12
Pavement files 5
Building walls 12

correlation matrix is based on the relative intensity of the
illuminant spectral-power distribution, we only need the
signal-to-noise ratio (SNR) of the present imaging system.
In this article, we determined the SNR in an empirical way,
where the Macbeth Color Checker and several light sources
including an incandescent lamp were used as the known
object surfaces and light sources. We changed the values of
SNR so as to minimize the estimation error of surface-
spectral reflectance. Then the SNR corresponding to the
minimum error was adopted for the present imaging system.

Sample Data

The Wiener estimator relies upon the statistics of a data set
to achieve the estimation. To determine the correlation ma-
trix Cy, properly, we need a large database of scene illumi-
nation, which is composed of the direct illuminations and
the indirect illuminations. For this purpose we created two
spectral data sets for surface-spectral reflectances and light
sources.

Concerning the surface reflectance, we collected many
objects from the real world of our campus and measured the
surface-spectral reflectances by a spectrophotometer. Also
we measured the surface-spectral reflectances of many large
objects by using the spectroradiometer and a white reference
sample. Table II lists the whole set of surface reflectances
measured from different objects on campus. The constitu-
tion of objects and the combination of the number of mea-
surement points reflect the real scenes to be analyzed in this
article. The set of 871 samples are representatives of the type
of object surfaces that we are measuring with the camera.
Figure 4(a) shows the set of spectral reflectance curves of
871 object surfaces.

Concerning the light source, we used the CIE standard
illuminants with different correlated color temperatures
from 5000 to 10,000 K."® These illuminants approximate the
real light sources in daytime. Moreover, a small number of
the direct measurements of the sky were added to the light
source set. Fig. 4(b) shows the spectral distributions of nine
light sources.

Next, we produced a large database of about 8000 color
signals by multiplying the surface-spectral reflectances and
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Figure 4. Dafabases of surface-speciral reflectances for a variety of ob-
jects on university campus and spectralpower distribution for nine light
sources. (a) Reflectances and (b) light sources.

the light source spectra. The ratio of indirect illuminations
and direct illuminations was estimated by the ratio that the
sky occupied in the omnidirectional images. Therefore, 100
sets of light sources in Fig. 4(b) were combined to the above
indirect illumination set of color signals to complete the
whole color signal database.

PCA of Color Signals

The PCA analysis is applied to the whole set of color signals
obtained for an omnidirectional scene. This analysis is done
in the original observation coordinate system of the equi-
solid-angle projection. The omnidirectional image is repre-
sented with the azimuth angle 6 and the rotational angle ¢.
The spectral distribution of color signal e is a function of
and ¢. The estimate é(6, ¢) is calculated using Eq. (3) from
the sensor outputs at the corresponding pixel. A singular
value decomposition (SVD) of the set of é(6, ) provides
that each color signal can uniquely be expressed in a linear
combination of the »n orthogonal vectors as

é(0> ¢) = Cl(aﬁ ¢)ul + C2(0> ¢)u2 + ot Cn(ea ¢)um (4)
where {u;,u,,...,u,} are the left singular values. Because

the observation space is six dimensional, # is limited to six as
a practical matter.
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Figure 5. Three principal components for the color signal database.

Consider an approximate representation of the color
signals in terms of some component vectors chosen from
u;,u,,...,u,. The performance index of the chosen prin-
ciple components is given by the percent variance
Py=3{ i 12 iy where {pys iy, ooy (™ i)} are
the singular values of the matrix of all é(6, ). When we
choose the first K components, all color signals are repre-
sented as

éx(6, ) = c,(6, p)u; + (6, P)uy + -+ + cx (6, p)ug.
(5)

Because the basis functions of principal components are
common to all the color signals, the set of spectral data
represented by the high-dimensional vectors are reduced to
the set of a small number of coefficients {c;}. Thus the spec-
tral image data are compressed. This approximation is opti-
mal in a least square sense. Figure 5 shows the spectral
curves of the first three principal components for the whole
database of color signals created for simulation experiments
in the previous subsection. In this case, the percent variances
are P;=0.967 for use of the first component only,
P,=0.995 for the first two components, and P;=0.998 for
the first three components.

The linear model representation of color signals is de-
termined for the respective omnidirectional scenes in Fig. 3.
It should be noted that an appropriate model dimension
depends on spectral content in the objective scene. As the
performance index, we use the root-mean squared error
(RMSE) Ex=(E|le—éx|]*)'/? as well as the percent variance. A
color difference is also effective as a colorimetric quality
metrics. Here we use the CIE 1976 L*a*b* system to calcu-
late the color difference. An effective linear model represen-
tation of omnidirectional color signals through one year is
selected from the standpoint of data compression and esti-
mation accuracy.

Characterization of Chromaticity

Judd et al.® demonstrated that the spectral distribution of
daylight is well characterized by correlated color tempera-
ture, which led to the CIE standard illuminants. The chro-
maticity coordinates of nine light sources used in our data-
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Figure 6. Chromaticity locus of blackbody radiator and chromaticities of
daylight spectra.

o

Figure 7. Omnidirectional image of August in the polar coordinates.

base are plotted in the CIE 1931 xy-chromaticity diagram as
shown in Figure 6, where the solid curve indicates the
Planckian locus (chromaticity locus of blackbody radiator).
The chromaticities of the light sources lie closely on the
locus. However, these light sources represent light only un-
der open sky. Chiao et al.” investigated the chromaticity loci
of natural illuminant spectra measured in forests. The loci of
their illuminant spectra shifted toward the green side of the
diagram.

Our omnidirectional color signals represent all lights
recovered from images captured at a particular point in the
outdoor scene. We compute the CIE-xy chromaticity coor-
dinates at every pixel of the observed image. The two-
dimensional chromaticity loci, called the chromaticity histo-
gram, characterize the chromaticity distribution of the entire
scene. The chromaticity loci in omnidirections are distrib-
uted in a wider area including daylight spectra and forest
illuminant spectra. It should be noted that the number of
pixels on the (x,y) coordinates corresponds to the area in
the (6, @) coordinates of the real scene because the present
omnidirectional imaging system is based on the equi-solid-
angle projection.

EXPERIMENTAL RESULTS

Color Signals

An omnidirectional image was created by combining three
partitioned images in Fig. 3 into a latitude/longitude image
in a polar coordinate system in order to make a spatial map
of omnidirectional color signals. Figure 7 shows the omni-
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Figure 8. Esfimation results of color signals from area 2 and area 5.

directional image of August in the polar coordinate system,
where the rectangles indicate test areas of estimation accu-
racy. The 61-dimensional color signal vector e was estimated
from the camera data at each pixel of the omnidirectional
image by using the algorithm of Eq. (3).

The accuracy of the estimated color signals € was exam-
ined for eight areas in Fig. 7. Figure 8 shows the estimation
results of color signals from area 2 and area 5 in the scene.
We measured directly the color signals reflected from objects
in each area by using the spectro-radiometer. The numerical
error was calculated between the normalized spectral curves
of the estimate é and the measurement e, as the RMSE
E=(E|le,,—¢|)"%, where |le,|[*=|/é|*=1. The second col-
umn in Table III lists the estimation error in RMSE. The
third column lists the CIE-L*a*b* color difference. The com-
parisons between the estimates and the measurements sug-
gest the accuracy of the present estimation method.

Principal Components

The principal components of color signals for the respective
omnidirectional scenes were extracted from SVD of the data
set of the estimated color signals é. Four figures in Figure 9
show the spectral curves of the first four principal compo-
nents. Each figure contains five spectral curves belonging to
the same rank of principal component in five different
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Area number RMSE AF*ab RMSE AFab
1 0.019 520 0.022 8.93
2 0.017 5.81 0.017 4.15
3 0.021 5.61 0.021 245
4 0.008 4.28 0.009 5.65
5 0.012 5.88 0.014 7.48
6 0.016 4.27 0.019 9.35
7 0.006 3.19 0.006 275
8 0.023 5.00 0.023 4.39
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Figure 9. Spectral curves of the first four principal components. (a) First
component, (b) second component, (c) third component, and (d) fourth
component.

months. We see in Figs. 9(a) and 9(d) that the spectral
curves of the first and fourth principal components are close
to each other in different months. The detailed comparison
between Figs. 9(b) and 9(c) suggests that the second com-
ponent curve and the third one of December and February
are different from the components of the other seasons.
Moreover, we should note that the spectral curves in winter
in Fig. 9(b) are close to the curves in the other seasons in
Fig. 9(c), and in the same way, the spectral curves in winter
in Fig. 9(c) are close to the ones in the other seasons in
Fig. 9(b). In the winter, dry leaves fall to the ground and so
the visible area of the sky increases, while in the other sea-
sons the sky is mostly covered with green leaves and cherry
flowers. The second and third components may relate to the
sky and leaves. We should note that the four spectral curves
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Figure 11. Three principal components for all omnidirectional scenes.

have similar shapes through all seasons, which can describe
all omnidirectional color signals.

We calculated the performance indices Py for use of the
first K principal components for the respective months. Fig-
ure 10 depicts the performance indices as a parameter of the
number K. We note that the performance indices are
P3;>0.995 for each month. Therefore, we determine use of
the three principal components for approximating the om-
nidirectional color signals. Moreover, the principal compo-
nents for the omnidirectional scenes through one year were
computed from the whole data sets of five months. The
performance index of this case is depicted also in Fig. 10.

As a result, the omnidirectional color signals for all sea-
sons can be represented using three common principal com-
ponents. Figure 11 shows the spectral curves of the three
principal components for all omnidirectional scenes. With
these spectral curves, the color signals can be estimated as

&;(0,0) = ¢,(6, d)u; + c2(6, P)u, + ¢5(6, P)us. (6)

It is important to note that {u;,u,,u;} are common for all
seasons. In comparison of Fig. 11 with Fig. 5, we note that
the second and third components look reversed. The order
of the second and third can change places in the individual
seasons. The three component curves obtained from the
color signal database in Fig. 5 appear to corresponding to
the winter season rather than to the real scene.
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Figure 12. Comparison of the first component with the mean spectra of
the sky area and the whole scene in August.

In order to confirm the reliability of the proposed
method, we have estimated the spectral-power distributions
of color signals in a linear combination of the three spectral
bases. The estimation accuracy was examined for the eight
areas shown in Fig. 7. The fourth and fifth columns in Table
II list the RMSE and the AE*ab between the estimated color
signals by the three spectral bases in Fig. 9 and the direct
measurements. Note that the estimation accuracy does not
essentially deteriorate as compared with the original estima-
tion accuracy.

Chromaticity Characteristics

The first principal component is closely related to the mean
spectrum of the whole scene. Although light intensities in an
outdoor scene range quite widely from shadow areas to
bright light source areas, most of the brightest areas in the
present campus scene are considered the sky area. That is,
the sky area contributes most as light sources to object sur-
faces at the particular point. For instance, the first principal
component of August is shown in Fig. 9(a). Then we extract
the sky area from the omnidirectional image of August in
Fig. 3(b). Figure 12 compares the first component with the
mean spectra of the sky area and the whole scene. The fist
principal component curve is close to the average of the
whole scene so that the sky contributes the first component.
Figure 13 depicts the chromaticity distribution of the sky
area on the CIE-xy diagram. The chromaticity coordinates
of every pixel in the sky area is plotted with a small open
circle. An arrow indicates the chromaticity of the first prin-
cipal component. This chromaticity is close to the Planckian
locus. On the other hand, the chromaticity coordinates of
the sky area vary widely, although the distribution follows
roughly along the locus.

Figure 14 shows the chromaticity histogram of the om-
nidirectional color signals in April and August. The number
of pixels with the same chromaticity is represented as the
color level. The gradation from red to green means a de-
crease in the number of pixels with the same chromaticity.
The chromaticities are not necessarily coincident with the
Planckian locus, but widely distributed. This is because the
chromaticity distribution is influenced not only by the direct
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Figure 13. Chromaticity disfribution of the sky area in August scene on
the CIE-xy diagram.
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Figure 14. Chromaticity histogram of the omnidirectional color signals.
(@) April and (b) August.

illumination from the sky but also by the indirect lights
reflected from various object surfaces. The spring image in
Fig. 3(a) includes road trees of cherry blossoms. The color of
cherry blossoms is projected onto the chromaticity diagram.
Green leaves in August are reflected in the chromaticity his-
togram in Fig. 14(b)

Image Rendering
The omnidirectional images for all seasons can be rendered
using only three spectral components. Figure 15 shows the
omnidirectional color images in five months, which were
rendered by Eq. (6) using only the three principal compo-
nents in Fig. 11. These images are almost completely coin-
cident with the original images. For instance, the image in
Fig. 15(b) looks complexly the same as the original in Fig. 7.
From a data compression standpoint, we use only three nu-
merical values for the coefficients {c;,c,,c3} at each pixel.
Because the same spectral bases are used for all omnidirec-
tional color signals, high data compression can be achieved.
The omnidirectional color signals discussed in this ar-
ticle are useful for image rendering in natural environment.
We can render any objects as if it is placed in the real scene.
Figure 16(a) shows an example of a mirrored ball which was
rendered using the compressed data of omnidirectional color
signals obtained from our university campus in February.
The mirrored ball and the black pole are virtual objects. The
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(b)

(e)

Figure 15. Omnidirectional color image rendered using only three prin-
cipal components. (a) April 4, 2008, (b) August 6, 2008, (c) October
4, 2008, (d) December 3, 2008, and (e) February 6, 2009.

background is the recovered scene from the estimated color
signals. The material of the ball was assumed to be polished
stainless steel. The surface reflection was described using the
Cook-Torrance model."” Then, a ray-tracing algorithm was
adopted for image rendering by tracing imaging rays of light
from a viewpoint to the ball in the scene.” The ball in
Fig. 16(a) is illuminated from all directions with various
light sources, consisting of the reflected light from surround-
ing objects and the direct light from the sky. We note that
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(@)

(b)

Figure 16. Comparison befween the rendered image of a mirrored ball
in the scene and the real photograph: (o) image rendered using the
compressed data of omnidirectional color signals in February; (b) real
photograph of the ball in the same scene taken 30 min later.

the surrounding scene is specularly reflected on the ball sur-
face. Fig. 16(b) shows a real photograph of the ball in the
same scene. We took the photograph using a high resolution
camera with a standard lens of the focal length 50 mm, 30
min after the omnidirectional imaging with a fisheye lens.
Note that the photographer is clearly reflected on the surface
of the mirrored surface. The rendered image in Fig. 16(a)
appears close to this real image.

CONCLUSION

This article has described a method for analyzing omnidi-
rectional color signals in a natural scene, which contains
direct illuminations of daylights and indirect illuminations
of the reflected lights from different object surfaces. A multi-
band omnidirectional imaging system was used for captur-
ing high resolution images in the omnidirectional observa-
tions at a particular point in a natural scene. The spectral-
power distributions of color signals were recovered from the
captured six-band images. The spectral composition of the
omnidirectional illumination was investigated based on the
PCA in detail. We examined the omnidirectional color sig-
nals acquired at the same location in a fixed time of day in
five months of a year. It was found that all the omnidirec-
tional color signals could be expressed in a linear combina-
tion of only three principal components. Because the data
volume of omnidirectional color signals is huge, this prop-
erty has the potential for high data compression. Moreover,
we analyzed the chromaticity distribution of omnidirectional
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color signals. Experimental results were presented for omni-
directional color signals obtained in an outdoor scene of a
university campus. The reliability of the proposed analysis
method was confirmed from various points of view. As an
application, the three spectral components were useful for
image rendering in a natural environment.

In this article, the omnidirectional color signals were
analyzed based on the multispectral images captured at a
fixed time in the five days of different seasons. The spectral
analysis of image sequence captured at different times of day
remains as our future work.
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