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bstract. The authors propose a novel method to map a multispec-
ral image into the device independent color space CIE-XYZ. This
ethod provides a way to visualize multispectral images by predict-

ng colorvalues from spectral values while maintaining interpretabil-
ty and is tested on a light emitting diode based multispectral system
ith a total of 11 channels in the visible area. To obtain interpretable
odels, the method estimates the projection coefficients with regard

o their neighbors as well as the target. This results in relatively
mooth coefficient curves which are correlated with the CIE-XYZ
olor matching functions. The target of the regression is a well
nown color chart, and the models are validated using leave one out
ross validation in order to maintain best possible generalization
bility. The authors compare the method with a direct linear regres-
ion and see that the interpretability improves significantly but
omes at the cost of slightly worse predictability. © 2010 Society for
maging Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.2010.54.3.030401�

NTRODUCTION
he majority of today’s color images are acquired with a
harge coupled device (CCD) or complementary metal-
xide semiconductor chip equipped with a Bayer filter i.e., a
osaic filter which splits the incoming photons into three

road primary channels representing the colors or variables;
ed, green, and blue (RGB). Exactly three variables were ac-
ording to Grassman1,2 enough to describe a color sensation.

The usual camera model, assuming Lambertian sur-
aces, is modeled as a linear transformation [Eq. (1)],

Pi = �
�

Qi���Ri���Ei���d� + � , �1�

ntegrating the light source spectrum E, the surface reflec-
ion R, and the sensor spectral sensibility Q over the visible
egion of the electromagnetic spectrum for the ith camera
hannel, i=1, 2, 3 for standard color images. � is the molling
rror, assumed Gaussian.

This way of capturing color has definitely proven itself
sable, but unfortunately it also has some drawbacks. The
ough splitting of the photons has the consequence that the
ntensity recorded in each channel is an integration over a
arge range of wavelengths. This means that the spectral ra-

eceived Sep. 16, 2009; accepted for publication Mar. 18, 2010; published
nline May 3, 2010.
d062-3701/2010/54�3�/030401/6/$20.00.

. Imaging Sci. Technol. 030401-
iant power distribution of the scene remains hidden for the
amera and can lead to metameric failure. Metameric failure
an shortly be explained as when two objects match colori-
etrically under one illumination but differ under another.
his is because the spectral radiant power distribution of the

wo objects are different, but the rough splitting of photons
ail to observe this. Another drawback of the traditional RGB
mage acquisition technique is that the colors recorded are
evice dependent. This means that all cameras records the
ame scene slightly different, in their own color space.

One way to overcome the problems with metameric
ailure as well as device dependent colors is by using multi-
pectral imaging systems. In a multispectral image system,
he electromagnetic spectrum is sampled more often and in

ore narrow banded intervals than the three broad intervals
sed in standard RGB imaging. This means that an approxi-
ation of the true distribution of incoming photons is

nown for each pixel in the image.
There are different ways of creating multispectral im-

ges. One approach is to use a set of narrow-band filters
hich basically makes a more delicate grouping of the re-
ected light from the scene. A setup used often, e.g., Ref. 3
nd more recently in Ref. 4, is the filter wheel approach,
here a turnable wheel with different filters is mounted be-

ween the lens and the CCD chip. Instead of using a filter
heel, another solution is the crystal liquid tunable filter.5,6

ideometer7 has commercialized a multispectral imaging
ystem based on a light emitting diode (LED) technology.
ere, a set of LEDs are strobing successively, and an image is

ecorded for each LED. Further description of this camera
an be found in next section.

In the well established ICC color profile system, color is
ransferred between different devices by use of a profile con-
ection space (PCS) which is an independent color space,
ither CIE-XYZ or CIE-LAB. The mapping from a device
ependent color space to PCS is well investigated and de-
cribed in, e.g., Refs. 3 and 8–11 where the most common

ethods used are direct linear regression or regression using
olynomials of various degree. Similarly, when using a mul-
ispectral device, such as a multispectral imaging system,
here is a need to be able to map the multispectral images
nto PCS. Such a mapping routine is not a trivial task and is
he motivation for this article. In Ref. 12 the authors intro-

uce the spectral image processing system (SIPS), where a
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isualization is based on spectral angle mapping (SAM)
nd13 creates an extension to the SAM based visualization
lgorithm. Furthermore13 gives a thorough investigation and
escription of the requirements for successful mapping from
multispectral space to a three dimensional color space in a

et of nine visualization goals. As an alternative to multi-
pectral images, which may have problems with acquisition
peed and proper calibration, spectral reconstruction meth-
ds offer a way to estimate the reflection spectrum of the
ample object. Many different methods have been proposed
o create this reconstruction, some of them being.14–19 As a
ell established method in this area is the Wiener method19

hich makes use of a priori knowledge to build a recon-
truction matrix which is multiplied onto the camera re-
ponse to reconstruct the reflection spectra. Normally spec-
ral reconstruction techniques are used together with normal
GB cameras, but certainly the precision increases with the
mount of bands recorded.

In general there are two approaches to transform native
amera response to device independent color space. These
pproaches are using an analytical method as described
bove or by first estimating the spectral functions as also
escribed above and then convert it to an independent color
pace. This article uses an analytical method by transform-
ng a multispectral image to the independent color space
IE-XYZ using a regression model, as done in previous

tudies including Refs. 3 and 20–22. Here, direct regression
r regression of a polynomial basis expansion of the camera
esponse was used for the mapping. As alternative to these
revious studies we here make use of a regression technique
hich penalizes the curvature of the regression coefficients

nstead of direct regression. The idea of this penalization,
nspired by Refs. 23 and 24, is to be able to get more smooth,
ess noisy, and more interpretable models.

A set of training data is needed in order to calibrate the
odel properly. Different standards could be used for this,

uch as the NCS color system which covers a vast amount of
olors. We have made use of a well known color rendition
hart, X-rite color checker standard,25,26 containing 24
quares of different spectral simulations of various common
olors as, e.g., light and dark human skins.

MAGE ACQUISITION AND DATA
he acquisition of data is done using VideometerLab which
cquires multi spectral images in up to 20 different wave-
engths ranging from 385 to 970 nm. VideometerLab is a

ultipurpose camera often used for scientific purpose and
roof of concept applications, which is why diodes emitting

ight outside as well as inside the visible area of the electro
agnetic spectrum is mounted. Previously this device has

een used in many different vision applications. A few ex-
mples are quality estimation of mink fur, analysis of pso-
iasis lesions, classification of fungi, and temporal change
etection in reflectance of vegetables.27–29

The camera setup is seen in Figure 1(a). The object is
laced inside an integrating Ulbricht sphere which has its
nterior coated with a matte coating to obtain high diffuse 5

. Imaging Sci. Technol. 030401-
eflectivity for optimal light conditions. By optimal light
onditions is meant conditions which avoid shadows to a
ertain degree as well as highlights/reflections. In the top of
he sphere a Point Gray Scorpion camera is mounted. The
EDs having the spectral radiant power distributions seen in
ig. 1(b) are strobing successively, and for each LED an im-
ge of dimensionality 1280�960 is acquired, which in the
nd yields a multispectral image. In general, not many mul-
ispectral imaging systems using LEDs exists, however30 in-
roduces a camera system which employs a LED array
oupled with a photodiode array to measure reflectance
pectra. Their system is evaluated by its ability to estimate
eflection spectra using 928 colors in the ISO12642 IT8/3
hart using a clustering and polynomial regression method.

An image of the X-rite ColorChecker standard
Macbeth) has been recorded in this manner using the
ideometerLab system. Since only 11 of the bands created
y the camera resides in the visible spectrum, these are the
nly ones containing color information, which is why the
est are discarded, weighted down, and not used further in
his study. Finally the acquired multispectral image is seen in
igure 2 with 11 distinct wavelengths at; 430, 450, 470, 505,

(a)
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igure 1. �a� Principle of imaging with integrating �Ulbricht� sphere illu-
ination. The LEDs located in the rim of the sphere ensures narrowband

llumination. �b� Normalized spectral power distributions of the LEDs lo-
ated in the VideometerLab. �c� Spectral sensitivity of the camera mounted
n VideometerLab. It is seen in �a� that the camera is placed above the
bject of interest.
25, 565, 590, 630, 645, 660, and 700 nanometer.
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As seen, the x-rite standard contains a matrix of colors,
our rows and six columns, which sums to a total of 24
quares. These squares are extracted from the image manu-
lly, and a median value is calculated for each square thus
ielding a total of 24 spectral samples. The real values of the
olors in sRGB and CIE-Laboratory space are known, and
an thus be used for calibration, which will be discussed
urther in the theory section.

HEORY
he relationship between spectral space and the three di-
ensional CIE-XYZ space is known to be linear [Eq. (1)].
herefore we are able to map the spectra of the multispectral

mage seen in Fig. 2 into the CIE-XYZ using a linear model.
or the duration of this section, the size of the spectral space
ill be denoted p, and the amount of samples is denoted N.
standard linear model is written on the form 2;

y�x� = �0 + �1x1 + �2x2 + ¯ + �pxp + � . �2�

ere y denotes the response, which we want to be able to
redict, in this case a known CIE-XYZ value. x denotes the

ndependent covariates, here a sparsely recorded electromag-
etic spectrum. Since we do not know the exact relation
etween x and y, it is desirable to compute a set of adjustable
arameters � in such a way that � becomes as small as
ossible using a set of measured/observed spectra and a
nown target. If there exists more spectra samples than re-
orded wavelengths for each sample, the system is
verdetermined, and several solutions exists, which is why
he best approximate solution have to be determined.

Equation (2) resembles a plane in a hyperdimensional
pace, which we want to fit by minimizing the Euclidian
istances between a given set of observations and the plane.
his fit is often written as the residual sum of squares and is
ormally known as the ordinary least square (OLS) method

igure 2. 11 Channels of a multispectral image containing a total of 20
hannels. The wavelength at which the channel was recorded is shown
n each image. The image was recorded using the VideometerLab with
n LED technology.
Eq. (3)]; o

. Imaging Sci. Technol. 030401-
�̂ = arg min
�
��

i=1

N �yi − �0 − �
j=1

p

xij�j�2� . �3�

he fastest way to minimize Eq. (3) is by setting the derive
o 0 and solve for beta since this is a strictly convex problem.

ritten in matrix form, normally referred to as the normal
quations, this may be written as

�̂ = �XTX�−1XTy , �4�

here �̂ is a px3 projection vector which is capable of pro-
ecting new x observations in p dimensional space into the
hree dimensional color space; ŷ= X�, where X is the mul-
ispectral data and y is the matrix containing the true color
alues.

According to the Gauss-Markov theorem, the estimate
f � in an OLS is the best linear unbiased estimator (BLUE),
hich means that for all unbiased solutions, the OLS solu-

ion is the one with smallest variance. However, the OLS
roblem may be modified to get biased estimators and

hereby get an even better solution. A well known method
sed to modify the OLS in order to be able to solve ill-posed
roblems of overdetermined systems where the Gramian
atrix �XTX� is singular is the Tikhonov

egularization23,31,32 method—also known as ridge regres-
ion. This regularization basically penalizes the L2-norm or
uclidian length of the parameter vector, as seen below

�̂ridge = arg min
�
��

i=1

N �yi − �0 − �
j=1

p

xij�j�2� ,

st �
j=1

p

�j
2 � s , �5�

here s is thus a parameter that basically controls the bias-
ariance tradeoff as best as possible, meaning that this regu-
arization makes it possible to find a biased solution with
maller variance than the BLUE estimate. The parameter s is
hosen so that the generalization error is minimized, which
n other terms means the best fit which is not an overfit.

ow this is done is described in the end of this section.
Since the Tikhonov regularization is a constraint version

f the convex OLS problem, this leads to a quadratic con-
trained optimization problem. Such a problem may be
olved in different ways, e.g., using quadratic programming
ith constraints or by solving the Lagrangian problem, by

ntroducing a Lagrange multiplier � in Eq. (5). After � has
een introduced, the formulation may again be recast to
atrix form;

�̂ = �XTX + �I�−1XTy , �6�

here I is the p�p identity matrix. The penalty term of the
idge regression shrinks the coefficients toward zero and
hereby weighs down badly influencing variables more than

thers.
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Instead of shrinking the length of the coefficient vector,
e are interested in penalizing large variance between neigh-
oring coefficients in order to obtain a more smooth
oefficient/weight curve. We present a term based on the
ommon finite difference operators, which are used to ap-
roximate numerical derivatives of arbitrary order. A penal-

zation of the gradient of the coefficients �, is thus equiva-
ent to a penalization of the backward finite difference of the
oefficients

�h	f
�x� = f�x� − f�x − h� , �7�

here h is set to step a single unit. Rewritten into a con-
traint, this is given as

�
j=1

p−1

��j − �j+1�2 � s . �8�

imilarly a smoothing term could be incorporated as

�
j=1

p−2

��j − 2�j+1 + �j+2�2 � s . �9�

oth terms should have the effect of preventing large fluc-
uations in the coefficients and make it easier to understand
ow the model predicts. In Ref. 24, the authors proposed a
imilar penalization, however with the L1-norm instead,
hich gives rise to piecewise linear sparse models which not

s interesting in the type of problem we are dealing with in
his article. Before this regularization may be used we have
o assume an ordering of the coefficients �, which comes
aturally for spectral data, since the coefficients represents
eighboring wavelengths. Building the regularization into

he OLS of a curvature penalization yields

�̂ = arg min
�
��

i=1

N �yi − �0 − �
j=1

p

xij�j�2� ,

st �
j=1

p−2

��j − 2�j+1 + �j+2�2 � s . �10�

gain we can rewrite this into Lagrangian form

�̂ = �XTX + �ATA�−1XTy , �11�

here A is a p�p tridiagonal matrix;

A = �
1 − 2 1 0 . . . 0

0 1 − 2 1 . . . 0

] ] ] � ] ]

0 0 . . . 1 − 2 1

0 0 . . . 0 0 0

0 0 . . . 0 0 0

� . �12�

ue to the sparse amount of observations, leave one out
ross validation (LOOCV) is used to evaluate the model and

33
alculate the generalization error. This means the model is t

. Imaging Sci. Technol. 030401-
rained and evaluated n times, one time for each sample,
ith all observations except the left out sample which is used

o generate a test-error residual. Finally a total test error can
e calculated. A finite difference or gradient descend scheme
as used to select proper parameter values for the regular-

zation parameters.

XPERIMENTAL DATA AND RESULTS
aving a multispectral image of a color checker with 24

ifferent color patches recorded at 11 different wavelengths
eans we have n=24 observations and p=11 variables and

hus an overdetermined system. 24 patches are very few ob-
ervations in a regression method, and care should be taken
ot to overfit the data, which we have chosen to avoid by
inimizing the test error with LOOCV and a finite differ-

nce scheme, as described in the previous section. Before the
alibration, all real color patch values were transformed from
IE-Laboratory to CIE-XYZ using

Y = 
 Ynfy
3 for fy � �

fy −
16

116
3�2Yn otherwise,� fy �

L� + 16

116
,

X = 
 Xnfx
3 for fx � �

fx −
16

116
3�2Xn otherwise,� fx � fy +

a�

500
,

Z = 
 Znfz
3 for fz � �

fz −
16

116
3�2Zn otherwise,� fz � fy −

b�

200
,

� =
6

29
, �13�

ith the D50, 2° observer white spot reference.
Four different regression schemes were compared, i.e.,

east-squares, ridge regression, gradient ridge regression
GRR), and curvature ridge regression (CRR), all presented
n the theory section. In order to compare the results, we
eport the min, max, and mean �E of the color reconstruc-
ions;

�E = ��L1 − L2�2 + �a1 − a2�2 + �b1 − b2�2, �14�

s well as mean Euclidian distance in XYZ space, denoted
XYZ and finally the test root mean square error.

For the penalized regression schemes, a � was chosen
or each channel, resulting in a total of three � per regression
cheme. Table I shows a compilation of the results, the best
eing underlined.

From Table I it is seen that the OLS method attains the
owest �E error of 1.29. This is however not the case with
he RMS. This is worth noticing and is caused by the fact

hat all the applied procedures minimizes RMS and not �E,

May-Jun. 20104
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hich has a nonlinear relationship. Aside from OLS, the
ther procedures attains more or less equal error magnitude

n CIE-Laboratory space. It is furthermore worth noticing
hat all methods attain mean LAB differences below 3, which
ccording to Ref. 3 as a rule of thumb is Hardly perceptible
y the human eye. Figure 3 shows plots of the calculated
oefficients for each of the four tested regression methods.
LS clearly stand out, with coefficient the does not show any

articular pattern. The three regularized regression schemes

Table I. Resulting colorimetric errors using four different re
alization errors calculated using leave one out cross validatio

�EMIN �EMAX

OLS 0.24431 3.9309

RR 0.26119 4.6468

GRR 0.25967 4.5934

CRR 0.26384 4.6233
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(c)

Figure 3. �a� Ordinary least-squares fit, �b� ridge
and �c� curvature penalization fit of second derivat
owever shows a clear correlation with the CIE-XYZ s

. Imaging Sci. Technol. 030401-
ristimuli curves, which would make sense to obtain in a
egression of a problem as the one posed in this article. The
lue tristimuli model seems however a bit oscillating, while
he red and green models seems to be shifted a bit in the
pectrum compared to the real tristimuli functions. The co-
fficients of the three regularized methods seem quite simi-
ar, especially the penalization of the gradient and curvature

ethods, which naturally both seem to be a bit more
mooth than ridge regression. In case we had densely

methods on 11 different wavelengths. All errors are gener-

�E RMS �XYZ

1.2912 0.75088 0.58368

1.3993 0.66173 0.64521

1.3191 0.64494 0.60110

1.3249 0.64973 0.60863
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(b)
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ion fit, curvature penalization fit of first derivative,
gression
n.
0

0

regress
ampled hyperspectral images we would be able to directly
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se the theoretical XYZ tristimulus values to map the spec-
ra into the XYZ color space. However, having sparsely
ampled spectra this is not an option and as an alternative to
econstructing spectra using any existing method, the
mooth regularization shown in Fig. 3 shows that we are able
o create sensible substitution weighting curves to the theo-
etical XYZ tristimulus curves. Thus, these curves are able to

ap sparsely sampled multispectral images into XYZ space
n the same way the theoretical curves maps densely sampled
pectra using Eq. (1).

ONCLUSION
he focus of this article has been to develop an alternative
ethod to map a multispectral image into the independent

olorimetric color space, CIE XYZ. The method is built to
upport a multispectral image of arbitrary spectral dimen-
ionality, above three and specifically tested on a multispec-
ral system with 11 wave bands in the visible area. To create

projection vector, a regularized regression technique was
tilized and evaluated on the x-rite ColorChecker Chart
ontaining 24 different color patches using leave one out
ross validation. The cross validation enabled us to assess the
eneralization ability in spite of the few color samples avail-
ble. The colorimetric prediction ability was reported in �E,
MS, and �XYZ and yielded good and interpretable color

eproduction results. A drawback of this method is that in
rder to calculate proper weights of the projection vector, �,

t is necessary to do the regression on reflection spectra from
training image with the same light setup as the target

mage. By light setup for the used multispectral system, is
eant the amount of power going through the light emitting

iodes, as well as the strobing time which is optimized for
est dynamic range in a local area of a given surface chem-

stry. However, for any other multispectral system, the train-
ng and target image would have to be recorded under the
ame lighting conditions, which usually is possible.

For correct light setups, the reported results, all with �E
alues below 3, indicate a hardly perceptible error between
he real color checker values and the estimation provided by
he mapping method. Plots of the estimated regularized

odels motivated a regularization approach to achieve
igher interpretability, while colorimetric measures showed

hat ordinary least square better predictions performed
lightly better.
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