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bstract. This article describes a method for analyzing omnidirec-
ional color signals in a natural scene, which contains direct illumi-
ations of daylights and indirect illuminations of the reflected lights

rom different object surfaces. A multiband omnidirectional imaging
ystem is used for capturing high resolution images in the omnidi-
ectional observations at a particular point in a natural scene. The
pectral-power distributions of color signals are recovered from the
aptured six-band images. The authors investigate the spectral
omposition of the omnidirectional scene illumination based on the
rincipal component analysis of the whole set of color signals ac-
uired at the same location in a fixed time of day in five months of a
ear. It is found that all the omnidirectional color signals can be
xpressed in a linear combination of only three principal compo-
ents. This property has the potential for high data compression.
oreover, the authors analyze the chromaticity distribution of omni-
irectional color signals. Experimental results are presented for om-
idirectional color signals obtained in an outdoor scene of university
ampus. The reliability of the proposed method is examined from
arious points of view. An application to image rendering is
hown. © 2010 Society for Imaging Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.2010.54.4.040502�

NTRODUCTION
pectral analysis of a natural scene is definitely one of the
ost important areas of research in the recent field of color

maging science and technology. Some representative works
n the spectral analysis are listed in Refs. 1–8. These works
re mainly classified into two types of analysis: (1) surface-
pectral reflectances as physical properties of materials and
2) daylight spectra as effects of natural light. Historically,
he properties of reflectance spectra of natural and artificial
bjects were investigated by many researchers, such as
rinov,9 Malony,10 Parkkinen et al.,11 and Vrhel et al.12 Re-

ently, reflectance spectra in forests and coral reefs were in-
estigated by Chiao et al.,1 in which a multispectral imaging
evice was used to sample the spectra from many locations

n a single scene. Concerning daylight spectra, the article by
udd et al.8 is well known as a historical work, where most
aylight spectra could be estimated by linearly combining

he mean spectrum and two basis functions. Chiao et al.2

nalyzed natural illuminants in the forest, where the images
f white cardboard were captured by a color camera. Re-
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. Imaging Sci. Technol. 040502-
ently, Hernández-Andrés et al.5 analyzed a large set of
emispheric daylight spectra measured during two years in
outhern Europe. Kohonen et al.7 introduced useful data-
ases for different surfaces and daylight.

However, these previous works are limited to spectral
nalysis of object surfaces sampled in natural scenes and of
aylight at specific areas in a scene of interest like a sky. It
hould be noted that the light source forming color images
n a natural scene is not a single light source, but a mixture
f a point light source such as sunlight and of an area light
ource with a spatially changing spectral distribution. More-
ver, note that an object surface in a natural scene is illumi-
ated not only by such a light source but also by all the
eflected lights from the surrounding object surfaces. Spec-
ral analysis based on omnidirectional observations in a
atural scene was not considered so far.

There are many studies in the literature that use a
irror-like ball to estimate the illumination in natural

cenes.13–15 Debevec13 developed a technique using a mir-
ored ball in computer graphics called a light probe. He
aptured color images of an omnidirectional scene and cre-
ted the images of synthetic objects in the real scene. The
mage rendering was based on RGB color values. Dror et
l.14 studied the statistical properties of real-world illumina-
ion for facilitating the understanding of human material
erception. The regularity and variability of illumination
atterns were examined using distributions of illumination

ntensities. Tominaga et al.15 proposed a method for estimat-
ng an omnidirectional distribution of the scene illuminant
pectra. This kind of system using a mirrored ball, however,
as several problems, such as low and non-uniform spatial
esolution and a dead region due to imaging the camera
tself.16

The present article describes a method for analyzing
mnidirectional spectra in a natural scene, which contains
irect illuminations of different light sources from the sky
nd indirect illuminations of the lights reflected from differ-
nt object surfaces. The spatial distribution of illuminations
s obtained from omnidirectional observations at a particu-
ar point of a natural scene. A multiband omnidirectional
maging device is used for capturing high resolution images
n the omnidirectional observations. The spectral-power dis-
ributions for both the direct and indirect illuminations that

each the imaging system are called the color signals in this
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rticle. The spectral composition of the omnidirectional il-
umination is investigated based on the principal component
nalysis (PCA) of the set of color signals recovered from the
aptured multiband images. Next, we analyze the omnidirec-
ional color signals obtained at a fixed place over different
easons of a year. Several basis functions of the spectral com-
onents are extracted from the PCA of the whole set of color
ignals. Then, it is found that all the omnidirectional color
ignals can be expressed in a linear combination of a small
umber of spectral bases. Our analysis suggests that the es-

imated spectra of omnidirectional illumination have the po-
ential for high data compression.

Moreover, we analyze the chromaticity of omnidirec-
ional color signals. It is known that daylight illuminants are
haracterized by correlated color temperature. However, be-
ause natural real-world illumination includes indirect illu-
ination, the chromaticities of color signals do not always

all on the chromaticity locus of blackbody radiator. The set
f color signals must include season characteristics of the
atural scene. In this sense the chromaticity analysis is
eaningful.

The remainder of this article is organized as follows: we
rst present the image acquisition technique using a multi-
and imaging system to measure omnidirectional color sig-
als. Second, we describe the analysis methods. The spectral-
ower distributions of color signals are recovered via a
iener estimator from the multiband images. The PCA

nalysis is applied to the spectral data set for approximating
he detailed shape of spectral distributions. The chromaticity
istribution of color signals is also analyzed. Third, we
resent experimental results for omnidirectional color sig-
als obtained in an outdoor scene of a university campus.
he reliability of the proposed method is examined from
arious points of view. An application to image rendering is
hown.

EASUREMENTS
maging System
igure 1 shows a measuring system for acquiring ambient

ight properties at an arbitrary location in a natural scene.
e use an imaging system for capturing multiband omnidi-

ectional images and a spectroradiometer for directly acquir-
ng illuminant spectral-power distribution in a particular di-
ection. The imaging system is realized with a trichromatic
igital camera, a fisheye lens, color filters, and a rotating

able (see Ref. 16 for the details). The camera is a Canon
OS camera with the image size of 4082�2718 pixels and

he bit depth of 12 bits. The fisheye lens is a SIGMA circular
sheye lens based on the equi-solid-angle projection. Two
dditional color filters with different characteristics of spec-
ral transmittance are used for multispectral image acquisi-
ion. Each filter is placed between the lens and the camera
ody. Combining these color filters to the original camera
pectral sensitivities leads to different sets of trichromatic
pectral sensitivity functions. Therefore, two sets of the

odified trichromatic spectral sensitivities result in an im-

ging system with six spectral bands. Figure 2 shows the t

. Imaging Sci. Technol. 040502-
verall spectral-sensitivity functions of the present multi-
pectral imaging system.

Since the present fisheye system takes pictures of a scene
n a hemisphere, we need at least two sets of images in
pposite viewing directions for completing an omnidirec-
ional image. To eliminate a certain distortion at the edge of
he image plane, we can combine three sets of images ob-
erved at rotation angle intervals of 120°.

ollections of Omnidirectional Images
he collections of omnidirectional images were conducted
n campus in Chiba University for a one year duration dur-

ng 2008–2009. There are four seasons in Japan. Each of the
our seasons has its characteristics of the natural scene. In
rinciple the spectral compositions of omnidirectional color
ignals are acquired at a particular location change depend-
ng on the seasons. The multiband omnidirectional images
ith six-spectral channels were captured at the same loca-

Figure 1. Measuring system for acquiring ambient light properties.

Figure 2. Spectral sensitivity functions of the imaging system.
ion at a fixed time of morning in April (spring) 2008,

Jul.-Aug. 20102
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ugust (summer) 2008, October (autumn) 2008, December
winter) 2008, and February (winter) 2009. The weather of
ll the days was clear. A set of three images during each day
ere captured with the 120° visual field at three horizontal
irections. Figure 3 shows the color images, converted from

he original six-band images acquired in different seasons.
he camera was held at about 1 m above the ground. The

cenes contain direct illuminations from the sky and indirect
lluminations from the surrounding various object surfaces.
able I lists the measurement dates and the solar positions
ith azimuth and elevation angle. In Fig. 3, each red dot

ndicates the solar position in the corresponding image. Be-
ause the omnidirectional images were captured soon after
he sunrise, the sun is hiding behind buildings in the images.

Even if they do not include strong sunlight, the range of
ight intensities in a natural scene is very large so that the
mage intensities vary greatly on pixels. In the present image
cquisition, 15 images of the same scene were taken with the
amera at shutter speeds of 2, 1, 1/2,…, 1/8000 s, which were
ombined into high dynamic range (HDR) images with 22
its. The omnidirectional image is composed of three HDR

mages obtained at three directions with the separation of
20° as shown in Fig. 3.

We can see seasonal characteristics of the natural scene.
he cherry blossom of the image in April is a feature of

pring time. The second image in August reflects the season
f green leaves. The images in winter are characterized by
ry vegetation.

igure 3. Omnidirectional images captured with the 120° visual field in
ifferent seasons. �a� April 4, 2008, �b� August 6, 2008, �c� October 4,
008, �d� December 3, 2008, and �e� February 6, 2009. Each red dot

ndicates the solar position behind buildings.
c

. Imaging Sci. Technol. 040502-
NALYSIS METHODS
stimation of Color Signals
mnidirectional color signals to be estimated are not only

irect illuminations from light sources around the observa-
ion point but also indirect illuminations of the lights re-
ected from all the surrounding object surfaces. The ob-
erved images can include various noise on sensors and
ptical process. The image sensor outputs are modeled as a

inear system

�i = �
400

700

E���Ri���d� + ni, �i = 1,2, . . . ,6� , �1�

here E��� is the color signal, Ri��� is the spectral sensitivity
unction of the ith sensor, and ni is the noise component
ith zero mean. We sample each spectral function at n
oints with an equal interval �� in [400, 700 nm]. Let e be
n n-dimensional column vector representing the color sig-
al E��� and let R be a 6�n matrix with the element

ij =Ri��j���. Moreover, define a six-dimensional column
ector � representing a set of the sensor outputs �i. Then the
bove imaging relationships are summarized in a linear ma-
rix equation

� = Re + n . �2�

When the signal e and the noise n are uncorrelated, the
iener estimate ê is given as

ê = CssR
t�RCssR

t + ��−1� , �3�

here Css is the correlation matrix of illumination signals

ss= E�eet� and � is the covariance matrix of noises
= E�nnt�. We can assume that the noises in each spectral

hannel are statistically independent. In this case, the cova-
iance matrix is reduced to be diagonal as

=diag��1
2 ,�2

2 , . . . ,�6
2�. In the real computation of spectral

stimation, each spectral-power distribution is usually
ampled at 61 equally spaced wavelength points as n=61.

The noise component includes image sensor noises
ased on thermal noise and shot noise and an approxima-
ion error in the model. Although estimation of the noise
roperties is not easy, there are some proposals to do this.
himano17 proposed a method for estimating the noise co-
ariance � by evaluating the error of spectral reflectance
stimates in the spectral domain. However, this method is

Table I. Measurement dates and the solar positions.

Measurement date Azimuth Elevation angle

2008/04/04 6:22 97.8 15.4

2008/08/06 5:51 84.8 22.8

2008/10/04 6:37 109.3 11.5

2008/12/03 7:32 129.6 7.3

2009/02/06 7:35 122.2 8.6
omputationally complicated and rather tedious. Since the

Jul.-Aug. 20103
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orrelation matrix is based on the relative intensity of the
lluminant spectral-power distribution, we only need the
ignal-to-noise ratio (SNR) of the present imaging system.
n this article, we determined the SNR in an empirical way,
here the Macbeth Color Checker and several light sources

ncluding an incandescent lamp were used as the known
bject surfaces and light sources. We changed the values of
NR so as to minimize the estimation error of surface-
pectral reflectance. Then the SNR corresponding to the

inimum error was adopted for the present imaging system.

ample Data
he Wiener estimator relies upon the statistics of a data set

o achieve the estimation. To determine the correlation ma-
rix Css properly, we need a large database of scene illumi-
ation, which is composed of the direct illuminations and

he indirect illuminations. For this purpose we created two
pectral data sets for surface-spectral reflectances and light
ources.

Concerning the surface reflectance, we collected many
bjects from the real world of our campus and measured the
urface-spectral reflectances by a spectrophotometer. Also
e measured the surface-spectral reflectances of many large
bjects by using the spectroradiometer and a white reference
ample. Table II lists the whole set of surface reflectances

easured from different objects on campus. The constitu-
ion of objects and the combination of the number of mea-
urement points reflect the real scenes to be analyzed in this
rticle. The set of 871 samples are representatives of the type
f object surfaces that we are measuring with the camera.
igure 4(a) shows the set of spectral reflectance curves of
71 object surfaces.

Concerning the light source, we used the CIE standard
lluminants with different correlated color temperatures
rom 5000 to 10,000 K.18 These illuminants approximate the
eal light sources in daytime. Moreover, a small number of
he direct measurements of the sky were added to the light
ource set. Fig. 4(b) shows the spectral distributions of nine
ight sources.

Next, we produced a large database of about 8000 color

Table II. Set of object surfaces measured on campus.

bject name Number of measurement points

reen leaves 448

ead leaves 34

ree trunks 265

lower petals 8

tones 9

oil ground 53

sphalt ground 25

oncrete ground 12

avement tiles 5

uilding walls 12
ignals by multiplying the surface-spectral reflectances and a

. Imaging Sci. Technol. 040502-
he light source spectra. The ratio of indirect illuminations
nd direct illuminations was estimated by the ratio that the
ky occupied in the omnidirectional images. Therefore, 100
ets of light sources in Fig. 4(b) were combined to the above
ndirect illumination set of color signals to complete the
hole color signal database.

CA of Color Signals
he PCA analysis is applied to the whole set of color signals
btained for an omnidirectional scene. This analysis is done

n the original observation coordinate system of the equi-
olid-angle projection. The omnidirectional image is repre-
ented with the azimuth angle � and the rotational angle �.
he spectral distribution of color signal e is a function of �
nd �. The estimate ê�� ,�� is calculated using Eq. (3) from
he sensor outputs at the corresponding pixel. A singular
alue decomposition (SVD) of the set of ê�� ,�� provides
hat each color signal can uniquely be expressed in a linear
ombination of the n orthogonal vectors as

ê��,�� = c1��,��u1 + c2��,��u2 + ¯ + cn��,��un , �4�

here �u1 , u2 , . . . , un� are the left singular values. Because
he observation space is six dimensional, n is limited to six as

igure 4. Databases of surface-spectral reflectances for a variety of ob-
ects on university campus and spectral-power distribution for nine light
ources. �a� Reflectances and �b� light sources.
practical matter.

Jul.-Aug. 20104
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Consider an approximate representation of the color
ignals in terms of some component vectors chosen from

1 , u2 , . . . , un. The performance index of the chosen prin-
iple components is given by the percent variance

K =�i=1
K �i

2 /�i=1
n �i

2, where ��1 ,�2 , . . . ,�n��i 	�i+1�� are
he singular values of the matrix of all ê�� ,��. When we
hoose the first K components, all color signals are repre-
ented as

êK��,�� = c1��,��u1 + c2��,��u2 + ¯ + cK��,��uK .

�5�

ecause the basis functions of principal components are
ommon to all the color signals, the set of spectral data
epresented by the high-dimensional vectors are reduced to
he set of a small number of coefficients �ci�. Thus the spec-
ral image data are compressed. This approximation is opti-

al in a least square sense. Figure 5 shows the spectral
urves of the first three principal components for the whole
atabase of color signals created for simulation experiments

n the previous subsection. In this case, the percent variances
re P1 =0.967 for use of the first component only,

2 =0.995 for the first two components, and P3 =0.998 for
he first three components.

The linear model representation of color signals is de-
ermined for the respective omnidirectional scenes in Fig. 3.
t should be noted that an appropriate model dimension
epends on spectral content in the objective scene. As the
erformance index, we use the root-mean squared error
RMSE) EK = �E	e − êK	2�1/2 as well as the percent variance. A
olor difference is also effective as a colorimetric quality
etrics. Here we use the CIE 1976 L�a�b� system to calcu-

ate the color difference. An effective linear model represen-
ation of omnidirectional color signals through one year is
elected from the standpoint of data compression and esti-

ation accuracy.

haracterization of Chromaticity
udd et al.8 demonstrated that the spectral distribution of
aylight is well characterized by correlated color tempera-

ure, which led to the CIE standard illuminants. The chro-

Figure 5. Three principal components for the color signal database.
aticity coordinates of nine light sources used in our data- o

. Imaging Sci. Technol. 040502-
ase are plotted in the CIE 1931 xy-chromaticity diagram as
hown in Figure 6, where the solid curve indicates the
lanckian locus (chromaticity locus of blackbody radiator).
he chromaticities of the light sources lie closely on the

ocus. However, these light sources represent light only un-
er open sky. Chiao et al.2 investigated the chromaticity loci
f natural illuminant spectra measured in forests. The loci of
heir illuminant spectra shifted toward the green side of the
iagram.

Our omnidirectional color signals represent all lights
ecovered from images captured at a particular point in the
utdoor scene. We compute the CIE-xy chromaticity coor-
inates at every pixel of the observed image. The two-
imensional chromaticity loci, called the chromaticity histo-
ram, characterize the chromaticity distribution of the entire
cene. The chromaticity loci in omnidirections are distrib-
ted in a wider area including daylight spectra and forest

lluminant spectra. It should be noted that the number of
ixels on the �x ,y� coordinates corresponds to the area in

he �� ,�� coordinates of the real scene because the present
mnidirectional imaging system is based on the equi-solid-
ngle projection.

XPERIMENTAL RESULTS
olor Signals
n omnidirectional image was created by combining three
artitioned images in Fig. 3 into a latitude/longitude image

n a polar coordinate system in order to make a spatial map

Figure 7. Omnidirectional image of August in the polar coordinates.

igure 6. Chromaticity locus of blackbody radiator and chromaticities of
aylight spectra.
f omnidirectional color signals. Figure 7 shows the omni-

Jul.-Aug. 20105
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irectional image of August in the polar coordinate system,
here the rectangles indicate test areas of estimation accu-

acy. The 61-dimensional color signal vector e was estimated
rom the camera data at each pixel of the omnidirectional
mage by using the algorithm of Eq. (3).

The accuracy of the estimated color signals ê was exam-
ned for eight areas in Fig. 7. Figure 8 shows the estimation
esults of color signals from area 2 and area 5 in the scene.

e measured directly the color signals reflected from objects
n each area by using the spectro-radiometer. The numerical
rror was calculated between the normalized spectral curves
f the estimate ê and the measurement em as the RMSE
= �E	em − ê	2�1/2, where 	em	2 = 	ê	2 =1. The second col-
mn in Table III lists the estimation error in RMSE. The

hird column lists the CIE-L�a�b� color difference. The com-
arisons between the estimates and the measurements sug-
est the accuracy of the present estimation method.

rincipal Components
he principal components of color signals for the respective
mnidirectional scenes were extracted from SVD of the data
et of the estimated color signals ê. Four figures in Figure 9
how the spectral curves of the first four principal compo-
ents. Each figure contains five spectral curves belonging to

Figure 8. Estimation results of color signals from area 2 and area 5.
he same rank of principal component in five different s

. Imaging Sci. Technol. 040502-
onths. We see in Figs. 9(a) and 9(d) that the spectral
urves of the first and fourth principal components are close
o each other in different months. The detailed comparison
etween Figs. 9(b) and 9(c) suggests that the second com-
onent curve and the third one of December and February
re different from the components of the other seasons.
oreover, we should note that the spectral curves in winter

n Fig. 9(b) are close to the curves in the other seasons in
ig. 9(c), and in the same way, the spectral curves in winter

n Fig. 9(c) are close to the ones in the other seasons in
ig. 9(b). In the winter, dry leaves fall to the ground and so
he visible area of the sky increases, while in the other sea-
ons the sky is mostly covered with green leaves and cherry
owers. The second and third components may relate to the

Table III. Estimation errors of color signals for the rectangular areas in Fig. 7.

Area number

�em − ê� �em − ê3�

RMSE �E�ab RMSE �E�ab

1 0.019 5.20 0.022 8.93

2 0.017 5.81 0.017 4.15

3 0.021 5.61 0.021 2.45

4 0.008 4.28 0.009 5.65

5 0.012 5.88 0.014 7.48

6 0.016 4.27 0.019 9.35

7 0.006 3.19 0.006 2.75

8 0.023 5.00 0.023 4.39

igure 9. Spectral curves of the first four principal components. �a� First
omponent, �b� second component, �c� third component, and �d� fourth
omponent.
ky and leaves. We should note that the four spectral curves

Jul.-Aug. 20106
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ave similar shapes through all seasons, which can describe
ll omnidirectional color signals.

We calculated the performance indices PK for use of the
rst K principal components for the respective months. Fig-
re 10 depicts the performance indices as a parameter of the
umber K. We note that the performance indices are

3 	0.995 for each month. Therefore, we determine use of
he three principal components for approximating the om-
idirectional color signals. Moreover, the principal compo-
ents for the omnidirectional scenes through one year were
omputed from the whole data sets of five months. The
erformance index of this case is depicted also in Fig. 10.

As a result, the omnidirectional color signals for all sea-
ons can be represented using three common principal com-
onents. Figure 11 shows the spectral curves of the three
rincipal components for all omnidirectional scenes. With

hese spectral curves, the color signals can be estimated as

ê3��,�� = c1��,��u1 + c2��,��u2 + c3��,��u3. �6�

t is important to note that �u1 , u2 , u3� are common for all
easons. In comparison of Fig. 11 with Fig. 5, we note that
he second and third components look reversed. The order
f the second and third can change places in the individual
easons. The three component curves obtained from the
olor signal database in Fig. 5 appear to corresponding to

Figure 11. Three principal components for all omnidirectional scenes.

igure 10. Performance indices PK for approximation by principal
omponents.
he winter season rather than to the real scene. c

. Imaging Sci. Technol. 040502-
In order to confirm the reliability of the proposed
ethod, we have estimated the spectral-power distributions

f color signals in a linear combination of the three spectral
ases. The estimation accuracy was examined for the eight
reas shown in Fig. 7. The fourth and fifth columns in Table
II list the RMSE and the �E�ab between the estimated color
ignals by the three spectral bases in Fig. 9 and the direct

easurements. Note that the estimation accuracy does not
ssentially deteriorate as compared with the original estima-
ion accuracy.

hromaticity Characteristics
he first principal component is closely related to the mean

pectrum of the whole scene. Although light intensities in an
utdoor scene range quite widely from shadow areas to
right light source areas, most of the brightest areas in the
resent campus scene are considered the sky area. That is,

he sky area contributes most as light sources to object sur-
aces at the particular point. For instance, the first principal
omponent of August is shown in Fig. 9(a). Then we extract
he sky area from the omnidirectional image of August in
ig. 3(b). Figure 12 compares the first component with the
ean spectra of the sky area and the whole scene. The fist

rincipal component curve is close to the average of the
hole scene so that the sky contributes the first component.
igure 13 depicts the chromaticity distribution of the sky
rea on the CIE-xy diagram. The chromaticity coordinates
f every pixel in the sky area is plotted with a small open
ircle. An arrow indicates the chromaticity of the first prin-
ipal component. This chromaticity is close to the Planckian
ocus. On the other hand, the chromaticity coordinates of
he sky area vary widely, although the distribution follows
oughly along the locus.

Figure 14 shows the chromaticity histogram of the om-
idirectional color signals in April and August. The number
f pixels with the same chromaticity is represented as the
olor level. The gradation from red to green means a de-
rease in the number of pixels with the same chromaticity.
he chromaticities are not necessarily coincident with the
lanckian locus, but widely distributed. This is because the

igure 12. Comparison of the first component with the mean spectra of
he sky area and the whole scene in August.
hromaticity distribution is influenced not only by the direct
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llumination from the sky but also by the indirect lights
eflected from various object surfaces. The spring image in
ig. 3(a) includes road trees of cherry blossoms. The color of
herry blossoms is projected onto the chromaticity diagram.
reen leaves in August are reflected in the chromaticity his-

ogram in Fig. 14(b)

mage Rendering
he omnidirectional images for all seasons can be rendered
sing only three spectral components. Figure 15 shows the
mnidirectional color images in five months, which were
endered by Eq. (6) using only the three principal compo-
ents in Fig. 11. These images are almost completely coin-
ident with the original images. For instance, the image in
ig. 15(b) looks complexly the same as the original in Fig. 7.
rom a data compression standpoint, we use only three nu-
erical values for the coefficients �c1 , c2 , c3� at each pixel.

ecause the same spectral bases are used for all omnidirec-
ional color signals, high data compression can be achieved.

The omnidirectional color signals discussed in this ar-
icle are useful for image rendering in natural environment.

e can render any objects as if it is placed in the real scene.
igure 16(a) shows an example of a mirrored ball which was
endered using the compressed data of omnidirectional color
ignals obtained from our university campus in February.

igure 13. Chromaticity distribution of the sky area in August scene on
he CIE-xy diagram.

igure 14. Chromaticity histogram of the omnidirectional color signals.
a� April and �b� August.
he mirrored ball and the black pole are virtual objects. The i

. Imaging Sci. Technol. 040502-
ackground is the recovered scene from the estimated color
ignals. The material of the ball was assumed to be polished
tainless steel. The surface reflection was described using the
ook–Torrance model.19 Then, a ray-tracing algorithm was

dopted for image rendering by tracing imaging rays of light
rom a viewpoint to the ball in the scene.20 The ball in
ig. 16(a) is illuminated from all directions with various

ight sources, consisting of the reflected light from surround-

igure 15. Omnidirectional color image rendered using only three prin-
ipal components. �a� April 4, 2008, �b� August 6, 2008, �c� October
, 2008, �d� December 3, 2008, and �e� February 6, 2009.
ng objects and the direct light from the sky. We note that

Jul.-Aug. 20108
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he surrounding scene is specularly reflected on the ball sur-
ace. Fig. 16(b) shows a real photograph of the ball in the
ame scene. We took the photograph using a high resolution
amera with a standard lens of the focal length 50 mm, 30
in after the omnidirectional imaging with a fisheye lens.
ote that the photographer is clearly reflected on the surface
f the mirrored surface. The rendered image in Fig. 16(a)
ppears close to this real image.

ONCLUSION
his article has described a method for analyzing omnidi-

ectional color signals in a natural scene, which contains
irect illuminations of daylights and indirect illuminations
f the reflected lights from different object surfaces. A multi-
and omnidirectional imaging system was used for captur-

ng high resolution images in the omnidirectional observa-
ions at a particular point in a natural scene. The spectral-
ower distributions of color signals were recovered from the
aptured six-band images. The spectral composition of the
mnidirectional illumination was investigated based on the
CA in detail. We examined the omnidirectional color sig-
als acquired at the same location in a fixed time of day in
ve months of a year. It was found that all the omnidirec-

ional color signals could be expressed in a linear combina-
ion of only three principal components. Because the data
olume of omnidirectional color signals is huge, this prop-
rty has the potential for high data compression. Moreover,

igure 16. Comparison between the rendered image of a mirrored ball
n the scene and the real photograph: �a� image rendered using the
ompressed data of omnidirectional color signals in February; �b� real
hotograph of the ball in the same scene taken 30 min later.
e analyzed the chromaticity distribution of omnidirectional

. Imaging Sci. Technol. 040502-
olor signals. Experimental results were presented for omni-
irectional color signals obtained in an outdoor scene of a
niversity campus. The reliability of the proposed analysis
ethod was confirmed from various points of view. As an

pplication, the three spectral components were useful for
mage rendering in a natural environment.

In this article, the omnidirectional color signals were
nalyzed based on the multispectral images captured at a
xed time in the five days of different seasons. The spectral
nalysis of image sequence captured at different times of day
emains as our future work.
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