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Abstract. Moving object segmentation plays an important role in a
complex object tracking system. This system decides whether the
current block belongs to the object region or not. In this article, a
scheme using background modeling based on runtime-weighted
features for robustly adaptive moving object segmentation in infra-
red (IR) image sequence is proposed. Proposed background mod-
eling for an open hardware (H/W) architecture design decreases the
size of the search area to construct a sparse block template of
search area in infrared images. The authors also compensate for
motion compensation when the image moves in previous and cur-
rent frames of IR imaging system. The method of separation of
background and objects applies to adaptive values through time
analysis of pixel intensity. The proposed method uses more feature
information such as intensity, deviation, block matching error, and
velocity. The weighting values give a higher weight to feature infor-
mation which has a large difference between the object and the
background region. Based on experimental results, the proposed
method showed real-time moving object segmentation through
background modeling in the proposed embedded system. © 2010
Society for Imaging Science and Technology.
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INTRODUCTION

In the field of computer vision, moving object segmentation
plays a crucial role as a preliminary step for high-level image
processing. To understand an image, one needs to isolate the
objects in it and find relationships among them." For typical
real-time applications oriented to the analysis of visual
scenes in order to identify events and actions, simplifications
are needed. For these, motion is a key factor aiding the
segmentation process.2 As an active research topic in com-
puter vision, visual surveillance in dynamic scenes attempts
to detect, recognize, and track certain moving objects from
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image sequences, and more generally to understand and de-
scribe object behaviors.” The problem of nonrigid object
tracking (OT) and recognition in video sequences of the
objects’ actions is of increasing importance to many
applications.*™® Intelligence surveillance systems using infra-
red (IR) and charge coupled device (CCD) images have been
utilized in object detection, tracking, and recognition.”

Several powerful algorithms for OT have been devel-
oped in the last two decades. For a stationary object tracking
system, frame differencing analysis was preferred; it can be
generalized to situations where the video data can be easily
stabilized.*” Modern appearance-based tracking schemes
such as the mean-shift algorithm use histogram-based object
appearance models, so they are robust to nonrigid pose
changes."’ Kalman filtering and particle filtering also con-
tribute to enhance the tracking performance.'" Collins re-
viewed these tracking schemes and emphasized that tracking
success or failure depends primarily on how distinguishable
an object is from its surroundings.'” In addition, he also
noticed that tracking features need to be used adaptively
since both foreground and background appearance can be
changed as the object moves from place to place.

In this article we propose an open hardware (H/W)
architecture that a hardware structure designed using the
graphic processing board with an embedded processor and
host personal computer to perform the algorithms required
for a large computational load, such as background model-
ing and block matching-based OT algorithms. Moreover, we
verify our proposed structure by applying moving object
segmentation algorithm to IR images. We also present a
tracking scheme based on block matching in the proposed
system and employ several features such as intensity, devia-
tion over time duration, and matching error to classify each
pixel into the object region or the background region as
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Figure 1. Block diagram of the proposed scheme for defection and tracking based on our system.

developed in previous research."” Each feature is weighted
individually according to separability.

ROBUSTLY ADAPTIVE MOVING OBJECT
SEGMENTATION

The block diagram of the proposed adaptive moving object
segmentation (AMOS) scheme for background modeling
and tracking based on an open H/W architecture is shown
in Figure 1. First, we use morphological operation to extract
roughly for edges and an object. Second, for each frame,
motion compensation for background modeling calculates
IR imaging system motion in order to stabilize an image.
After the region of interest in the adaptive tracking window
step is set, feedback to the block matching step yields the
object model filter (OMF) and the object position filter
(OPF). The OMF predicts the next object model at same-
positional pixel and gives feedback to the background mod-
eling step. Simultaneously, a predicted object position is pro-
vided for next position by the OPE.

Object-Based Motion Estimation Using Morphological
Operation

Detecting motion in an IR image wastes much H/W re-
sources in the course of background modeling for object
detection. So, we define a prior meaning region to use mini-
mum resources. The proposed scheme estimates motion
roughly at thermal edges and the object based on morpho-
logical operations. The morphological operations are dila-
tion, erosion, opening operation, closing operation, and top-
hat operation, which are performed by convolving the
structuring element with the image."* We use the morpho-
logical TopHat operation for thermal edge and object detec-
tion. The morphological TopHat operation for grayscale im-
ages is part of the basic toolbox of morphological
operations. Its function is to detect contrasting objects on
nonuniform backgrounds. Depending upon whether we are
dealing with a thermal edge or objects in IR images, the
operation is defined as

TopHat(A,B) = A — (A° B) = A — max(min(A)), (1)
B B
where A and B represent a thermal IR image and a structur-
ing element, respectively. © represents the gray-scale opening
of A by a structuring element B.

Block Matching for Motion Compensation
The goal of the block matching algorithm for motion com-
pensation is to find the most similar block to the reference

block in a tracking region, and it has been widely used for
visual tracking and antishake. Most block matching tech-
niques minimize the cost function such as sum of absolute
differences (SAD), mean absolute error, and mean squared
error. In this article we used SAD as the cost function. To
find the best matching position, the conventional SAD cri-
terion is evaluated as

S,=15,-1

(4,9) =argmin >, >, |[Iu+i,v+) - MG, (2)

(w,vy)eR’ =0 j=0

where R’ is the size of sampling template in the restricted
sparse region, S, and S, represent the width and the height
of the restricted sparse region, respectively. I' and I repre-
sent the current frame and the thermal object model,
respectively.

In real applications, since there is jitter in an IR imaging
system caused by observer or platform, image stabilization is
required. Image stabilization can reduce the block matching
error induced by IR imaging system jitter. In this article, we
use global motion compensation as an image stabilization
algorithm. Let I'"! and I' be the previous frame and the
current frame, respectively. Global motion (G,,G,) can be
estimated according to

W=1-Gyy W-1-Gy
(G, G,) = arg min > > i+ dx,j + dy)
(xdy) =Gy =Gy
- It(’)])| > (3)

where W and H are the width and the height of the current
frame and dx and dy are restricted to —Gy=dx =Gy, and
—Gy=dy=Gy. Here, Gyy and Gy should be larger than
maximum IR imaging system movement. Root mean
squared error (RMSE) for detection of global motion is de-

fined as
1
RMSE = IT] > error?, (4)

where N and error represent frame number of image and
accumulated error values between previous and current
frames, respectively.

Adaptive Tracking Window for Region Restriction
We presented the region restriction scheme of moving object
segmentation in previous research.”> We propose an adaptive
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Figure 2. Scheme of adaptive tracking window for restricted region in IR
image sequences.

tracking window for region restriction of a thermal object to
implement background modeling. A scheme which restricts
the signal processing region to the area surrounding the ob-
ject is required in order to prevent clutter injection and
heavy computational burden.

Let (%,7) be the left-top position of the predicted object
region in the current frame. Then the processing region P! is
restricted as

Pi:{lf(x,y)|fc— 0=x-GM<x+s5,+6y—-6=y—GM
<y+s,+ 6}, (5)

where (s,,s,) is the size of the thermal object and +4 are the
maximum and minimum velocities of the object in the cur-
rent frame. Global motion (G, G,), estimated in Eq. (3), is
considered in Eq. (5). Figure 2 shows the adaptive tracking
window scheme for a restricted region in the current frame.

OMEF for Background Modeling

For every pixel in the restricted region for the adaptive track-
ing window, the OMF determines whether each pixel is ob-
ject or not by using the proposed process is described as
follows:

(1) Check global motion values in block matching to
compensate for motion.

(2) Divide the current frame I' into two regions. A(f) is
a region overlapping both object and background
regions, and B(?) is a region not overlapping object
and background regions in I".

(3) If region of B(#) is a new background in the next
frame, the background model is used; and if x is
coordinate of an individual pixel, the average of
intensity is B),(x)=1I"(x).

(4) If Eq. (6) is satisfied, each block is a candidate for
the object model through background modeling.

B, ' (x) — I'(x)| = 2.5B}, " (x). (6)

OPF for Object Tracking

The conventional method of object detection is to filter a
single frame image using a high pass filter to gain a set of
some number of candidate objects, then filter and track the
true objects using a Kalman filter. This method is not very
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Coast tracking "
. mode .

Figure 3. Defection and tracking algorithm keeps tracking the object
while the object is hidden behind other objects or into background.

effective for a real-time based IR imaging system, because it
is difficult to find a kind of algorithm that can adaptively
detect and track both large moving objects and small ob-
jects. The object tracker step in proposed OPF provides two
kinds of measurement. One is the new position of the object
and the other is mean absolute difference (MAD). If MAD is
relatively small, the object position moves to the current
matching position in the current frame. We also propose a
scheme in which a coast tracking algorithm keeps tracking
the object while the object hides behind other objects or
merges into background as shown in Figure 3. In the coast
tracking technique, a criterion for determining whether the
coast tracking is performed or not is needed. We consider
motion estimation, which extracts average velocity of three
frames when we assume a uniform velocity of an object in
IR images.

PROPOSED THERMAL OBJECT TRACKER

We implemented an open H/W architecture to verify the
performance in an IR imaging system of the scheme pro-
posed in previous research.”” The proposed hardware archi-
tecture consists of the master unit and the slave unit for
AMOS. The master unit consists of data storage, host pro-
cessor, and graphic user interface (GUI) displayer. The slave
unit consists of the input module of the IR or CCD camera,
frame grabber, tracking part, and image output part. In this
architecture, first the IR or CCD image sequences and the
parameters involved with segmentation and tracking algo-
rithms are transmitted to the tracking part. The tracking
part can process image sequences captured by the frame
grabber in the slave unit or stored in the master unit. The
parameters are selected by the user and transmitted to the
tracking part form the master unit.

Next, the tracking part in the slave unit performs seg-
mentation, and tracking algorithms operate on the transmit-
ted image sequences according to the user-selected param-
eters. After the segmentation and tracking algorithms are
terminated, results such as runtime-weighted feature error,
block matching error, object position, calculation time, ob-
ject velocity, and direction are returned to the master unit.
Finally, the master unit displays image sequences and the
results. The block diagram of the proposed architecture is
shown in Figure 4. Line A shows the processing flow, when
using the image sequence captured by frame grabber. Line B
shows the processing flow when using the image sequence
stored in the master unit.

The software of the master unit consists of GUI and
image sequence display software. The hardware of the slave
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Figure 4. Block diagram of the masterslave H/W architecture.
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Figure 5. Features: infensity, deviation, matching error, and velocity.

unit is a graphic processing board. In the slave unit, the
AMOS and tracking algorithms such as morphological top-
hat operation, adaptive tracking window for background
modeling, block matching, OMFE, and OPF are implemented.
The master unit and the slave unit communicate through a
100 MHz clock PCI-X bus. The master unit transmits pa-
rameters selected by a user and IR image sequences to the
embedded processor in the tracking part through PCI-X
bus. The embedded processor performs segmentation and
tracking algorithms for the IR image sequences in accor-
dance with parameters received by the master unit.

Background

We presented the OMF scheme of moving object seg-
mentation in previous research.”> The proposed OMF up-
dates shape, size, velocity, and each pixel’s intensity of the
object model in the current frame. At first, it determines the
priorities of each feature. Then, with the priority informa-
tion, the weighted-sum of every feature is evaluated pixel by
pixel. Figure 5 shows this segmentation scheme. The pro-
posed scheme consists of three stages. First, separability
evaluation effects separation of object and background re-
gions in the current frame. Second, we apply binarization to
segment an object region in the same-positioned pixels. The

Background

Intensity

Matching error

Object velocity

Figure 6. lllusiration of separability: (a) intensity and (b) deviation of object.
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Figure 7. Binarization to separate for object and background regions.

1. K+
F(x,y) - S
NF(x,y) = p - »
|FMAX - FMIN|
N
O(x,y) = 2, W X NF(x,y), (8)

=1

where NF/(x,y) is the normalized ith feature information at
pixel (x,y) and O(x,y), the objective function, is the
weighted sum of each normalized feature information such
as intensity, deviation, matching error, and velocity. The con-
ventional Otsu method'® is used to find an optimal thresh-
old, and every pixel can thereby be classified into object or
background. Figure 7 shows a histogram of object and back-
ground regions using the Otsu method.

Figure 8. Cars image sequence: (a) 50th frame, (b) 60th frame, (c) 65th frame, and (d) 75th frame.

last step we apply is to update the object model. Figure 6
shows features of intensity, matching error, and object veloc-
ity from the object model.

Separability Evaluation for an Object and Background
Region

We presented the separability evaluation scheme for moving
object segmentation in previous research.”” Here we propose
a scheme which classifies object and background regions
through background modeling. Let the ith feature informa-
tion at pixel (x,y) be F(x,y). Then we can find two means,
wh and wh, for each feature information, where ith is the
mean of the ith feature information over the object region,
T', and af is the mean of the ith feature information over
the background modeling, B'. For each feature, the separa-
bility is defined by

i i
Mr— Mp
, (7)

=L i
|Fapax — Fannd

i i .. .
where F,y and F},,y represent the minimum and maxi-
mum value of the ith feature information space, respectively.

Binarization to Segment for an Object Region

We also presented a binarization scheme for moving object
segmentation in previous research.”” Here we propose a
scheme to segment for object region through background
modeling. We also define a new objective function to deter-
mine whether each pixel is an object pixel or not,

J. Imaging Sci. Technol.
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Update for Object Model Filter

The proposed scheme needs to be updated periodically with
respect to the object and background regions because
changes occur in the object’s position, velocity, and accelera-
tion. In the binarization stage after the separation stage for
object and background regions in the current frame, each
pixel is classified into the object or background region. After
removing some noise pixels, we can enclose object pixels
with a rectangle using position, velocity, and acceleration of
the previous object. The new object size is determined by the

—&— deviation of backgraound 1
~—&— deviation of backgraound 2
—— intensity of object 1

200 L : —+— intensity of object 2 4

Number
+
o :
i \
t
+
4
4

0 1 i i 1 i

Frame

Figure 9. Statistic of a car: (a) infensity and (b) deviation of object and
background.
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Figure 10. Cars image sequence with image shake, Gaussian and salt/pepper noises: (a) 50th frame, (b)

60th frame, (c) 65th frame, and (d) 75th frame.
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Figure 11. Global motion defection for Car imagery.

(b) (d)

Figure 12. Segmentation image sequence of “Cars:" (a) 50th frame, (b) 60th frame, (c) 65th frame, and (d)
75th frame.

(b) (d)

Figure 13. Median filter based segmentation image sequence of Cars with image shake and noise: (a) 50th

frame, (b) 60th frame, (c) 65th frame, and (d) /5th frame.

(b) (d)

Figure 14. Median and mean filler based segmentation image sequence of Cars with image shake and
noise: (a) 50th frame, (b) 60th frame, (c) 65th frame, and (d) 75th frame.
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(a)

(@) (h)

(t)

Figure 15. Segmentation results using 65th frame of Car, 110th frame of Truck, 41st frame of Person, and
50th frame of Ship: (a)—(d) original frame; (e)-(h) pixel average implementation; (i)~(p) two and four coef
ficients of the median filter for noise elimination respectively; (q)—(1) proposed method.

width and height of the rectangle in the current frame. The
update of OMF is defined by

Uom=w; X I.+wy X Rg+w3 X P, +wy, X P;+ws XD,

)

where w,—ws, I, Ry, P,,, P4, and D, represent weighted con-
stant values, intensity of current frame, difference between
current frame and reference frame, mean of previous frame,
variance of previous frame, and center distance of current
rectangle, respectively.

J. Imaging Sci. Technol.
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EXPERIMENTAL RESULTS

The performance of moving object segmentation using
background modeling based on runtime-weighted features is
affected by noise, especially zero-mean Gaussian noise. To
mitigate the noise effect, various details can be used. Under
the assumption that an object is brighter than the back-
ground, the size of an object approaching the IR imaging
system is larger than the previous object. Figures 8(a) and
8(d) show “Cars” original sequence from 50th to 75th frame
as detected by the IR imaging system. The statistics of the
Cars is shown in Figure 9. In this case, the intensity differ-
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Figure 16. Velocity analysis of restricted region from adaptive tracking
window.

ence between the object and background regions is much
larger than deviation difference. Therefore, the intensity is
the dominant discriminative feature. We did not update the
object model until the frame at which the intensity change
exceeded the uncertainty characteristic of the IR imaging
system. So an abrupt discontinuity is shown.

Figures 10(a)-10(d) show Cars sequence from 50th to
75th frame captured by the IR imaging system with image
shake; movement is *10 pixels, and zero-mean Gaussian
noise (standard deviation: 10), also salt/pepper noise (prob-
ability: 0.01). Figure 11 shows estimated global motion val-
ues when applied to the =10 pixels of global motion from
Fig. 10. We get x and y axis RMS pixel errors of 3.02 from
Figs. 11(a) and 11(b), respectively.

Figures 12(a)-12(d) illustrate the segmented result us-
ing runtime-weighted features from Fig. 8 when the IR im-
aging system does not incur motion. Figures 13(a)-13(d)
illustrate the segmented result using runtime-weighted fea-

Tracking result of '’ ground truth vs. proposed method
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(a)

tures from Fig. 10 when IR imaging incurs motion; the re-
sults used not only median filter for removing noise but also
global motion compensation for stabilization of image
shake. Object extraction results for background modeling
using the proposed scheme from the 60th frame are as
shown in Fig. 13(b). Figures 14(a)-14(d) illustrate the seg-
mented result using runtime-weighted features from Fig. 10
to heighten robustness against noise; the results is used not
only median and mean filter but also global motion com-
pensation for stabilization of image shake. In the simulation
result, it is found that the 75th frame’s segmented image
results are better than for the 50th, 60th, and 65th frames.
Segmentation image sequences from the simulation are
shown in Fig. 14.

Figure 15 shows, from left to right, the segmentation
result for 65th frame of Car sequence, 110th frame of
“Truck” sequence, 41st frame of “Person” sequence, and
50th frame of “Ship” sequence. Figures 15(a)-15(d) show
the original frame; Figs. 15(e)—15(h) show the results from
the pixels average implementation; and Figs. 15(i)-15(p)
show results obtained with two and four coefficients of the
median filter for noise elimination, respectively. Figs.
15(q)-15(t) show results by the proposed method.

Figure 16 illustrates the results for object velocities in a
restricted region using the adaptive tracking window from
Fig. 15. Estimate of motion of an object is acquired from the
object’s position and velocity between the previous frame
and the current frame. For motion estimation results we got
an average of 4.9 pixels for Car, an average of 7.8 pixels for
Truck, an average of 1.2 pixels for Person, and an average of
1.0 pixel for Ship. Figures 17 compares the tracking results
for the proposed method with ground truth and Fig. 9; we
estimate average RMS errors along x and y axes as 1.7 and
0.1 pixels, respectively. Figure 18 illustrates the object detec-
tion and tracking results using the proposed scheme with
image-shake; its moving deviation is *10 pixels.
Figs. 18(b) and 18(c) show results for coast tracking mode.

Tracking result of 'y’ ground truth vs. proposed method
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Figure 17. Tracking results of ground truth vs. proposed method: (a) x coordinate and (b) y coordinate.
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Figure 18. Defection and tracking results in our system: (a) 35th frame, (b) 41st frame, (c) 51st frame, and
(d) 70th frame.

CONCLUSIONS

In this article, a scheme using runtime-weighted, features-
based, robustly adaptive moving object segmentation for an
infrared image sequence is proposed. Proposed background
modeling for an open H/W architecture design decreases the
size of the search area in order to construct a sparse block
template of the search area in the IR images. We also com-
pensate for motion when the object moves between previous
and current frames captured by the IR imaging system. The
method of separation between background and objects leads
to adaptive values through time analysis of pixel intensity.
The proposed method uses more feature information such
as intensity, deviation over time duration, block matching
error, and velocity. The weighting values give a higher weight
to the feature information which exhibits a large difference
between object and background regions. Based on experi-
mental results, the proposed method showed successful real-
time moving object segmentation through background
modeling using the proposed embedded system.
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