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Abstract. In this article, the authors investigate multi/hyperspectral
image compression strategies when data and conditions change. In
particular the authors compare the classical multi-two-dimensional
(2D wavelets and 2D SPIHT) and hybrid (3D wavelets and 2D
SPIHT) strategies to full 3D, for which the authors propose a new
implementation based on anisotropic 3D wavelets followed by a 3D
SPIHT encoder. All strategies are combined with a spectral principal
component analysis decorrelation stage to optimize performance.
The comparison of the proposed strategy with the other is made
with regard to variations in bitrate, spatial, and spectral dimensions
of the images. For consistent evaluation, the authors also propose a
larger evaluation framework than the conventionally used PSNR,
including nine metrics divided into four families. The authors also
study the effect of compression by tiles and discuss the time and
memory consumption difference between the three compression
strategies. Good results are obtained for the proposed method and
the benchmark shows the weaknesses and strengths of each
strategy. © 2010 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2010.54.4.040501]

INTRODUCTION

Multi/hyperspectral images offer several advantages over
conventional RGB imaging and have therefore attracted in-
creasing interest in the past few years. Indeed such imaging
techniques are increasingly used in geoscience, remote sens-
ing, quality control in industry, meteorology, exact color
measurements, etc. The resolution in the spatial and spectral
dimension increases as better multi/hyperspectral sensors are
developed resulting in a large amount of data. However,
limitations in transmission speed and storage capacity re-
quire the development of suitable compression methods for
multi/hyperspectral images.

A multi/hyperspectral image could be represented as a
three-dimensional (3D) cube with one spectral and two spa-
tial dimensions. The fact that a multi/hyperpectral image
consists of a series of narrow and contiguously spectral
bands of the same scene produces a highly correlated se-
quence of images. This particularity differentiates multi/
hyperspectral images from volumetric ones with three iso-
tropic spatial dimensions and also from videos with one
temporal and two spatial dimensions. So, conventional com-
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pression methods are not optimal for multi/hyperspectral
image compression. Therefore compression algorithms need
to be adapted to this type of image and often require a
decorrelation stage following spectral dimension.

One of the most efficient compression methods for
monochrome image compression is the JPEG2000
(http://www.jpeg.org). Its extension to multi/hyperspectral
images yields different strategies. These strategies depend on
the manner of which one considers the multi/hyperspectral
cube after the decorrelation stage (Figure 1):

+ Each image band of the multi/hyperspectral image is
considered separately [two-dimensional (2D) wavelets
+2D set partitioning in hierarchical trees (SPIHT)]: the
multi-2D strategy (M2D).

+ The whole cube is considered as input leading to two
main implementations: the hybrid strategy (3D
wavelets+2D SPIHT) and the full 3D strategy (F3D).
For these latter we propose an anisotropic 3D wavelets
decomposition (3D wavelets+3D SPIHT).

We implement the three compression strategies with the
same lifting scheme wavelet transform and compare them.
To provide a more objective benchmark, we propose a
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Figure 1. Summary of benchmarked compression sfrategies.
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framework of evaluation composed of eight metrics in
addition to the classic PSNR. These metrics evaluate the
quality of reconstruction in terms of signal, spectral reflec-
tance, perceptive aspects, and classification driven metrics.

In the next section, we provide a short overview of how
we use the principal component analysis (PCA) algorithm
within the three compression strategies before describing
them. The third section introduces the framework of com-
parison by splitting the metrics into four categories and
gives the explicit formula of each metric. We show experi-
mental results in the fourth section before discussing them
in the fifth section. Conclusions are presented in the final
section.

We can summarize the contributions of the article in:

* Proposition of an anisotropic-3D-wavelet-based method
for the full 3D strategy.

* Proposition of a large evaluation framework (four fami-
lies of metrics).

+ Benchmarking the three strategies by varying bitrates,
data, and spatial and spectral dimensions.

+ We also use the three different compression strategies
with tiling and compare complete compression and
compression by tile.

+ In order to take the algorithmic aspects of these strate-
gies into account, we will also discuss them in terms of
time and memory consumption.

COMPRESSION STRATEGIES
For the implementation of the three strategies we chose to
use the wavelets of JPEG2000 standard'™ because it is a
reference for 2D compression. The JPEG2000 standard
wavelets are “Le Gall 5/3” for lossless compression and
“Cohen-Daubechies-Feauveau 9/7” (or CDF 9/7) for lossy
compression. In our case we perform lossy compression, so
we will use the CDF 9/7 wavelet.

Multi/hyperspectral images have a high correlation be-
tween image bands. To achieve the best compression ratios it
is necessary to take this correlation into account.

PCA Decorrelation
In order to optimize multi/hyperspectral image compres-
sion, a decorrelation step is often used. In this context, sev-
eral methods have been developed. Classic algorithms are
based on vector quantization,® wavelets, or hybrid methods,
such as differential pulse code modulation-discrete cosine
transform (DPCM-DCT),” Karhunen-Loéve transform-
discrete cosine transform (KLT-DCT),® and PCA (KLT). The
PCA has been shown to be one of the most efficient spectral
decorrelators’ and is used in many compression methods.
Epstein et al. propose in Ref. 10 a method for landsat
thematic mapper multispectral imagery. The method first
removes interband correlation by PCA to produce principle
components of seven landsat bands. The principle compo-
nents are then compressed using wavelet and lossless com-
pression techniques such as run length encoding. Harsanyi
and Chang'" applied PCA to hyperspectral images to reduce
data dimensionality, suppress undesired or interfering spec-
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tral signatures, and classify the spectral signatures of interest.
Mielikiinen and Kaarna'* applied PCA to reduce correlation
among spectral bands, but they only selected a small number
of spectra from the image for the calculation of the eigen-
vectors. They then applied integer wavelet transform to the
residual image to concentrate energy and reduce entropy. Du
and Fowler implemented PCA along with JPEG2000 for
hyperspectral image compression."” They assumed that PCA
would help in spectral decorrelation and JPEG2000 would
help in compression. They found that the method per-
formed better than the combination scheme of wavelet for
spectral decorrelation and JPEG2000 for compression. They
tested both methods and found that, for rate distortion and
information preservation, PCA with JPEG2000 outper-
formed JPEG2000 alone.

Other spectral decorrelators based on PCA may be
used. In Ref. 14, adaptive KLT is use for decorrelation. The
original image is divided into proper regions and transforms
each region image data set by the corresponding transforma-
tion function. The results of their simulations show that the
performance of adaptive KLT is better than KLT alone. Gu et
al.” proposed a kernel based nonlinear subspace projection
(KNSP) method followed by kernel PCA. They partitioned
the full data space into different subspaces. Next, they used
kernel PCA for feature selection based on class separability
criteria. The authors claim that the method is more suitable
for feature extraction than linear PCA and segmented linear
component transformation, particularly when hyperspectral
data have nonlinear characteristics.

Some compression algorithms are optimized for specific
applications (classification, visualization, dimension reduc-
tion, etc.). For this they will use PCA variants. In our case
we simply seek to compress without knowledge of the final
image utilization, which is why we use classical PCA, which
does not favor any particular use.

In our experiments, we applied PCA to the original
multi/hyperspectral image in the spectral dimension. As a
result, we obtain a new multiband image in the transform
domain in which the spectral correlation is reduced. The
image bands in the transform domain were sorted with de-
creasing variance (according to the values of the eigenval-
ues). We finally applied the three compression strategies to
all bands of the transformed image, unlike in dimension
reduction'™>" where only a few bands were selected. This
procedure allowed us to preserve the maximum amount of
image information.

Full 3D strategy

The F3D strategy consists of considering the whole multi/
hyperspectral image cube as an input for an 3D wavelet
transform. In our case the input is the eigenimages cube
resulting from the PCA. Then a 3D extension of SPIHT
encoder'® is applied. The 3D SPIHT encoder of Kim et al.'”
is appropriate to the 3D block shape of the decomposition
(Fig. 1). Dragotti et al. also propose a 3D extension of
SPIHT but with temporal compensator for video coding;'®
this coder is not appropriate in the case of multi/
hyperspectral images.
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Figure 2. Graphical representation of the full 3D wavelet decomposition (three decomposition steps).

The used wavelet transform is a 3D extension of classi-
cal 2D wavelets. It produces a multidimensional wavelet
transform by applying one level of decomposition to each
dimension. Then iterate this procedure on the approxima-
tion cube until obtaining the suited number of decomposi-
tion levels (Figure 2).

Many works in literature have explored the 3D wavelet
transform for multi/hyperspectral image compression but
they only use isotropic 3D wavelets (same type of wavelets
following all directions).''”""*"*® However, since the spectral
dimension is generally lower than the spacial dimensions, it
is appropriate to use a different type of wavelet filter for this
dimension. Therefore we propose to use an anisotropic 3D
wavelet transform that we realize with a CDF 9/7 filter fol-
lowing spatial dimensions and a Haar filter following spec-
tral dimension. The choice of the spectral filter is built on
the results obtained by Mansouri et al.*’ Indeed the authors
have proposed the Haar lifting scheme wavelet basis as an
appropriate short support basis for reflectance representa-
tion and estimation from multispectral images. This result
met the conclusion of Kaarna and Parkkinen®® where they
recommend a short wavelet basis as a good choice for spec-
tral wavelets.

Multi-2D Strategy
This strategy consists in applying the same 2D wavelet trans-
form to each PCA eigenimages and finally a 2D

L

i
_

SPIHT."*"" Because of PCA, the resulting image has de-
creasing energy bands, in order to take this fact into account,
it is preferable to weight each band before applying SPIHT.
As weight, we define the energy E of each band as in the

formula
A\ E I )\(-x’y)z
xy

ST v

where I, is the image band centered at the N wavelength, X
and Y are its dimensions, and x and y are the positions of a
pixel in the band.

Afterwards, we apply a 2D SPIHT coding to each band
of the wavelet transform results to achieve compression.

Hybrid Strategy

The hybrid strategy (H3D) strategy consists in applying a
hybrid rectangular/square 3D wavelet (Figure 3) to the PCA
eigenimages cube as used in Ref. 25. The wavelets decom-
position is composed by spatial CDF 9/7 filters and a spec-
tral Haar filter. The fact that this wavelet transform has two
differentiated stages (spatial transform is followed by spec-
tral transform) allows its result to be considered as multiple
2D plans. For this reason we can apply 2D SPIHT coding to
each resulting band to achieve compression, as in the M2D

Figure 3. Graphical representation of the hybrid square/rectangular 3D wavelet decomposition (three de-
composition steps). Spatial decompositions (top) followed by spectral decompositions (bottom).
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Figure 4. Multi/hyperspectral Aviris images we used in our experiments.
Cuprite image (top lef), SanDiego image (fop right), JasperRidge (bot-
tom leff) and MoffetiField (bottom right).

strategy (Fig. 1). In order to take the difference of energy
bands into account, we weight each band with its energy E as
in Eq. (1).

COMPRESSION EVALUATION FRAMEWORK

When lossy compression methods are used, quality measure-
ments are necessary to evaluate performance. According to
Eskicioglu,” the main problem in evaluating lossy compres-
sion techniques is the difficulty of describing the nature and
importance of the degradations on the reconstructed image.
Furthermore, in the case of ordinary 2D images, a metric has
often has to reflect the visual perception of a human ob-
server. This is not the case for hyperspectral images, which
are first used through classification or detection algorithms.
Therefore, metrics must correspond to applications. This is
why instead of evaluating compression performances ac-
cording to one metric or one type of metric, as in Ref. 30
where only one family of metrics is used [MSE, root mean
square error (RMSE), and PSNR], we propose the use of
nine known metrics belonging to four categories to evaluate
performance. We call this a framework for compression
evaluation.

The metrics we propose can be divided into four cat-
egories: signal processing isotropic extended metrics [PSNR,
relative RMSE (RRMSE), mean absolute error (MAE), and
maximum absolute distortion (MAD)], spectral oriented
metrics [spectral fidelity (F)), maximum spectral angle
(MSA), and goodness of fit coefficient (GFC)], an advanced
statistical metric taking some perceptive aspects into account
universal image quality index (UIQI), and a classification-
oriented metric (K-means). Christophe et al.*! show that the
use of a set of metrics is more relevant than using just one.
The PSNR is used in order to facilitate comparison with
other methods since it is the metric most employed in image
compression.
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In the following sections this notation will be used: I is

the original multispectral image and I is the reconstructed
multispectral image. The multispectral images are repre-
sented in three-dimensional matrix form: I(x,y,\), x is the
pixel position in a row, y is the number of the row, and \ is
the spectral band. n,, n,, and n,, respectively, the number of
pixels in a row, the number of rows, and the number of
spectral bands.

We also introduce the notation I(x,y,-) which stands
for I(x,y,")={I(x,y,N)|[1=\A=mn,}. In this case I(x,y,")
corresponds to a vector of n, components.

For simplification, we note I(x,y,\) and I(x,y,\) by I
and T, and also 3=, 3 S T by 3, 1.

Signal Processing Isotropic Extended Metrics

These metrics come from classic statistical measures. They
do not take into account the difference between spatial and
spectral dimensions. The structural aspect of errors does not
appear.

Relative Root Mean Square Error
It is a classic statistical measure based on MSE (L, norm)
with a normalization by the signal level

-\ 2
N 1 -1
RRMSE(I,]) = \/ > (—) ) (2)
MM gy N I

Mean Absolute Error

> 1. (3)

[CUCROERAN

MAE(L]) =

Maximum Absolute Distortion
The MAD is used to give a upper bound on the entire
image.

MAD(I,I) = max{|I - I|}. (4)

Spectral Oriented Metrics
These metrics are specially adapted for the multi/
hyperspectral field.

Goodness of Fit Coefficient
The GFC is used here to evaluate the reconstruction of each
reflectance spectrum

2 R{(N)Rj(N)

GFC(L,]) =

172 1/2°

]
2 [Ri\)P
J

SR
)

where R/(\;) is the original spectrum at wavelength \; and
Rj(\)) is the reconstructed spectrum at the wavelength \;.

The GFC is bounded, facilitating its understanding. We
have 0=GFC=1. The reconstruction is very good for
GFC>0.999 and perfect for a GFC>0.9999.
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Cuprite - Image Dimensions of 64x64 pixels and 32 spectral bands

SanDiego - Image dimensions of 64x64 pixels and 32 spectral bands
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Figure 5. Compression resulis in terms of PSNR for 32 bands of the Cuprite image (left) with sizes of
64x 64, 128x 128 and 256 % 256 pixels and SanDiego image (right) with sizes of 64X 64, 96X 96

and 128128 pixels.
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SanDiego - 64 spectral bands
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Figure 6. Compression results in ferms of PSNR for 32, 64, 96, 128, 160 and 192 bands (SanDiego

image).
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Figure 7. Compression results for Cuprite, SanDiego, JasperRidge and MoffetiField images in terms of PSNR.

Spectral Fidelity (F))
This metric was developed by Eskicioglu.”* We define fidelity
by

> [I-1P

ESAN

> [P

X0\

FL)=1- (6)

We will take into account the following adaptation focus on
spectral dimension to obtain spectral fidelity

F)\(Ij) = min{F(I(ny) ')j(x’ya ))} (7)

Xy

Maximum Spectral Angle

The MSA is a metric used in Ref. 33 The spectral angle
represents the angle between two spectra viewed as vectors
in an ny-dimensional space
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SI-1
A
SAx)), =cos || ——|. (8)

Jgﬁgﬂ

In our case we take the maximum of SA with:

MSA = max(SA,).
xy

(9)

Universal Image Quality Index

The UIQI was developed by Wang34 for monochrome im-
ages. This metric uses structural distortion rather than error
sensibility. It is an advanced statistical metric. The UIQI is
based on three factors: loss of correlation, luminance distor-
tion, and contrast distortion;
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SanDiego - Image dimensions of 128x128 pixels and 32 spectral bands

SanDiego -Image Dimensions of 128x128 pixels and 64 spectral bands
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Figure 8. Compression results in terms of PSNR for 128 % 128 spatial dimensions (SanDiego image).
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Figure 9. Compression results for 32, 64, 96, 128, 160 and 192
bands of the SanDiego image with a bitrate of 1 bpp.

AUV = doyypymy (10)
T (et o)y )

where oy is the cross correlation E[(U—u)(V—wy) ], p is
the mean, and o2 is the variance. The result is bounded by
“1=Q=1.

The UIQI can be applied in three different ways, on
each band, on each spectrum of the image or on both. We
use it on each spectral band of the image as follows:

Qx,y = mln{QU() . ’)\)’j(': . r)\))} (11)
A

Classification Driven Metric
As a classification method we use the K-means, and as met-
ric we compute the percentage of misclassified pixels for the
compressed images compared to the noncompressed image.
The K-means method is a well-known geometric clus-
tering algorithm based on work by Lloyd in Ref. 35. Given a
set of n data points, the algorithm uses a local search ap-
proach to partition the points into k clusters. Let X a set of k
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initial cluster centers is chosen arbitrarily. Each point is then
assigned to the center closest to it, and the centers are re-
computed as centers of mass of their assigned points. This is
repeated until the process stabilizes. It can be shown that no
partition occurs twice during the course of the algorithm,
and so the algorithm is guaranteed to terminate.

Let X={x;,%;,...,%,} be a set of points in Rd. After
being seeded with a set of k centers ¢;,c,,...,¢, in Rd, the
algorithm partitions these points into clusters as follows:

1. Foreachie{l,...,k}, set the cluster C; to be the set
of points in X that are closer to C; than they are to C;
for all j#1i.

2. Foreachie{l,...,k}, set ¢; to be the center of mass
of all points in C;: ¢;= 1/|Ci|§lxjecixj.

3. Repeat steps 1 and 2 until ¢; and C; no longer
change, at which point return the cluster C;.

If there are two centers equally close to a point in X, we
break the tie arbitrarily. If a cluster has no data points at the
end of step 2, we eliminate the cluster and continue as be-
fore. Our lower bound construction will not rely on either of
these degeneracies.

EXPERIMENTS AND RESULTS

We conducted our experiments on the largely used AVIRIS
(http://aviris.jpl.nasa.gov) images (Cuprite, SanDiego,
JasperRidge, and MoffettField). These images represent very
different landscapes, Cuprite and JasperRidge represent uni-
form spatial areas whereas SanDiego represents an airport
and MoffettFiel represents an urban landscape with many
high frequencies (Figure 4).

Experiments

First Experiment

The first experiment we conducted aimed to compare the
performance of the F3D strategy with M2D and H3D strat-
egies regarding different compression bitrates when using
different spatial dimensions of images. We conducted the
experiments on 32 bands of the Cuprite image with spatial
dimensions of 64 X 64, 128 X 128, and 256 X 256 pixels, on
32 bands of the SanDiego image with spatial dimensions of
64 X 64, 96 X 96, and 128 X 128 pixels, on 32 bands of the
JasperRidge and MoftettField images with spatial dimensions
of 64X 64 and 128 X 128 pixels. All images are coded in 16
bit integer.

Second Experiment

The second experiment sought to evaluate the performance
of the F3D strategy with M2D and H3D strategies regarding
to different compression bitrates when the number of bands
changes. So we used different spatial sizes of the SanDiego
multi/hyperspectral image with different number of bands
(32, 64, 96, 128, 160, and 192).

Third Experiment

The third experiment concerns compression by tile. It is
interesting to cut large images into sets of smaller ones to
reduce compression memory needs and also to parallelize
compression computation to reduce computation time. We
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Figure 10. Comparison between files compression results and complete image compression results for 32
bands of the Cuprite image.
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Table 1. Resulis in terms of statistics on GFC; on the top: file compression results, on the bottom: compression result of the complete

image.

M2D
Bitrate 0.0625 0.1250 0.2500 0.5000 1.0000
Mean GFC 0.9999 1.0000 1.0000 1.0000 1.0000
Std GFC 0.0000 0.0000 0.0000 0.0000 0.0000
Max GFC 1.0000 1.0000 1.0000 1.0000 1.0000
Min GFC 0.9990 0.9992 0.9995 0.9996 0.9996
Median GFC 1.0000 1.0000 1.0000 1.0000 1.0000
Mean GFC 0.9999 0.9999 1.0000 1.0000 1.0000
Std GFC 0.0000 0.0001 0.0001 0.0000 0.0000
Max GFC 1.0000 1.0000 1.0000 1.0000 1.0000
Min GFC 0.9892 0.9992 0.9992 0.9995 0.9996
Median GFC 1.0000 1.0000 1.0000 1.0000 1.0000

F3D
Bitrate 0.0625 0.1250 0.2500 0.5000 1.0000
Mean GFC 0.9998 0.9999 0.9999 1.0000 1.0000
Std GFC 0.0004 0.0001 0.0001 0.0000 0.0000
Max GFC 1.0000 1.0000 1.0000 1.0000 1.0000
Min GFC 0.9902 0.9966 0.9986 0.9996 0.9999
Median GFC 0.9999 0.9999 1.0000 1.0000 1.0000
Mean GFC 0.9994 0.9998 0.9999 1.0000 1.0000
Std GFC 0.0005 0.0002 0.0001 0.0000 0.0000
Max GFC 1.0000 1.0000 1.0000 1.0000 1.0000
Min GFC 0.9908 0.9948 0.9983 0.9997 0.9999
Median GFC 0.9996 0.9999 0.9999 1.0000 1.0000

H3D
Bitrate 0.0625 0.1250 0.2500 0.5000 1.0000
Mean GFC 0.9999 0.9999 0.9999 1.0000 1.0000
Std GFC 0.0004 0.0001 0.0001 0.0000 0.0000
Max GFC 1.0000 1.0000 1.0000 1.0000 1.0000
Min GFC 0.9896 0.9962 0.9986 0.9991 0.9998
Median GFC 0.9999 0.9999 1.0000 1.0000 1.0000
Mean GFC 0.9999 0.9999 1.0000 1.0000 1.0000
Std GFC 0.0001 0.0001 0.0000 0.0000 0.0000
Max GFC 1.0000 1.0000 1.0000 1.0000 1.0000
Min GFC 0.9964 0.9988 0.9995 0.9996 0.9996
Median GFC 0.9999 1.0000 1.0000 1.0000 1.0000

conducted the experiment on the Cuprite AVIRIS image Results

with a size of 256 X256 pixels and 32 bands. We cut this
image into four tiles of 128X 128 pixels and compressed
each tile with the F3D, M2D, and H3D strategies. We then
reconstructed the original image with the four tiles, apply
metrics to it, and compared results with complete image
metric results. Results in terms of PSNR, MAE, RRMSE,
MAD, F,, MSA, and UIQI are shown in Figure 10, and in
terms of GFC in Table 1.
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Representing the results of the experiments within the
framework of nine metrics is difficult. A good way to repre-
sent the results is to use a star (radar) diagram (as in Ref. 36)
which gives a more compact and intuitive vision than a clas-
sical x-y representation in this case. The nine axes of the
diagram correspond to the nine metrics. All star diagrams
have the same scale, minimum and maximum are given on
each axis for graphical interpretation and ease of compari-
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Table 1. Compression result in terms of percentage of misclassified pixels using K-means dlassifier for the SanDiego image ot a

hitrate of 1 bpp.

64*64 spatial image size

Strategies Number of bands

32 64 96 128 160 192
F3D 8.76% 3.71% 2.10% 0.98% 5.13% 1.15%
M2D 6.86% 13.45% 4.08% 0.34% 4.88% 3.20%
H3D 9.38% 13.38% 2.61% 1.51% 3.71% 2.15%

96*96 spatial image size

Strategies Number of bands

32 64 96 128 160 192
F3D 2.90% 3.91% 1.79% 3.13% 0.47% 2.68%
M2D 2.30% 4.35% 1.50% 3.83% 0.44% 2.02%
H3D 4.89% 8.00% 3.61% 3.71% 1.63% 16.41%

128*128 spatial image size

Strategies Number of bands

32 64 96 128 160 192
F3D 5.42% 3.58% 9.07% 0.54% 1.53% 2.03%
M2D 4.16% 4.01% 9.44% 0.73% 1.58% 1.92%
H3D 14.49% 8.90% 7.61% 2.50% 1.93% 4.32%

son. Axes of RRMSE, MAD, MAE, MSA, and K-means are
inverted, the extremity corresponds to minimum degrada-
tion and the origin of the axes corresponds to maximum
degradation. This representation permits good readability
but does not allow us to show bitrate variation. Which is
why in Figure 9 we only show results for a bitrate of 1 bpp.

When necessary, we highlight some results by giving
some tables and diagrams related to the particular metrics.
We often represent results in terms of PSNR in order to
facilitate comparison with other studies since it is the metric
most employed in image compression.

First Experiment Results

The results of the first experiment (regarding image spatial
dimension variations) in term of PSNR are represented in
Figure 5 for the Cuprite image and in Figure 6 for the
SanDiego image. Results show that the F3D strategy outper-
forms M2D and H3D strategies for high bitrate values espe-
cially for large image spatial dimensions. For small bitrate
values M2D strategy gives the best results. The H3D strategy
never has the best results.

Results presented in Figure 7 show that compression
results for the four images used have the same trend. This
trend is characterized by the fact that for small bitrate values,
the M2D strategy gives the best results, and for high bitrate
values it is the F3D strategy which gives the best results.

Second Experiment Results

For the second experiment on the SanDiego image, graphics
in Figures 6 and 8 show that F3D strategy always outper-
forms the two other compression strategies for high bitrate
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values. When the number of spectral bands increases the
F3D strategy outperforms the two other strategies for
smaller bitrate values (for 160 and 192 spectral bands the
F3D strategy give the better results for all bitrate values).

M2D and F3D strategies have the best score for 96
bands. When the number of bands deviates from this value
of 96 bands, results decrease proportionally. For the H3D
strategy PSNR results increase proportionally to the number
of bands. PSNR and other metrics show the same trends.

Star diagrams for SanDiego images of 32, 34, 96, 128,
160, and 196 spectral bands with a bitrate of 1 bpp (Fig. 9)
show that not all metrics have the same trend. This is par-
ticularly visible for the H3D strategy with PSNR, GFC,
MAD, MAE, and UIQI which have similar results but
RRMSE, F) and MSA have inverted results. For M2D and
F3D strategies all results are similar except regarding to the
UIQI metric.

We can also see in Table II that results in terms of per-
centage of misclassified pixels using K-means are the worst
for H3D strategy. We notice that results regarding classifica-
tion metric for M2D and F3D strategies are quite similar.

Third Experiment Results
Results of the tiling experiment shown in Fig. 10 and in
Table I permit a comparison of tile compression with com-
plete image compression. In terms of GFC, the most relevant
values are for GFC minimum.

We can note for all metrics that the tile compression
results are better than the complete image compression re-
sults for high bitrate values, but for small bitrate values it is

Jul.-Aug. 2010



Delcourt et al.: Anisotropic three-dimensional waveletbased method for multi/hyperspectral image compression and its benchmark

Figure 11. Tile hybrid compression result example. On the top: band
nine of the Cuprite image at a bitrate of 0.0625 bpp; On the bottom: the
same band at a bitrate of 0.5 bpp. For a bitrate of 0.0625 bpp we can
remark creation of virtual edges between files and spatial smoothing.
These two effects are not visible for a 0.5 bpp bitrate.

inverted, the inversion points are different depending on
metrics. These results are due to sizeable spatial discontinui-
ties for small bitrate values as shown in Figure 11, in which
we depict an example of H3D compression at 0.0625 and 0.5
bpp bitrates.

DISCUSSION

The first two experiments we performed allow us to com-
pare F3D strategy with M2D and H3D strategies following
spatial and spectral dimensions variations. A general trend is
observed: for high bitrate values, the F3D strategy gives the
best results and for small values of bitrate the M2D strategy
gives the best results. Results of the H3D strategy are be-
tween the two other strategies. This trend could be explained
by two major points:

« For small values of bitrates the F3D strategy gives bad
results because of that the 3D SPIHT used in this strat-
egy uses lists (list of significant and insignificant pixels,
list of insignificant sets) which grow up very fast com-
pared to lists of 2D SPIHT (each pixel has eight children
for the 3D version and only four in 2D). And for high
values of bitrates fewer coefficients are added to the lists
than for the 2D version. This could explain the fact that
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the M2D strategy gives better results than F3D strategy
only for small values of bitrates.

+ The H3D strategy gives bad results because it is a com-
bination of 2D and 3D strategies. So using a 2D SPIHT
after a 3D decomposition is not the optimal way.

The third experiment allows us to measure tiling effects.
For all metrics the tile compression results are better than
the complete image compression results for high bitrate val-
ues and it is inverted for small bitrate values. These results
are mainly caused by spatial discontinuities between each tile
which are strongly marked for small bitrate values (creation
of virtual edges between tiles) and spatial smoothing. These
two effects tend to fade when the compression bitrate
growing.

We can estimate speed and memory need for each com-
pression strategy by comparing it to the two others for each
part of the compression.

First we applied spectral PCA for all strategies, taking
the same amount of time and memory. Second we applied
wavelet decompositions. For the F3D and H3D strategies,
decompositions are very similar and are performed on the
entire image; they take similar computation times and com-
putation memory. For the M2D strategy it depends on the
implementation of the algorithm. If we consider each band
of the image separately, the decomposition of the entire im-
age takes a little more time than 3D decompositions but less
memory (a ratio equal to the number of bands). We can also
apply all 2D decompositions to the image at the same time:
the spectral wavelet decomposition time is less but requires
as much memory as in 3D decompositions. Finally we ap-
plied SPIHT and 3D SPIHT algorithms. These algorithms
are identical, the only differences are the number of pixels
with children (three over four for SPIHT and seven over
eight for 3D SPIHT), the number of children (four for
SPIHT and eight for 3D SPIHT), and their positions. The
3D SPIHT is slower than SPIHT and also takes more
memory.

The speed and memory used by the three algorithms
depend on image complexity but also on algorithm imple-
mentations. The M2D strategy is the fastest, ahead of the
H3D strategy; the F3D strategy is the slowest. The F3D strat-
egy also requires more memory than the two other. For large
spatial dimension images the tiling compression allows to
parallelize computation but results show that it is better to
use high bitrate values to limit degradations introduced by
the compression.

CONCLUSION

In this article, we have proposed an anisotropic full 3D
wavelets implementation for multi/hyperspectral images
compression strategy (F3D), and compared it with two other
strategies. These strategies are M2D and H3D compressions.
All strategies are combined with a spectral PCA decorrela-
tion for energy compaction. We also proposed a evaluation
framework containing nine metrics belonging to four differ-
ent families: signal processing isotropic extended metrics,
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spectral  oriented metrics, perceptive metrics, and
classification-oriented metrics. The comparison of these
strategies within this framework show the same trend for
most metrics: the F3D strategy is better than M2D and H3D
strategies for high bitrate values. F3D strategy results are
better for large spatial image dimensions and for a great
number of spectral bands.
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