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bstract. In this article the authors show that image quality mea-
ures can be successfully used to develop image-individualized
amut mapping algorithms. First the authors compare different im-
ge quality measures for the gamut mapping problem and then vali-
ate them using psychovisual data from four recent gamut mapping
tudies. The scoring function used to validate the quality measures

s the hit rate, i.e., the percentage of correct choice predictions on
ata from psychovisual tests. Some of the image quality measures
redict the observer’s preferences as good as scaling methods such
s Thurstone’s method, which is used to evaluate the psychovisual

ests. This is remarkable because the scaling methods are based on
he experimental data, whereas the quality measures are indepen-
ent of these data. The best performing image quality measure is
sed to automatically select the optimal gamut mapping algorithm

or an individual image. © 2010 Society for Imaging Science and
echnology.
DOI: 10.2352/J.ImagingSci.Technol.2010.54.3.030201�

NTRODUCTION
amut mapping describes how a color image is rendered on
device with limited color reproduction capabilities. This

lassical problem is still an active area of research—Morovic
ives a good recent overview.1 An important step in improv-
ng a gamut mapping algorithm (GMA) is the accurate
valuation of its psychovisual performance. This is tradition-
lly achieved using psychovisual tests, where observers have
o decide which of alternative mappings is the best represen-
ation of the original. The data gathered in such a test are
ypically evaluated using Thurstone’s Law of Comparative
udgement.2 An alternative approach that we want to study
ere is using an image quality measure (independent of ob-
erver feedback) to measure the perceived visual difference
etween a mapped image and the original. Image quality
easures are successfully used in many imaging applica-

ions, such as modeling image distortions, especially in data
ompression.3 An overview of the state-of-the-art image
uality research can be found, for example, in Keelan4 or
ijk.5 The advantage of using image quality measures when

valuating gamut mapping algorithms is that they do not
eed additional psychovisual test data. Psychovisual tests
enerally give reliable results for the tested settings, but the

eceived Sep. 21, 2009; accepted for publication Mar. 18, 2010; published
nline May 3, 2010.
t062-3701/2010/54�3�/030201/7/$20.00.

. Imaging Sci. Technol. 030201-
ests are time consuming. Furthermore, an extrapolation to
odified settings and new images is difficult. On the other

and computing an image quality measure provides results
mmediately. The challenge is to find a measure that corre-
ates well with observers’ preferences. For gamut mapping
he main image quality factors are preservation of lightness/
olor and preservation of spatial details. Artifacts introduced
y the mapping algorithms may also be relevant; other fac-
ors encountered in different applications like noise or com-
ression artifacts are of minor importance to gamut
apping.

The main topics of this article are exploring adequate
mage quality measures for comparing gamut mapping algo-
ithms and the construction of image-individualized algo-
ithms from a set of given nonindividualized gamut map-
ing algorithms by using adequate image quality measures.
ifferent quality measures are evaluated by measuring their

bility to predict observer choices in psychovisual test data.6

eneral correlations of psychovisual gamut mapping evalu-
tion and image quality measures have been studied before
y Hardeberg7 and Bonnier,8 but here our focus is on pre-
icting observers’ choices in individual comparisons between
apped images. Image statistics were already used to im-

rove the GMA of Bala,9,10 where the window size for filter-
ng was chosen based on the absolute value of the high pass
lter output. Morovic11 discussed which types of differences

n images are most important for observers. Based on that,
e built an image quality measure trying to predict observ-
r’s choices. Sun12 analyzed a set of features extracted from
riginal images to select an appropriate GMA from a range
f GMAs. In this article we also try to find an optimal algo-
ithm for individual images by using image quality measures
o find the most similar mapped image compared to the
iven original image.

The remainder of this article is organized as follows: in
he next section we describe the image quality measures con-
idered in this article. Then Thurstone’s method is briefly
escribed as a method for evaluating psychovisual test data.
n the subsequent section we describe how to evaluate the
ifferent image quality measures for gamut mapping. The
ata sets which we used for the evaluation are described in a
eparate section. Next, we discuss the experimental valida-

ion results on data sets. In the last section we use a particu-
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ar image quality measure that turned out to perform well
hen used for constructing an image-individualized gamut
apping algorithm and compare its performance to the per-

ormance of nonindividualized reference gamut mapping
lgorithms.

MAGE QUALITY MEASURES
n this section we review the image quality measures† that
e have compared. We always compare two images X and Y
ith n�m pixels. At the pixels xij �X and yij �Y, respec-

ively, we consider color coordinates. Mostly we are using the
ightness coordinate L in CIELAB color space. If not stated
therwise we do not distinguish in our notation between a
ixel and the color coordinate considered at this pixel.

tructural Similarity Index
he structural similarity index (SSIM) has been introduced
y Wang et al.13 and is defined on quadratic image patches
f size k�k at the same location within image X and Y. Let

X �X be such a patch and PY the corresponding patch for
. We compute the following quantities for the patches using

he L coordinate in CIELAB color space at the pixels:

P̄X =
1

k2 �
x�PX

x, P̄Y =
1

k2 �
y�PY

y ,

�PX

2 =
1

k2 − 1
�

x�PX

�x − P̄X�2,

�PY

2 =
1

k2 − 1
�

y�PY

�y − P̄Y�2, and

�PXPY
=

1

k2 − 1
�
i=1

k2

�xi − P̄X��yi − P̄Y� . �1�

he structural similarity index is then defined as

SSIM�PX,PY� =
�2P̄XP̄Y + c1��2�PXPY

+ c2�

�P̄X
2 + P̄Y

2 + c1���PX

2 + �PY

2 + c2�
, �2�

ith two constants c1 and c2. As proposed by Wang et al.3 we
sed c1 =1 and c2 =9 for these constants and k=8 for the
atch size.

From the structural similarity index the image quality
easure QSSIM�X ,Y� can be defined as the structural simi-

arity index averaged over all possible k�k patches in the
mages X and Y. The resulting measure is in the range
�1,1], and the higher the QSSIM value, the more similar are
he compared images.

In the literature, models describing distance or similarity between images are often
alled image quality metrics. Most of the measures described here are metrics ac-
ording to the mathematical definition of this word, but not all of them �e.g. SSIM,
LC�. Hence, as we want to have one word to describe all the models discussed here,
ke decided to use more general word “measure.”

. Imaging Sci. Technol. 030201-
aplacian Mean Square Error
ike the SSIM the Laplacian mean square error (MSE)
LMSE), see Eskicioglu,14 is a local measure for the differ-
nce between two images. We compute the following quan-
ities on L coordinate in CIELAB color space at each pixel,
ith indices 2� i�n−1 and 2� j�m−1) of X and Y,

espectively:

L�xij� = x�i+1�j + x�i−1�j + xi�j+1� + xi�j−1� − 4xij �3�

nd

L�yij� = y�i+1�j + y�i−1�j + yi�j+1� + yi�j−1� − 4yij . �4�

he image quality measure QLMSE is then defined as

QLMSE�X,Y� =
1

�n − 2��m − 2� �i=2

n−1

�
j=2

m−1

�L�xij� − L�yij��2.

�5�

ean Square Error
e also consider the mean square error which is just the

quared pointwise difference between the images X and Y.
he corresponding image quality measure QMSE is defined as

QMSE�X,Y� =
1

nm
�
i=1

n

�
j=1

m

�xij − yij�2, �6�

here xij and yij are L coordinates in the CIELAB color space
or the points in images X and Y, respectively.

easure Q�E

E is defined as the Euclidean distance in CIELAB color
pace between corresponding pixels in two images X and Y.
hat is, locally at pixel x�X and the corresponding pixel
�Y the �E distance is defined as

�E�x,y� = ���Lx − Ly�2 + �ax − ay�2 + �bx − by�2� . �7�

s our image quality measure Q�E we take the average �E
ver the pixels of the two images of size n�m, i.e.,

Q�E�X,Y� =
1

nm
�
i=1

n

�
j=1

m

�E�xij,yij� . �8�

E is a popular image quality measure since it is easy to
ompute and has a natural interpretation, though in prin-
iple it could be replaced by any more sophisticated color
istance measure such as CIECAM0215 or �E94.16

easure Q�LC

he image quality measure Q�LC is based on a local contrast
easure. We chose the Michelson contrast17 as our measure

f local contrast. We compute the Michelson contrast on a
�k patch PX �X of the image X as follows (we were using

=5 in our experiments):

May-Jun. 20102
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LC�PX� =
xmax − xmin

xmax + xmin

, �9�

here x is luminosity coordinate in XYZ color space (at
ixel x�PX) and xmax and xmin are the highest and the low-
st values of this intensity on patch PX, respectively. Analo-
ously, we can compute the value LC�PY� for the corre-
ponding patch PY in image Y and define

�LC�PX,PY� = �LC�PX� − LC�PY�� . �10�

he image quality measure Q�LC�X ,Y� is then finally de-
ned as the measure �LC averaged over all possible k�k
atches in images X and Y.

HURSTONE’S METHOD
raditionally image quality in gamut mapping is evaluated
sing Thurstone’s Law of Comparative Judgment, which can
e used to analyze paired comparison data (see
ngeldrum2). Applying Thurstone’s method allows us to de-
ive a scale value for each tested gamut mapping algorithm.

e use this values as a model to evaluate the quality of test
mages mapped with a gamut mapping algorithm. This

odel serves as a reference for the image quality measures
iscussed before, which do not need observer feedback in
ontrast to Thurstone’s method.

To improve the consistency of results obtained by
hurstone’s method, one can evaluate each image individu-
lly. Individualization linearly combines Thurstone’s scale
alues for the entire data set with scale values obtained sepa-
ately for each image. A description of this method can be
ound in Zolliker.18 The coefficients in linear combination of
hose two scale values are then optimized on hold out data
sing cross validation. It turns out that scale values com-
uted individually for images typically can be improved by
hrinking them toward the scale values computed on the
hole population of images—simply because in most cases

here are not enough paired comparisons per image avail-
ble. That is, shrinking provides a fall back when only a few
aired comparisons are available for an image.

VALUATING THE QUALITY MEASURES
e want to assess the suitability of the different image qual-

ty measures for evaluating the quality of gamut mapping
nd compare it to Thurstone’s method. Our validation pro-
edure estimates how well the quality measures align with
bservers’ ratings which we obtained in psychovisual tests.
s mentioned before, the psychovisual test data is of the

orm: given an original image and two images obtained by
pplying different gamut mapping algorithms, a user
hooses the one that reproduces the original image better in
is/her opinion. We validate an image quality measure by the
ercentage of correctly predicted observer choices, also
nown as hit rate. When computing hit rates for Thurstone’s
ethod we need to be careful that we do not validate the
ethod on the same data that we used to derive the
odel—remember that Thurstone’s method is, in contrast
o the other image quality measures, based on observer data. g

. Imaging Sci. Technol. 030201-
o circumvent this problem we use cross validation, i.e., we
se part of the data to learn a model and the remaining part

o validate the model. In the following we provide more
etails on how to compute hit rates and how we employed
ross validation.

it Rate
or each paired comparison in a psychovisual test we know
he choice of the observer. In some tests we allowed ties, i.e.,
either of the two options is preferred. We omit such ties

rom further analysis. Let C be the set of non-tied observer
hoices. For an image quality measure we always predict the
hoice with the higher value for this measure on the ele-
ents in C. Let S�C be the subset of correctly predicted

hoices, then the hit rate is defined as

HR =
�S�

�C�
, �11�

here �S� and �C� are numbers of elements in the sets S and
, respectively.

ross Validation
e use cross validation to validate Thurstone’s method. For

his the set C of non-tied observer choices is partitioned
andomly into ten subsets of equal size. Out of the ten sub-
ets, one is retained for validating the model, and the re-

aining nine subsets are used as training data. Then each of
he subsets is used once as testing set and the rest of the data
s training set. The whole process is repeated ten times. The
ean hit rate over all one hundred validation sets is used as

he validation quality measure.
For the individualized variant of Thurstone’s method,

e carried out a double cross validation, i.e., we use eight of
he ten subsets as training set, one as optimization set, and
he remaining one for validation. We compute general and
ndividual scale values by Thurstone’s method on the train-
ng set. Then we optimize the weights for the linear combi-
ation of the population and individualized scale values us-

ng the optimizing set. Finally, we compute the hit rate on
he validation set. We repeat this process 250 times and use
he mean of the hit rates as validation quality measure.

ATA SETS
he different image quality measures were validated on im-
ge data of four recent gamut mapping studies. All tests used
aired comparisons, where two mapped images were com-
ared to an original image. All those tests were carried out in
laboratory environment following the CIE guidelines.19

The first three studies used the ISO-Newspaper gamut
s the target gamut, the fourth study used an OCE printer
OCE TCS 500) gamut. In the following we summarize the

ain ideas of the four studies.

tudy 1: Basic Study
his study is a traditional benchmark study comparing some

ecent image dependent gamut mapping algorithms to
nown reference algorithms. In addition to the reference al-

19
orithms HPminDE, SGCK, the following algorithms us-

May-Jun. 20103
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ng image gamut or spatial gamut mapping have been con-
idered: NOptStar which is using the image gamut as
escribed in Schuberth,20 the Kolas algorithm,21 the Caluori
lgorithm22 and the Zolliker algorithm23 applied to the
GCK and NOptStar algorithms. For this study 97 images
ere used, each mapped with seven algorithms. Each pos-

ible comparison, i.e., each pair of algorithms for each im-
ge, was done at least once. We will refer to this study as
asic study or simply as BS.

tudy 2: Image Gamut
he topic of this study was the use of image gamut (IG)
escriptions for gamut mapping.20 We considered algo-
ithms using a linear and sigmoidal mapping. Each of them
ad three possible source gamuts, namely, device gamut
sRGB) and two types of image gamut description. The six
ossible combinations were compared to HPminDE and
GCK, resulting altogether in eight algorithms. Seventy-five
mages were used. Each possible comparison was done ap-
roximately twice. We will refer to this study as image gamut
tudy or simply as IG.

tudy 3: Local Contrast
n this study23 the influence of detail enhancement applied

Figure 1. Imag
o a set of gamut mapping algorithms has been investigated. t

. Imaging Sci. Technol. 030201-
he study comprised HPminDE, SGCK, SGDA,24 and a lin-
ar compression algorithm. All algorithms were compared
ith and without detail enhancement. Seventy-seven images
ere used, and 5376 comparisons have been performed.
ach possible comparison was done approximately 2.5

imes. We will refer to this study as local contrast study or
imply as LC.

tudy 4: Individual Study
n this study25,26 algorithms proposed by Gatta,27 Kolas21

nd an algorithm using detail reconstruction proposed by
olliker23 applied to HPMinDE were compared with the ref-
rence algorithms HPminDE and SGCK. Twenty images,
resented in Figure 1, have been used. Each possible com-
arison was done 40 times. We will refer to this study as

ndividual study or simply as IS.

XPERIMENTAL RESULTS
he results we are discussing here are hit rates obtained by
sing the different image quality measures and Thurstone’s
ethod on the four psychovisual test data sets. The hit rates

re summarized in Figure 2.
In the following we will first review these hit rates in

ore detail, and then discuss the theoretical upper limit of

in the IS study.
he hit rate for the IS study.

May-Jun. 20104
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valuating Thurstone’s Method
n Figure 3 we present the hit rates for Thurstone’s method
n the different data sets and different degrees of individu-
lization. As expected, hit rates on training sets are higher
han those on test sets. Individualization improves training
et hit rates, however it does not always improve hit rates on
he test sets. The higher hit rate on the training set is due to
he specialization of the model to the data set. For a conclu-
ion to general data the hit rates on the test set have to be
sed.

On the BS data set individualization does not increase
he hit rate on the test sets. These test sets included only
bout one repetition of each comparison, so individual re-
ults are probably not stable enough to contribute to the

odel accuracy.
For the IG study the optimal hit rate is obtained for a

inear combination of the global scale values and individu-
lized ones. In this test each comparison was repeated twice,
hich is enough to individualize the scale values but not

nough to get a significantly better hit rate for these scale
alues than for the global scale values. The best hit rate
eeds a combination of global and individualized scale
alues.

In the LC study there are about 2.5 repetitions for each
omparison. As for the IG study, the optimal hit rate is ob-
ained for a combination of individual and global scale val-
es. But in the LC study using only the individual scale
alues provides a hit rate almost as high as the optimal com-
ination of global and individualized scale values.

The largest number of repetitions for the individual
omparisons between algorithms, namely, 40, is in IS study.
ere, the highest hit rate is obtained using just the indi-

idual scales values.

valuating the Image Quality Measures
n all the data sets the structural similarity (SSIM) measure

roved to be the best performing image quality measure, i.e.,
t achieved the highest hit rates. On the BS data set the

igure 2. Hit rates obtained by different methods for four studies. Here
hur gen refers to general Thurstone’s method and Thur spec refers to
ndividualized Thurstone’s method.
esults obtained with SSIM are even better than those com- �

. Imaging Sci. Technol. 030201-
ng from individualized Thurstone’s method. In the other
tudies the individualized Thurstone’s method yields better
esults. As discussed before, a likely reason for this behavior
s the size of the BS study as the performance of Thurstone’s

ethod improves with an increasing number of compari-
ons. It is worth noting that the hit rates obtained for SSIM
re comparable to the hit rates for the general Thurstone’s
ethod or, in case of the IS test, even much higher.

The two pointwise image quality measures that we con-
idered, namely, Q�E and the mean square error QMSE,
cored lower than their competitors, often showing hit rates
lose to random choice, i.e., 50%. The likely reason is that all
amut mapping algorithms tested in these studies already
ptimize color preservation in some way, and thus observers’
hoices are more affected by detail preservation. In particu-
ar, clipping algorithms, for example, HPminDE, are opti-

izing the mapped image against pointwise distance mea-
ures but ignore detail preservation.

The quality measures LMSE and LC, which embody de-
ails preservation differences, perform better than pointwise

easures but still not as good as SSIM.

heoretical Limit Hit Rates
he theoretical limit hit rate of 1.0 is almost never achieved
ecause observers usually differ in their choices and even the
ecisions of a single observer are typically inconsistent, i.e.,

he same person, under the same conditions makes a differ-
nt choice on the same images in a repeated paired compari-
on, if the choice is difficult.

igure 3. Hit rates using Thurstone’s method for: �a� basic study, �b� local
ontrast study, �c� image gamut study, and �d� individual study. The higher
ine shows the hit rate on the training set, the lower line shows the hit rate
n the test set. Scale values �sv� are computed as a convex combination
f scale values for the whole population of images �svgroup� and scale
alues for individual images �svind�, i.e., sv=�svind+ �1−��svgroup with

�0.

May-Jun. 20105
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If we have choice data with many repetitions for each
hoice, then we can estimate a better (choice data depen-
ent) limit for the hit rate than the ideal 1.0, namely, the
aximally achievable hit rate as follows: let Fij be the fre-

uency that algorithm i has been preferred over algorithm j
n comparison, i.e., the number of times an image mapped
sing algorithm i has been preferred over the same image
apped by algorithm j divided by the total number i and j

ave been compared. If we have the same number of repeti-
ions for each comparison (which was the case in the IS
est), we can define the maximal achievable hit rate as
ollows:

HRmax =

�
i�j

max�Fij,Fji�

number of algorithm pairs
. �12�

n this article we considered maximal achievable hit rates per
mage. Since we have many repetitions for each comparison
n the IS study data set, we use this data set to check how
lose the best performing quality measures SSIM and
hurstone’s method come to the maximally achievable hit

ate. The hit rates computed for the different images in the
S test set are shown in Figure 4.

The hit rates obtained using Thurstone’s method with
ndividualization is always very close to the maximally
chievable hit rate for all images. For many images the two
it rates are even equal. The hit rates achieved by SSIM are

ower, but generally close to the ones for Thurstone’s method
ith individualization and much higher than for Thurstone’s
ethod without individualization. Only on three images out

f 20 SSIM performs worse than Thurstone’s method with-
ut individualization.

SING SSIM TO CONSTRUCT AN IMAGE-
NDIVIDUALIZED GAMUT MAPPING ALGORITHM
he results from the previous sections suggest that we can

igure 4. Hit rates obtained by different methods for the different images
n the IS test set. Again, Thur gen refers to Thurstone’s method without
ndividualization, and Thur spec refers to Thurstone’s method without
ndividualization.
esign a meta gamut mapping algorithm that chooses a T

. Imaging Sci. Technol. 030201-
best” gamut mapping for a given image from a class of
appings. Here best is meant with respect to an image qual-

ty measure that proved to be well suited to predict the per-
eived quality of a mapping. Again, the previous sections
uggest that SSIM is suitable as such a measure. This ap-
roach is also supported by previous studies1,12,25 showing

hat different gamut mapping algorithms perform differently
n different images, i.e., one can improve the quality of the
apped images by choosing the best algorithm for each im-

ge, instead of using the same algorithm for all images.
Formally, the meta-algorithm can be described as fol-

ows: for a given quality measure Q (in our case SSIM) and
given image I, let I1 , . . . , In be the mappings of this image

sing n different mapping algorithms. Choose the mapping

k such that Q�Ik�	Q�Ii� for all i=1, . . . ,n.

alidation of the Meta-algorithm
hurstone’s method can easily be adapted to compare the
uality of the meta-algorithm and the individual algorithm
n which the meta-algorithm builds. We used the data from
he IS study to validate two meta-algorithms, one using
SIM, another using scale values from the individualized
hurstone’s method on the training set as quality measure.
emember that this study comprised twenty images, each of

hem mapped by five algorithms. In Figure 5 we summarize
he results of the comparison.

The image-individualized algorithm based on
hurstone’s method performs significantly better than any

ingle algorithm. The meta-algorithm using SSIM does not
uite reach the scale value of Thurstone’s meta algorithm,
ut has higher scale values than the best single algorithm.
he differences between SSIM-optimized algorithm and the
bove mentioned algorithms are not very significant, hence
ore testing is needed. However, the algorithm based on the

ndividualized Thurstone’s method is not practical, as it re-
uires conducting a psychovisual test for every image we
ant to map. Still, also the SSIM measure has its limitations,

.g., as can be seen in Fig. 4 the meta-algorithm predicts
hoices for image number 4, 12, or 19 worse than

igure 5. Scale values of five algorithms considered in the IS study, plus
he meta-algorithm based on the SSIM measure and Thurstone’s individu-
lized scale values. Error bars show one standard deviation and are
omputed as in Zolliker.18
hurstone’s general scale values. Note that we applied SSIM
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nly for the L-coordinate of CIELAB space, thus image qual-
ty effects based on the color coordinates have been ne-
lected. The meta-algorithm based on a generalized SSIM-

ike quality measure using all three color space dimensions
ay perform even better.

ONCLUSIONS
e demonstrated that image quality measures can be a use-

ul and efficient method to gauge the quality of mapped
mages in gamut mapping. In our study, the best performing

easure was the structural similarity index (SSIM): it pre-
icts choices of respondents similarly successfully as
hurstone’s method. Better predictions can be achieved by
omputing individualized Thurstone’s scale values but only
f enough test data is available. Moreover, we have shown
hat image quality measures such as SSIM can successfully
e used to select the optimal algorithm for a given image.
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