Journal of Imaging Science and Technology® 54(3): 030201-030201-7, 2010.
© Society for Imaging Science and Technology 2010

Image-Individualized Gamut Mapping Algorithms

Zofia Baranczuk and Peter Zolliker
EMPA, Swiss Federal Laboratories for Materials Testing and Research, Diibendorf, Switzerland
E-mail: zofia.baranczuk@empa.ch

Joachim Giesen
Friedrich Schiller University in Jena, Jena, Germany
E-mail: joachim.giesen@uni-jena.de

Abstract. In this article the authors show that image quality mea-
sures can be successfully used to develop image-individualized
gamut mapping algorithms. First the authors compare different im-
age quality measures for the gamut mapping problem and then vali-
date them using psychovisual data from four recent gamut mapping
studies. The scoring function used to validate the quality measures
is the hit rate, i.e., the percentage of correct choice predictions on
data from psychovisual tests. Some of the image quality measures
predict the observer’s preferences as good as scaling methods such
as Thurstone’s method, which is used to evaluate the psychovisual
tests. This is remarkable because the scaling methods are based on
the experimental data, whereas the quality measures are indepen-
dent of these data. The best performing image quality measure is
used to automatically select the optimal gamut mapping algorithm
for an individual image. © 2010 Society for Imaging Science and
Technology.
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INTRODUCTION

Gamut mapping describes how a color image is rendered on
a device with limited color reproduction capabilities. This
classical problem is still an active area of research—Morovic
gives a good recent overview." An important step in improv-
ing a gamut mapping algorithm (GMA) is the accurate
evaluation of its psychovisual performance. This is tradition-
ally achieved using psychovisual tests, where observers have
to decide which of alternative mappings is the best represen-
tation of the original. The data gathered in such a test are
typically evaluated using Thurstone’s Law of Comparative
Judgement.” An alternative approach that we want to study
here is using an image quality measure (independent of ob-
server feedback) to measure the perceived visual difference
between a mapped image and the original. Image quality
measures are successfully used in many imaging applica-
tions, such as modeling image distortions, especially in data
compression.” An overview of the state-of-the-art image
quality research can be found, for example, in Keelan® or
Dijk.” The advantage of using image quality measures when
evaluating gamut mapping algorithms is that they do not
need additional psychovisual test data. Psychovisual tests
generally give reliable results for the tested settings, but the
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tests are time consuming. Furthermore, an extrapolation to
modified settings and new images is difficult. On the other
hand computing an image quality measure provides results
immediately. The challenge is to find a measure that corre-
lates well with observers’ preferences. For gamut mapping
the main image quality factors are preservation of lightness/
color and preservation of spatial details. Artifacts introduced
by the mapping algorithms may also be relevant; other fac-
tors encountered in different applications like noise or com-
pression artifacts are of minor importance to gamut
mapping.

The main topics of this article are exploring adequate
image quality measures for comparing gamut mapping algo-
rithms and the construction of image-individualized algo-
rithms from a set of given nonindividualized gamut map-
ping algorithms by using adequate image quality measures.
Different quality measures are evaluated by measuring their
ability to predict observer choices in psychovisual test data.’
General correlations of psychovisual gamut mapping evalu-
ation and image quality measures have been studied before
by Hardeberg’ and Bonnier,” but here our focus is on pre-
dicting observers’ choices in individual comparisons between
mapped images. Image statistics were already used to im-
prove the GMA of Bala,”'’ where the window size for filter-
ing was chosen based on the absolute value of the high pass
filter output. Morovic'' discussed which types of differences
in images are most important for observers. Based on that,
he built an image quality measure trying to predict observ-
er’s choices. Sun'? analyzed a set of features extracted from
original images to select an appropriate GMA from a range
of GMAs. In this article we also try to find an optimal algo-
rithm for individual images by using image quality measures
to find the most similar mapped image compared to the
given original image.

The remainder of this article is organized as follows: in
the next section we describe the image quality measures con-
sidered in this article. Then Thurstone’s method is briefly
described as a method for evaluating psychovisual test data.
In the subsequent section we describe how to evaluate the
different image quality measures for gamut mapping. The
data sets which we used for the evaluation are described in a
separate section. Next, we discuss the experimental valida-
tion results on data sets. In the last section we use a particu-
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lar image quality measure that turned out to perform well
when used for constructing an image-individualized gamut
mapping algorithm and compare its performance to the per-
formance of nonindividualized reference gamut mapping
algorithms.

IMAGE QUALITY MEASURES

In this section we review the image quality measures’ that
we have compared. We always compare two images X and Y
with nX'm pixels. At the pixels x;; € X and y;; € Y, respec-
tively, we consider color coordinates. Mostly we are using the
lightness coordinate L in CIELAB color space. If not stated
otherwise we do not distinguish in our notation between a
pixel and the color coordinate considered at this pixel.

Structural Similarity Index

The structural similarity index (SSIM) has been introduced
by Wang et al.”” and is defined on quadratic image patches
of size k X k at the same location within image X and Y. Let
Py C X be such a patch and Py the corresponding patch for
Y. We compute the following quantities for the patches using
the L coordinate in CIELAB color space at the pixels:

_ 1 _ 1
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The structural similarity index is then defined as
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with two constants ¢; and ¢,. As proposed by Wang et al.’ we
used ¢;=1 and ¢,=9 for these constants and k=8 for the
patch size.

From the structural similarity index the image quality
measure Qgqy(X,Y) can be defined as the structural simi-
larity index averaged over all possible kX k patches in the
images X and Y. The resulting measure is in the range
[—1,1], and the higher the Qg value, the more similar are
the compared images.

"In the literature, models describing distance or similarity between images are often
called image quality metrics. Most of the measures described here are metrics ac-
cording to the mathematical definition of this word, but not all of them (e.g. SSIM,
ALC). Hence, as we want to have one word to describe all the models discussed here,
we decided to use more general word “measure.”
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Laplacian Mean Square Error

Like the SSIM the Laplacian mean square error (MSE)
(LMSE), see Eskicioglu,14 is a local measure for the differ-
ence between two images. We compute the following quan-
tities on L coordinate in CIELAB color space at each pixel,
with indices 2=i=n-1 and 2=<j=m—-1) of X and Y,
respectively:

L(xij) = X(ix1)j T X(i—1)j + XiG1) T Xi(j-1) — 4% (3)
and

L(yij) = yisni + Vi-ni + Vigey +Vigy — 4. (4)
The image quality measure Qqys is then defined as

1 n—1 m—1

> > [L(x;) — L(y;)T*.

Quuse(X,Y) = m i =2

(5)

Mean Square Error

We also consider the mean square error which is just the
squared pointwise difference between the images X and Y.
The corresponding image quality measure Qg is defined as

1 n m
Quse(X,Y) = n—E 2 (= y)% (6)

M i=1 j=1

where x;; and y;; are L coordinates in the CIELAB color space
for the points in images X and Y, respectively.

Measure Qur

AE is defined as the Euclidean distance in CIELAB color
space between corresponding pixels in two images X and Y.
That is, locally at pixel x € X and the corresponding pixel
y €Y the AE distance is defined as

AE(x,y) = [(Ly—L)*+ (a,—a)* + (b,— b)*].  (7)

As our image quality measure Q,p we take the average AE
over the pixels of the two images of size n X m, i.e.,

1 n m
Que(X,Y) = —2, > AE(x;y;). (8)

nm ;= j=1

AE is a popular image quality measure since it is easy to
compute and has a natural interpretation, though in prin-
ciple it could be replaced by any more sophisticated color
distance measure such as CIECAM02" or AE,,."°

Measure Qu;c

The image quality measure Q1 is based on a local contrast
measure. We chose the Michelson contrast'” as our measure
of local contrast. We compute the Michelson contrast on a
kX k patch Py C X of the image X as follows (we were using
k=5 in our experiments):
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Xmax — Xmi

LC(PX) _ max min i (9)

Xmax T Xmin

where x is luminosity coordinate in XYZ color space (at
pixel x € Py) and x,,,,, and x,,;, are the highest and the low-
est values of this intensity on patch Py, respectively. Analo-
gously, we can compute the value LC(Py) for the corre-
sponding patch Py in image Y and define

ALC(Px,Py) = [LC(Py) — LC(Py). (10)

The image quality measure Qa;c(X,Y) is then finally de-
fined as the measure ALC averaged over all possible kX k
patches in images X and Y.

THURSTONE’S METHOD

Traditionally image quality in gamut mapping is evaluated
using Thurstone’s Law of Comparative Judgment, which can
be wused to analyze paired comparison data (see
Engeldrum?®). Applying Thurstone’s method allows us to de-
rive a scale value for each tested gamut mapping algorithm.
We use this values as a model to evaluate the quality of test
images mapped with a gamut mapping algorithm. This
model serves as a reference for the image quality measures
discussed before, which do not need observer feedback in
contrast to Thurstone’s method.

To improve the consistency of results obtained by
Thurstone’s method, one can evaluate each image individu-
ally. Individualization linearly combines Thurstone’s scale
values for the entire data set with scale values obtained sepa-
rately for each image. A description of this method can be
found in Zolliker."® The coefficients in linear combination of
those two scale values are then optimized on hold out data
using cross validation. It turns out that scale values com-
puted individually for images typically can be improved by
shrinking them toward the scale values computed on the
whole population of images—simply because in most cases
there are not enough paired comparisons per image avail-
able. That is, shrinking provides a fall back when only a few
paired comparisons are available for an image.

EVALUATING THE QUALITY MEASURES

We want to assess the suitability of the different image qual-
ity measures for evaluating the quality of gamut mapping
and compare it to Thurstone’s method. Our validation pro-
cedure estimates how well the quality measures align with
observers’ ratings which we obtained in psychovisual tests.
As mentioned before, the psychovisual test data is of the
form: given an original image and two images obtained by
applying different gamut mapping algorithms, a user
chooses the one that reproduces the original image better in
his/her opinion. We validate an image quality measure by the
percentage of correctly predicted observer choices, also
known as hit rate. When computing hit rates for Thurstone’s
method we need to be careful that we do not validate the
method on the same data that we used to derive the
model—remember that Thurstone’s method is, in contrast
to the other image quality measures, based on observer data.
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To circumvent this problem we use cross validation, i.e., we
use part of the data to learn a model and the remaining part
to validate the model. In the following we provide more
details on how to compute hit rates and how we employed
cross validation.

Hit Rate

For each paired comparison in a psychovisual test we know
the choice of the observer. In some tests we allowed ties, i.e.,
neither of the two options is preferred. We omit such ties
from further analysis. Let C be the set of non-tied observer
choices. For an image quality measure we always predict the
choice with the higher value for this measure on the ele-
ments in C. Let SCC be the subset of correctly predicted
choices, then the hit rate is defined as

HR=—, (11)
C|
where [S| and |C| are numbers of elements in the sets S and
C, respectively.

Cross Validation

We use cross validation to validate Thurstone’s method. For
this the set C of non-tied observer choices is partitioned
randomly into ten subsets of equal size. Out of the ten sub-
sets, one is retained for validating the model, and the re-
maining nine subsets are used as training data. Then each of
the subsets is used once as testing set and the rest of the data
as training set. The whole process is repeated ten times. The
mean hit rate over all one hundred validation sets is used as
the validation quality measure.

For the individualized variant of Thurstone’s method,
we carried out a double cross validation, i.e., we use eight of
the ten subsets as training set, one as optimization set, and
the remaining one for validation. We compute general and
individual scale values by Thurstone’s method on the train-
ing set. Then we optimize the weights for the linear combi-
nation of the population and individualized scale values us-
ing the optimizing set. Finally, we compute the hit rate on
the validation set. We repeat this process 250 times and use
the mean of the hit rates as validation quality measure.

DATA SETS
The different image quality measures were validated on im-
age data of four recent gamut mapping studies. All tests used
paired comparisons, where two mapped images were com-
pared to an original image. All those tests were carried out in
a laboratory environment following the CIE guidelines."
The first three studies used the ISO-Newspaper gamut
as the target gamut, the fourth study used an OCE printer
(OCE TCS 500) gamut. In the following we summarize the
main ideas of the four studies.

Study 1: Basic Study

This study is a traditional benchmark study comparing some
recent image dependent gamut mapping algorithms to
known reference algorithms. In addition to the reference al-
gorithms HPminDE, SGCK," the following algorithms us-
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Figure 1. Images used in the IS study.

ing image gamut or spatial gamut mapping have been con-
sidered: NOptStar which is using the image gamut as
described in Schuberth,” the Kolas algorithm,”" the Caluori
algorithm® and the Zolliker algorithm™ applied to the
SGCK and NOptStar algorithms. For this study 97 images
were used, each mapped with seven algorithms. Each pos-
sible comparison, i.e., each pair of algorithms for each im-
age, was done at least once. We will refer to this study as
basic study or simply as BS.

Study 2: Image Gamut

The topic of this study was the use of image gamut (IG)
descriptions for gamut mapping.”® We considered algo-
rithms using a linear and sigmoidal mapping. Each of them
had three possible source gamuts, namely, device gamut
(sRGB) and two types of image gamut description. The six
possible combinations were compared to HPminDE and
SGCK, resulting altogether in eight algorithms. Seventy-five
images were used. Each possible comparison was done ap-
proximately twice. We will refer to this study as image gamut
study or simply as IG.

Study 3: Local Contrast
In this study™ the influence of detail enhancement applied
to a set of gamut mapping algorithms has been investigated.
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The study comprised HPminDE, SGCK, SGDA,** and a lin-
ear compression algorithm. All algorithms were compared
with and without detail enhancement. Seventy-seven images
were used, and 5376 comparisons have been performed.
Each possible comparison was done approximately 2.5
times. We will refer to this study as local contrast study or
simply as LC.

Study 4: Individual Study

In this studyzs‘26 algorithms proposed by Gatta,” Kolas™
and an algorithm using detail reconstruction proposed by
Zolliker* applied to HPMinDE were compared with the ref-
erence algorithms HPminDE and SGCK. Twenty images,
presented in Figure 1, have been used. Each possible com-
parison was done 40 times. We will refer to this study as
individual study or simply as IS.

EXPERIMENTAL RESULTS
The results we are discussing here are hit rates obtained by
using the different image quality measures and Thurstone’s
method on the four psychovisual test data sets. The hit rates
are summarized in Figure 2.

In the following we will first review these hit rates in
more detail, and then discuss the theoretical upper limit of
the hit rate for the IS study.
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Figure 2. Hif rates obtained by different methods for four studies. Here
Thur gen refers to general Thurstone’s method and Thur spec refers 1o
individualized Thurstone’s method.

Evaluating Thurstone’s Method

In Figure 3 we present the hit rates for Thurstone’s method
on the different data sets and different degrees of individu-
alization. As expected, hit rates on training sets are higher
than those on test sets. Individualization improves training
set hit rates, however it does not always improve hit rates on
the test sets. The higher hit rate on the training set is due to
the specialization of the model to the data set. For a conclu-
sion to general data the hit rates on the test set have to be
used.

On the BS data set individualization does not increase
the hit rate on the test sets. These test sets included only
about one repetition of each comparison, so individual re-
sults are probably not stable enough to contribute to the
model accuracy.

For the IG study the optimal hit rate is obtained for a
linear combination of the global scale values and individu-
alized ones. In this test each comparison was repeated twice,
which is enough to individualize the scale values but not
enough to get a significantly better hit rate for these scale
values than for the global scale values. The best hit rate
needs a combination of global and individualized scale
values.

In the LC study there are about 2.5 repetitions for each
comparison. As for the IG study, the optimal hit rate is ob-
tained for a combination of individual and global scale val-
ues. But in the LC study using only the individual scale
values provides a hit rate almost as high as the optimal com-
bination of global and individualized scale values.

The largest number of repetitions for the individual
comparisons between algorithms, namely, 40, is in IS study.
Here, the highest hit rate is obtained using just the indi-
vidual scales values.

Evaluating the Iimage Quality Measures

On all the data sets the structural similarity (SSIM) measure
proved to be the best performing image quality measure, i.e.,
it achieved the highest hit rates. On the BS data set the
results obtained with SSIM are even better than those com-
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ing from individualized Thurstone’s method. In the other
studies the individualized Thurstone’s method yields better
results. As discussed before, a likely reason for this behavior
is the size of the BS study as the performance of Thurstone’s
method improves with an increasing number of compari-
sons. It is worth noting that the hit rates obtained for SSIM
are comparable to the hit rates for the general Thurstone’s
method or, in case of the IS test, even much higher.

The two pointwise image quality measures that we con-
sidered, namely, Q,; and the mean square error Qg
scored lower than their competitors, often showing hit rates
close to random choice, i.e., 50%. The likely reason is that all
gamut mapping algorithms tested in these studies already
optimize color preservation in some way, and thus observers’
choices are more affected by detail preservation. In particu-
lar, clipping algorithms, for example, HPminDE, are opti-
mizing the mapped image against pointwise distance mea-
sures but ignore detail preservation.

The quality measures LMSE and LC, which embody de-
tails preservation differences, perform better than pointwise
measures but still not as good as SSIM.

Theoretical Limit Hit Rates

The theoretical limit hit rate of 1.0 is almost never achieved
because observers usually differ in their choices and even the
decisions of a single observer are typically inconsistent, i.e.,
the same person, under the same conditions makes a differ-
ent choice on the same images in a repeated paired compari-
son, if the choice is difficult.
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Figure 3. Hit rates using Thurstone's method for: (a) basic study, (b) local
contfrast study, (c) image gamut study, and (d) individual study. The higher
line shows the hit rate on the training set, the lower line shows the hit rate
on the fest sef. Scale values (sv) are computed as a convex combination
of scale values for the whole population of images (svge,,) and scale
values for individual images (svig), i.e., sv=asvig+ (1 =a)svge,, with
a>0.
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Figure 4. Hit rates obtained by different methods for the different images
in the IS test set. Again, Thur gen refers o Thursione’s method without
individualization, and Thur spec refers to Thursione’s method without
individualization.

If we have choice data with many repetitions for each
choice, then we can estimate a better (choice data depen-
dent) limit for the hit rate than the ideal 1.0, namely, the
maximally achievable hit rate as follows: let Fj; be the fre-
quency that algorithm 7 has been preferred over algorithm j
in comparison, i.e., the number of times an image mapped
using algorithm 7 has been preferred over the same image
mapped by algorithm j divided by the total number 7 and j
have been compared. If we have the same number of repeti-
tions for each comparison (which was the case in the IS
test), we can define the maximal achievable hit rate as
follows:

>, max(F, Fy)

i<j

HR,,. = (12)

number of algorithm pairs’

In this article we considered maximal achievable hit rates per
image. Since we have many repetitions for each comparison
in the IS study data set, we use this data set to check how
close the best performing quality measures SSIM and
Thurstone’s method come to the maximally achievable hit
rate. The hit rates computed for the different images in the
IS test set are shown in Figure 4.

The hit rates obtained using Thurstone’s method with
individualization is always very close to the maximally
achievable hit rate for all images. For many images the two
hit rates are even equal. The hit rates achieved by SSIM are
lower, but generally close to the ones for Thurstone’s method
with individualization and much higher than for Thurstone’s
method without individualization. Only on three images out
of 20 SSIM performs worse than Thurstone’s method with-
out individualization.

USING SSIM TO CONSTRUCT AN IMAGE-
INDIVIDUALIZED GAMUT MAPPING ALGORITHM
The results from the previous sections suggest that we can
design a meta gamut mapping algorithm that chooses a
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Figure 5. Scale values of five algorithms considered in the IS study, plus
the meta-algorithm based on the SSIM measure and Thurstone’s individu-
alized scale values. Error bars show one standard deviation and are
computed as in Zolliker.

“best” gamut mapping for a given image from a class of
mappings. Here best is meant with respect to an image qual-
ity measure that proved to be well suited to predict the per-
ceived quality of a mapping. Again, the previous sections
suggest that SSIM is suitable as such a measure. This ap-
proach is also supported by previous studies”'>* showing
that different gamut mapping algorithms perform differently
on different images, i.e., one can improve the quality of the
mapped images by choosing the best algorithm for each im-
age, instead of using the same algorithm for all images.

Formally, the meta-algorithm can be described as fol-
lows: for a given quality measure Q (in our case SSIM) and
a given image I, let I}, ...,I, be the mappings of this image
using n different mapping algorithms. Choose the mapping
I, such that Q(I) = Q(I)) for all i=1,...,n.

Validation of the Meta-algorithm

Thurstone’s method can easily be adapted to compare the
quality of the meta-algorithm and the individual algorithm
on which the meta-algorithm builds. We used the data from
the IS study to validate two meta-algorithms, one using
SSIM, another using scale values from the individualized
Thurstone’s method on the training set as quality measure.
Remember that this study comprised twenty images, each of
them mapped by five algorithms. In Figure 5 we summarize
the results of the comparison.

The image-individualized algorithm based on
Thurstone’s method performs significantly better than any
single algorithm. The meta-algorithm using SSIM does not
quite reach the scale value of Thurstone’s meta algorithm,
but has higher scale values than the best single algorithm.
The differences between SSIM-optimized algorithm and the
above mentioned algorithms are not very significant, hence
more testing is needed. However, the algorithm based on the
individualized Thurstone’s method is not practical, as it re-
quires conducting a psychovisual test for every image we
want to map. Still, also the SSIM measure has its limitations,
e.g., as can be seen in Fig. 4 the meta-algorithm predicts
choices for image number 4, 12, or 19 worse than
Thurstone’s general scale values. Note that we applied SSIM
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only for the L-coordinate of CIELAB space, thus image qual-
ity effects based on the color coordinates have been ne-
glected. The meta-algorithm based on a generalized SSIM-
like quality measure using all three color space dimensions
may perform even better.

CONCLUSIONS

We demonstrated that image quality measures can be a use-
ful and efficient method to gauge the quality of mapped
images in gamut mapping. In our study, the best performing
measure was the structural similarity index (SSIM): it pre-
dicts choices of respondents similarly successfully as
Thurstone’s method. Better predictions can be achieved by
computing individualized Thurstone’s scale values but only
if enough test data is available. Moreover, we have shown
that image quality measures such as SSIM can successfully
be used to select the optimal algorithm for a given image.
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