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bstract. Moving object segmentation plays an important role in a
omplex object tracking system. This system decides whether the
urrent block belongs to the object region or not. In this article, a
cheme using background modeling based on runtime-weighted
eatures for robustly adaptive moving object segmentation in infra-
ed (IR) image sequence is proposed. Proposed background mod-
ling for an open hardware (H/W) architecture design decreases the
ize of the search area to construct a sparse block template of
earch area in infrared images. The authors also compensate for
otion compensation when the image moves in previous and cur-

ent frames of IR imaging system. The method of separation of
ackground and objects applies to adaptive values through time
nalysis of pixel intensity. The proposed method uses more feature

nformation such as intensity, deviation, block matching error, and
elocity. The weighting values give a higher weight to feature infor-
ation which has a large difference between the object and the
ackground region. Based on experimental results, the proposed
ethod showed real-time moving object segmentation through
ackground modeling in the proposed embedded system. © 2010
ociety for Imaging Science and Technology.

DOI: 10.2352/J.ImagingSci.Technol.2010.54.2.020505�

NTRODUCTION
n the field of computer vision, moving object segmentation
lays a crucial role as a preliminary step for high-level image
rocessing. To understand an image, one needs to isolate the
bjects in it and find relationships among them.1 For typical
eal-time applications oriented to the analysis of visual
cenes in order to identify events and actions, simplifications
re needed. For these, motion is a key factor aiding the
egmentation process.2 As an active research topic in com-
uter vision, visual surveillance in dynamic scenes attempts

o detect, recognize, and track certain moving objects from
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mage sequences, and more generally to understand and de-
cribe object behaviors.3 The problem of nonrigid object
racking (OT) and recognition in video sequences of the
bjects’ actions is of increasing importance to many
pplications.4–6 Intelligence surveillance systems using infra-
ed (IR) and charge coupled device (CCD) images have been
tilized in object detection, tracking, and recognition.7

Several powerful algorithms for OT have been devel-
ped in the last two decades. For a stationary object tracking
ystem, frame differencing analysis was preferred; it can be
eneralized to situations where the video data can be easily
tabilized.8,9 Modern appearance-based tracking schemes
uch as the mean-shift algorithm use histogram-based object
ppearance models, so they are robust to nonrigid pose
hanges.10 Kalman filtering and particle filtering also con-
ribute to enhance the tracking performance.11 Collins re-
iewed these tracking schemes and emphasized that tracking
uccess or failure depends primarily on how distinguishable
n object is from its surroundings.12 In addition, he also
oticed that tracking features need to be used adaptively
ince both foreground and background appearance can be
hanged as the object moves from place to place.

In this article we propose an open hardware (H/W)
rchitecture that a hardware structure designed using the
raphic processing board with an embedded processor and
ost personal computer to perform the algorithms required

or a large computational load, such as background model-
ng and block matching-based OT algorithms. Moreover, we
erify our proposed structure by applying moving object
egmentation algorithm to IR images. We also present a
racking scheme based on block matching in the proposed
ystem and employ several features such as intensity, devia-
ion over time duration, and matching error to classify each
ixel into the object region or the background region as
Mar.-Apr. 20101
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eveloped in previous research.13 Each feature is weighted
ndividually according to separability.

OBUSTLY ADAPTIVE MOVING OBJECT
EGMENTATION
he block diagram of the proposed adaptive moving object

egmentation (AMOS) scheme for background modeling
nd tracking based on an open H/W architecture is shown
n Figure 1. First, we use morphological operation to extract
oughly for edges and an object. Second, for each frame,

otion compensation for background modeling calculates
R imaging system motion in order to stabilize an image.
fter the region of interest in the adaptive tracking window

tep is set, feedback to the block matching step yields the
bject model filter (OMF) and the object position filter
OPF). The OMF predicts the next object model at same-
ositional pixel and gives feedback to the background mod-
ling step. Simultaneously, a predicted object position is pro-
ided for next position by the OPF.

bject-Based Motion Estimation Using Morphological
peration
etecting motion in an IR image wastes much H/W re-

ources in the course of background modeling for object
etection. So, we define a prior meaning region to use mini-
um resources. The proposed scheme estimates motion

oughly at thermal edges and the object based on morpho-
ogical operations. The morphological operations are dila-
ion, erosion, opening operation, closing operation, and top-
at operation, which are performed by convolving the
tructuring element with the image.14 We use the morpho-
ogical TopHat operation for thermal edge and object detec-
ion. The morphological TopHat operation for grayscale im-
ges is part of the basic toolbox of morphological
perations. Its function is to detect contrasting objects on
onuniform backgrounds. Depending upon whether we are
ealing with a thermal edge or objects in IR images, the
peration is defined as

TopHat�A,B� = A − �A � B� = A − max
B

�min
B

�A�� , �1�

here A and B represent a thermal IR image and a structur-
ng element, respectively. � represents the gray-scale opening
f A by a structuring element B.

lock Matching for Motion Compensation
he goal of the block matching algorithm for motion com-

Figure 1. Block diagram of the proposed sch
ensation is to find the most similar block to the reference s

. Imaging Sci. Technol. 020505-
lock in a tracking region, and it has been widely used for
isual tracking and antishake. Most block matching tech-
iques minimize the cost function such as sum of absolute
ifferences (SAD), mean absolute error, and mean squared
rror. In this article we used SAD as the cost function. To
nd the best matching position, the conventional SAD cri-

erion is evaluated as

�û, v̂� = arg min
�u,v��Rt

�
i=0

Sx−1

�
j=0

Sy−1

�It�u + i,v + j� − IM�i, j�� , �2�

here Rt is the size of sampling template in the restricted
parse region, Sx and Sy represent the width and the height
f the restricted sparse region, respectively. It and IM repre-
ent the current frame and the thermal object model,
espectively.

In real applications, since there is jitter in an IR imaging
ystem caused by observer or platform, image stabilization is
equired. Image stabilization can reduce the block matching
rror induced by IR imaging system jitter. In this article, we
se global motion compensation as an image stabilization
lgorithm. Let It−1 and It be the previous frame and the
urrent frame, respectively. Global motion �Gx ,Gy� can be
stimated according to

�Gx,Gy� = arg min
�dx,dy�

�
i=GW

W−1−GW

�
j=GH

W−1−GH

�It−1�i + dx, j + dy�

− It�i, j�� , �3�

here W and H are the width and the height of the current
rame and dx and dy are restricted to −GW �dx�GW and
GH �dy�GH. Here, GW and GH should be larger than
aximum IR imaging system movement. Root mean

quared error (RMSE) for detection of global motion is de-
ned as

RMSE =� 1

N
� error2, �4�

here N and error represent frame number of image and
ccumulated error values between previous and current
rames, respectively.

daptive Tracking Window for Region Restriction
e presented the region restriction scheme of moving object

13

detection and tracking based on our system.
egmentation in previous research. We propose an adaptive

Mar.-Apr. 20102
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racking window for region restriction of a thermal object to
mplement background modeling. A scheme which restricts
he signal processing region to the area surrounding the ob-
ect is required in order to prevent clutter injection and
eavy computational burden.

Let �x̂ , ŷ� be the left-top position of the predicted object
egion in the current frame. Then the processing region Pr

t is
estricted as

Pr
t = �It�x,y��x̂ − � � x − GM � x̂ + sx + �, ŷ − � � y − GM

� ŷ + sy + �� , �5�

here �sx , sy� is the size of the thermal object and ±� are the
aximum and minimum velocities of the object in the cur-

ent frame. Global motion �Gx ,Gy�, estimated in Eq. (3), is
onsidered in Eq. (5). Figure 2 shows the adaptive tracking
indow scheme for a restricted region in the current frame.

MF for Background Modeling
or every pixel in the restricted region for the adaptive track-

ng window, the OMF determines whether each pixel is ob-
ect or not by using the proposed process is described as
ollows:

(1) Check global motion values in block matching to
compensate for motion.

(2) Divide the current frame It into two regions. A�t� is
a region overlapping both object and background
regions, and B�t� is a region not overlapping object
and background regions in It.

(3) If region of B�t� is a new background in the next
frame, the background model is used; and if x is
coordinate of an individual pixel, the average of
intensity is B�

t �x�= It�x�.
(4) If Eq. (6) is satisfied, each block is a candidate for

the object model through background modeling.

�B�
t−1�x� − It�x�� � 2.5B�

t−1�x� . �6�

PF for Object Tracking
he conventional method of object detection is to filter a

ingle frame image using a high pass filter to gain a set of
ome number of candidate objects, then filter and track the

igure 2. Scheme of adaptive tracking window for restricted region in IR
mage sequences.
rue objects using a Kalman filter. This method is not very i

. Imaging Sci. Technol. 020505-
ffective for a real-time based IR imaging system, because it
s difficult to find a kind of algorithm that can adaptively
etect and track both large moving objects and small ob-

ects. The object tracker step in proposed OPF provides two
inds of measurement. One is the new position of the object
nd the other is mean absolute difference (MAD). If MAD is
elatively small, the object position moves to the current

atching position in the current frame. We also propose a
cheme in which a coast tracking algorithm keeps tracking
he object while the object hides behind other objects or

erges into background as shown in Figure 3. In the coast
racking technique, a criterion for determining whether the
oast tracking is performed or not is needed. We consider
otion estimation, which extracts average velocity of three

rames when we assume a uniform velocity of an object in
R images.

ROPOSED THERMAL OBJECT TRACKER
e implemented an open H/W architecture to verify the

erformance in an IR imaging system of the scheme pro-
osed in previous research.15 The proposed hardware archi-

ecture consists of the master unit and the slave unit for
MOS. The master unit consists of data storage, host pro-

essor, and graphic user interface (GUI) displayer. The slave
nit consists of the input module of the IR or CCD camera,

rame grabber, tracking part, and image output part. In this
rchitecture, first the IR or CCD image sequences and the
arameters involved with segmentation and tracking algo-
ithms are transmitted to the tracking part. The tracking
art can process image sequences captured by the frame
rabber in the slave unit or stored in the master unit. The
arameters are selected by the user and transmitted to the
racking part form the master unit.

Next, the tracking part in the slave unit performs seg-
entation, and tracking algorithms operate on the transmit-

ed image sequences according to the user-selected param-
ters. After the segmentation and tracking algorithms are
erminated, results such as runtime-weighted feature error,
lock matching error, object position, calculation time, ob-

ect velocity, and direction are returned to the master unit.
inally, the master unit displays image sequences and the
esults. The block diagram of the proposed architecture is
hown in Figure 4. Line A shows the processing flow, when
sing the image sequence captured by frame grabber. Line B
hows the processing flow when using the image sequence
tored in the master unit.

The software of the master unit consists of GUI and

igure 3. Detection and tracking algorithm keeps tracking the object
hile the object is hidden behind other objects or into background.
mage sequence display software. The hardware of the slave

Mar.-Apr. 20103
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nit is a graphic processing board. In the slave unit, the
MOS and tracking algorithms such as morphological top-
at operation, adaptive tracking window for background
odeling, block matching, OMF, and OPF are implemented.
he master unit and the slave unit communicate through a
00 MHz clock PCI-X bus. The master unit transmits pa-
ameters selected by a user and IR image sequences to the
mbedded processor in the tracking part through PCI-X
us. The embedded processor performs segmentation and
racking algorithms for the IR image sequences in accor-
ance with parameters received by the master unit.

Figure 5. Features: intensity, d

Figure 4. Block diagram of
Figure 6. Illustration of separability: �a� in

. Imaging Sci. Technol. 020505-
We presented the OMF scheme of moving object seg-
entation in previous research.13 The proposed OMF up-

ates shape, size, velocity, and each pixel’s intensity of the
bject model in the current frame. At first, it determines the
riorities of each feature. Then, with the priority informa-
ion, the weighted-sum of every feature is evaluated pixel by
ixel. Figure 5 shows this segmentation scheme. The pro-
osed scheme consists of three stages. First, separability
valuation effects separation of object and background re-
ions in the current frame. Second, we apply binarization to
egment an object region in the same-positioned pixels. The

, matching error, and velocity.

ter-slave H/W architecture.
tensity and �b� deviation of object.

Mar.-Apr. 20104
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ast step we apply is to update the object model. Figure 6
hows features of intensity, matching error, and object veloc-
ty from the object model.

eparability Evaluation for an Object and Background
egion
e presented the separability evaluation scheme for moving

bject segmentation in previous research.13 Here we propose
scheme which classifies object and background regions

hrough background modeling. Let the ith feature informa-
ion at pixel �x ,y� be Fi�x ,y�. Then we can find two means,

T
i and �B

i , for each feature information, where ith is the
ean of the ith feature information over the object region,

t, and �B
i is the mean of the ith feature information over

he background modeling, Bt. For each feature, the separa-
ility is defined by

Wi =
�T

i − �B
i

�FMAX
i − FMIN

i �
, �7�

here FMIN
i and FMAX

i represent the minimum and maxi-
um value of the ith feature information space, respectively.

inarization to Segment for an Object Region
e also presented a binarization scheme for moving object

egmentation in previous research.13 Here we propose a
cheme to segment for object region through background

odeling. We also define a new objective function to deter-

Figure 7. Binarization to separate for object and background regions.

Figure 8. Cars image sequence: �a� 50th frame
ine whether each pixel is an object pixel or not, b

. Imaging Sci. Technol. 020505-
NFi�x,y� =

Fi�x,y� − ��T
i + �B

i

2
	

�FMAX
i − FMIN

i �
,

O�x,y� = �
i=1

N

Wi � NFi�x,y� , �8�

here NFi�x ,y� is the normalized ith feature information at
ixel �x ,y� and O�x ,y�, the objective function, is the
eighted sum of each normalized feature information such

s intensity, deviation, matching error, and velocity. The con-
entional Otsu method16 is used to find an optimal thresh-
ld, and every pixel can thereby be classified into object or
ackground. Figure 7 shows a histogram of object and back-
round regions using the Otsu method.

pdate for Object Model Filter
he proposed scheme needs to be updated periodically with

espect to the object and background regions because
hanges occur in the object’s position, velocity, and accelera-
ion. In the binarization stage after the separation stage for
bject and background regions in the current frame, each
ixel is classified into the object or background region. After
emoving some noise pixels, we can enclose object pixels
ith a rectangle using position, velocity, and acceleration of

he previous object. The new object size is determined by the

0th frame, �c� 65th frame, and �d� 75th frame.

igure 9. Statistic of a car: �a� intensity and �b� deviation of object and

ackground.

Mar.-Apr. 20105
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Figure 10. Cars image sequence with image shake, Gaussian and salt/pepper noises: �a� 50th frame, �b�

60th frame, �c� 65th frame, and �d� 75th frame.
Figure 11. Global motion detection for Car imagery.
Figure 12. Segmentation image sequence of “Cars:” �a� 50th frame, �b� 60th frame, �c� 65th frame, and �d�
75th frame.
Figure 13. Median filter based segmentation image sequence of Cars with image shake and noise: �a� 50th
frame, �b� 60th frame, �c� 65th frame, and �d� 75th frame.
Figure 14. Median and mean filter based segmentation image sequence of Cars with image shake and

noise: �a� 50th frame, �b� 60th frame, �c� 65th frame, and �d� 75th frame.

. Imaging Sci. Technol. Mar.-Apr. 2010020505-6
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idth and height of the rectangle in the current frame. The
pdate of OMF is defined by

UOM = w1 � Ic + w2 � Rd + w3 � Pm + w4 � Pd + w5 � Dc ,

�9�

here w1 –w5, Ic, Rd, Pm, Pd, and Dc represent weighted con-
tant values, intensity of current frame, difference between
urrent frame and reference frame, mean of previous frame,
ariance of previous frame, and center distance of current

Figure 15. Segmentation results using 65th frame
50th frame of Ship: �a�–�d� original frame; �e�–�h�
ficients of the median filter for noise elimination resp
ectangle, respectively.

. Imaging Sci. Technol. 020505-
XPERIMENTAL RESULTS
he performance of moving object segmentation using
ackground modeling based on runtime-weighted features is
ffected by noise, especially zero-mean Gaussian noise. To
itigate the noise effect, various details can be used. Under

he assumption that an object is brighter than the back-
round, the size of an object approaching the IR imaging
ystem is larger than the previous object. Figures 8(a) and
(d) show “Cars” original sequence from 50th to 75th frame
s detected by the IR imaging system. The statistics of the
ars is shown in Figure 9. In this case, the intensity differ-

110th frame of Truck, 41st frame of Person, and
verage implementation; �i�–�p� two and four coef-
y; �q�–�t� proposed method.
of Car,
pixel a
ectivel
Mar.-Apr. 20107



e
l
t
o
e
s

7
s
n
a
u
F
F

i
a
i

t
s
g
s
u
s
m
t
o
p
r
r
S
s

r
“
5
t
t
s
m
1

r
F
o
a
a
T
1
f
e
0
t
i
F

F
w

Park, Jung, and Bae: Robustly adaptive moving thermal object segmentation using background modeling based on runtime-weighted features

J

nce between the object and background regions is much
arger than deviation difference. Therefore, the intensity is
he dominant discriminative feature. We did not update the
bject model until the frame at which the intensity change
xceeded the uncertainty characteristic of the IR imaging
ystem. So an abrupt discontinuity is shown.

Figures 10(a)–10(d) show Cars sequence from 50th to
5th frame captured by the IR imaging system with image
hake; movement is �10 pixels, and zero-mean Gaussian
oise (standard deviation: 10), also salt/pepper noise (prob-
bility: 0.01). Figure 11 shows estimated global motion val-
es when applied to the �10 pixels of global motion from
ig. 10. We get x and y axis RMS pixel errors of 3.02 from
igs. 11(a) and 11(b), respectively.

Figures 12(a)–12(d) illustrate the segmented result us-
ng runtime-weighted features from Fig. 8 when the IR im-
ging system does not incur motion. Figures 13(a)–13(d)
llustrate the segmented result using runtime-weighted fea-

igure 16. Velocity analysis of restricted region from adaptive tracking
indow.
Figure 17. Tracking results of ground truth vs. proposed

. Imaging Sci. Technol. 020505-
ures from Fig. 10 when IR imaging incurs motion; the re-
ults used not only median filter for removing noise but also
lobal motion compensation for stabilization of image
hake. Object extraction results for background modeling
sing the proposed scheme from the 60th frame are as
hown in Fig. 13(b). Figures 14(a)–14(d) illustrate the seg-

ented result using runtime-weighted features from Fig. 10
o heighten robustness against noise; the results is used not
nly median and mean filter but also global motion com-
ensation for stabilization of image shake. In the simulation
esult, it is found that the 75th frame’s segmented image
esults are better than for the 50th, 60th, and 65th frames.
egmentation image sequences from the simulation are
hown in Fig. 14.

Figure 15 shows, from left to right, the segmentation
esult for 65th frame of Car sequence, 110th frame of
Truck” sequence, 41st frame of “Person” sequence, and
0th frame of “Ship” sequence. Figures 15(a)–15(d) show
he original frame; Figs. 15(e)–15(h) show the results from
he pixels average implementation; and Figs. 15(i)–15(p)
how results obtained with two and four coefficients of the

edian filter for noise elimination, respectively. Figs.
5(q)–15(t) show results by the proposed method.

Figure 16 illustrates the results for object velocities in a
estricted region using the adaptive tracking window from
ig. 15. Estimate of motion of an object is acquired from the
bject’s position and velocity between the previous frame
nd the current frame. For motion estimation results we got
n average of 4.9 pixels for Car, an average of 7.8 pixels for
ruck, an average of 1.2 pixels for Person, and an average of
.0 pixel for Ship. Figures 17 compares the tracking results
or the proposed method with ground truth and Fig. 9; we
stimate average RMS errors along x and y axes as 1.7 and
.1 pixels, respectively. Figure 18 illustrates the object detec-
ion and tracking results using the proposed scheme with
mage-shake; its moving deviation is �10 pixels.
igs. 18(b) and 18(c) show results for coast tracking mode.
method: �a� x coordinate and �b� y coordinate.

Mar.-Apr. 20108
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ONCLUSIONS
n this article, a scheme using runtime-weighted, features-
ased, robustly adaptive moving object segmentation for an

nfrared image sequence is proposed. Proposed background
odeling for an open H/W architecture design decreases the

ize of the search area in order to construct a sparse block
emplate of the search area in the IR images. We also com-
ensate for motion when the object moves between previous
nd current frames captured by the IR imaging system. The
ethod of separation between background and objects leads

o adaptive values through time analysis of pixel intensity.
he proposed method uses more feature information such
s intensity, deviation over time duration, block matching
rror, and velocity. The weighting values give a higher weight
o the feature information which exhibits a large difference
etween object and background regions. Based on experi-
ental results, the proposed method showed successful real-

ime moving object segmentation through background
odeling using the proposed embedded system.
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