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Abstract. In this study, the red-green-blue (RGB) color values of
colored solutions captured from a digital camera are employed for
reconstruction of spectral transmission of the transparent solutions.
A capturing box is assembled and a spectral data set gathered from
colored solutions prepared for this purpose. Principal component
analysis (PCA), pseudoinverse, and matrix R methods are em-
ployed to reconstruct the spectral transmission of clear solutions
from their RGB data. Two different illuminants are employed to
achieve two sets of RGB data. According to the results, the PCA
method led to inadequate accuracy when a set of RGB data and
three eigenvectors are used, while results are improved by using
first six basis functions. On the other hand, pseudoinverse leads to
the worse results in comparison with PCA by using the first six basis
functions. However, the results obtained from matrix R method
shows considerable improvement in terms of the root mean square
error between the actual and reconstructed spectral transmission
curves. In fact, matrix R method diminishes the spectral errors in the
two ends of spectrum in relation to other methods. © 2010 Society
for Imaging Science and Technology.
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INTRODUCTION

The measurement of spectral behavior of an object, i.e., re-
flectance or transmission behavior, is a routine technique for
identification and analyzing of materials. Spectrophotom-
eters are the most classical instruments usually employed to
collect accurate data for this purpose, but they are not always
available. There has been tremendous interest during the
past decade to employ the outputs of more popular color
measurement devices, such as scanners and/or digital cam-
eras, for some scientific applications. Such devices are able to
provide colorimetric data with higher spatial resolution,
while the classical instruments, such as colorimeters, average
the results over the region of measurement. Several process-
ing methods with different computational complexities and
accuracies have been introduced to extract valuable spectral
data from device dependent RGB colorimetric information.
Ideally, this approach could replace the classical color mea-
surement instruments, such as spectrophotometers and
colorimeters, with more accessible one, i.e., digital image
capturing devices. The efforts can be broadly categorized
into two groups: colorimetric and spectral characterization
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of image capturing devices. By the colorimetric characteriza-
tion method, device dependent RGB data are converted to
one of the classical color specification systems' most often
CIEXYZ or CIELAB color systems. Different methods have
been suggested for data transformation between dependent
and independent spaces, and the most popular one is the
nonlinear regression using a standard color chart.”” In the
spectral domain, some methods have been presented for the
determination of spectral responses of digital image captur-
ing devices. Basically, the methods can be divided into two
groups: pseudoinverse and principal eigenmethods. These
methods have been improved by several modification
approaches.”® ™"

Hyperspectral and multispectral imaging devices are
also used for data gathering. However, such devices are ex-
pensive and less accessible. There is no doubt that these
devices would effectively change the camera into an imaging
spectrophotometer. Owing to the smoothness of spectral
properties of objects within the visible spectrum, the appli-
cation of a multispectral camera with limited number of
filters has been also reported.

In multispectral imaging methods, the response of an
object, which can be described by the product of spectral
reflectance of its surface and the illuminant spectrum, can be
represented by low-dimensional models based on principal
component analysis (abbreviated as PCA)*’ or independent
component analysis (abbreviated as ICA)">'® techniques. So,
for a given linear model, if the number of PCA or ICA
coefficients of a particular set of spectra is equal to the num-
ber of camera responses, then the spectra can be easily esti-
mated by an inverse transformation of the set of camera
responses, with the forward transformation being estimated
from a representative “training” data set.>'*'"7* If the
numbers of coefficients are more than the numbers of device
responses, then the number of responses may need to be
increased by imaging the scene under different illuminants
or by introducing suitable filters in front of the camera to
modify the sensor spectra. A conventional trichromatic digi-
tal camera combined with either absorption filters™** or
different light sources®* has been recommended for cap-
turing multispectral images.

In the field of spectral recovery from colorimetric data,
most research has been focused on the reconstruction of
spectral reflectance of opaque surface color and did not con-
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sider the transparent media, which are important in identi-
fication and quantitative analysis of materials in chemistry
and physics.

This article presents the results of the recovery of spec-
tral transmission of a set of transparent colored solutions
from the RGB data obtained by a Canon EOS D350 com-
mercial still camera. A wide range of colored solutions has
been prepared, different reconstruction techniques are em-
ployed, and the recovery results compared with each other.
More specifically, the PCA, pseudoinverse, and matrix R
methods™ are employed with some modification to recover
spectral transmission of different examples of colored
solutions.

RECONSTRUCTION OF SPECTRAL DATA FROM
COLORIMETRIC INFORMATION

PCA

Principal component analysis has been the most successful
method for the reconstruction of reflectance data from the
corresponding standard tristimulus values as exemplified by
CIEXYZ color space.*” The method was employed by many
researchers and simply formulated by Fairman and Brill.®
Since the reflectance spectra of natural color and most
nonfluorescent surfaces are smooth functions of wavelength,
the reflectance curve could be represented by a limited num-
ber of the most significant eigenvectors. Hence, a linear
model, as shown in Eq. (1), can be implemented for reflec-
tance spectra reconstruction

}E)\ = VO,)\ + V)\C, (1)

where R shows the estimated reflectance value and Vo, and
V), respectively, represent the mean of spectral reflectance
and the selected eigenvectors of a suitable reflectance data
set. The selected eigenvectors correspond to the highest ei-
genvalues. Accordingly, C is a column vector of k elements,
which contains the principle component coordinates, and it
can be calculated from Eq. (2),

C=T'Q-Q), )

where T7! is a 3 X3 matrix and contains the tristimulus
values of the first three selected eigenvectors; Q and Q, show
the color coordinates of proposed sample and the mean vec-

tor of the database, respectively. So, R may be easily calcu-
lated from Eq. (1). When a set of tristimulus values i.e.,
CIEXYZ under a given viewing condition are available, three
eigenvectors can be considered and a fully defined equation
is employed. Obviously, in such cases the recovery of the
reflectance factor cannot be ideal, and the reproduced spec-
tra would be improved by introducing additional coordi-
nates, such as another set of tristimulus values, under a sec-
ond illuminant. Accordingly, the size of the matrix in such
condition increases to six, as shown in Eq. (3),
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where the first subscript refers to the illuminant-observation
and the second shows the index of the selected eigenvectors.

Pseudoinverse Method
The simplest approach for the determination of spectral data
from colorimetric information can be the pseudoinverse
method. Recently, the method was implemented by Berns
and Zhao using a six-channel camera signal. In this work,
the transformation matrix was constructed by the Moore-
Penrose pseudoinverse method.*®

The spectral transformation was derived to convert
multichannel camera signals D of color targets to spectral
transmission factors N, as shown in Egs. (4) and (5),

N=TD, (4)

Ts=N X PINV(D). (5)

They employed two different light sources to provide two
sets of RGB data for each sample. Hence, six-dimensional
colorimetric data were converted to 31 dimensional reflec-
tance spectra by this method.

Matrix R Method

In 1953, Wyszcki27 presented his hypothesis that each spec-
trum can be decomposed into a fundamental stimulus and a
metameric black. Later, a mathematical method was devel-
oped by Cohen and Kapuff**™" for performing such decom-
position idea. Finally, Fairman® suggested a correction com-
pensation technique for parametric pairs based on Wyszecki
decomposition hypothesis.

Recently, Zhao and Berns™ offered a new technique for
the reconstruction of spectral reflectance based on the
implementation of the matrix R method. As Cohen and
Kapuff showed, matrix R can be calculated from matrix A.
Matrix A can be formed from the inner products of spectral
color matching functions of a standard observer and the
relative spectral power of the applied light source. Matrix A
is an n-by-3 matrix, where n is the number of wavelength,
i.e., n=31 in the visible spectrum, and the three columns are
three independent primaries. Matrix R, an n-by-n symmet-
ric matrix, can be mathematically defined as shown in Eq.

(6),
R=A(A'"A)'A". (6)

Zhao and Berns first computed the spectral reflectance of
the sample from camera signals using the pseudoinverse
method. Then, as shown by Eq. (7), the metameric black,
denoted by B, was calculated from spectral reflectance data

Jan.-Feb. 2010



Aghanouri, Amirshahi, and Agahian: Reconstruction of spectral transmission of colored solutions...

!
E‘,’i‘l

20 em

\

g-ﬂ.#‘ wEE————

Figure 1. A schematic diagram of the image capturing box.

B=(I-R)N, (7)

where I is an n-by-n identity matrix and N is the estimated
spectral  reflectance  factor determined from  the
pseudoinverse method. The second set of tristimulus values
was predicted from camera signals by employing the classical
characterization method.”™ The proposed transformation
matrix designated by T can be calculated by Eq. (8)

To= N¢ X PINV(D,), (8)

where D; represents the linearized camera signals and N
shows the tristimulus vector. Then, fundamental stimulus
(N™) can be calculated from estimated values using Eq. (9),

N*=AA'A)7'T. (9)

Finally, the metameric black from predicted spectral reflec-
tance factors B was fused with the fundamental stimulus
from estimated tristimulus values N* to get the spectral re-

flectance factors Ii as shown in Eq. (10)
R=N*+B. (10)

EXPERIMENTAL
A Canon EOS D350 single-lens-reflex digital still camera
equipped with a 100 mm f/2:8 Canon macro lens EF was
used in this research. The camera uses complementary metal
oxide semiconductor (CMOS) image sensors in an 8
megapixel array; a UV filter (Sigma DG) was placed in front
of the lens to remove any ultraviolet radiation. The captured
data were saved in CR2 (RAW) format.

A suitable box was assembled to capture the images of
test solutions. The schematic diagram of the image captur-
ing box is shown in Figure 1. The inner layers of box were
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made of matt white acrylic sheets. In order to avoid the
effect of unwanted ambient light, the outer faces of the box
were covered with thick black acrylic sheets. A suitable ap-
erture for the camera lens was arranged at one end of the
box, while two fluorescent lamps (Philips, TL 8W/965) with
7000 K correlated color temperature and two halogen lamps
(Osram, 41870 WFL, 12 V, 50 W) with 2500 K color tem-
perature were placed in the other end. To prevent direct
illumination of solutions and prepare a uniform lighting
condition, a light diffuser sheet was fixed in front of the
lamps. The spectral energy distributions of these lamps were
measured using a GretagMacbeth Eye-One Pro™ spectro-
photometer from 380 to 730 nm at 10 nm intervals, while
the measurement aperture was 4.5 mm. Figure 2 shows the
relative spectral energy distribution of the light sources
employed.
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Figure 2. The speciral energy distributions of fluorescent and halogen
lamps.
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Figure 3. Spectral fransmission of prepared transparent colored
solutions.

As Fig. 1 shows, the sample was placed between the
diffuser and lens over a black separator, so that no light
could reach to the camera except that which passed through
the sample holder. A standard glass sample holder with the
size of 2 cm width, 1 cm depth, and 3 cm height was used in
the hole arranged in the black separator. Commercial
samples of methyl violet, methylene blue, malachite green,
bismark brown, magenta, and auramine were used as prima-
ries. Different tertiary combinations of these dyes were used
for preparation of different colored solutions. To prepare a
variety of transparent samples, dye solutions were mixed in
different concentrations. The spectral transmissions of
samples were measured using a Varian Cary 50 double beam
absorption spectrophotometer. Samples were measured from
400 to 700 nm at 1 nm intervals. The spectral transmissions
of the experimental samples are shown in Figure 3. The
CIEXYZ and CIELAB color specifications of the samples
under D65 illuminant and 1964 standard observer were also
computed from these data. Figure 4 shows the a*b* chroma-
ticity coordinates of samples in the CIELAB color spaces.

All computations were conducted with MATLAB 7 from
the Mathworks. The captured images in raw CR2 format
were converted to a readable MATLAB file using public do-
main software named DCRAW.C™; the CR2 data format was
changed into 16-bit PPM (Portable PIXMAP) format by this
code.

To balance the camera responses to gray samples, gray
patches of a Kodak Q_60 color chart (IT8.7/2) were used.
Camera signals corresponding to these patches are illustrated
in Figure 5. As this figure shows, responses of the Canon
digital camera to these patches were adequately linear.
Hence, linearization was not conducted and the raw data
were directly used in subsequent processing.

RESULTS AND DISCUSSION

Colorimetric Characterization of Camera

A nonlinear regression method was performed to convert
RGB raw data to CIELAB values with a precorrection, in-
volving the cube root function of the RGB data. Different
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Figure 4. Color distributions of prepared transparent colored solufions
and the selected samples in fraining sequence in a*b* chromaticity coor-
dinates along with the samples which were used in testing sfep (iraining

and testing samples are shown with “o” and “ *,” signs, respectively).

09 4

08 - R?=0.999

R?=0.999

R?=0.999

Mean of reflectance factor

0 0.05 0.1 0.15 0.2 0.25
Channel signal

Figure 5. The results of camera signals info gray paiches of Kodak Q_60
(IT8.7/2) chart.

transformation matrixes were examined and a 17 term poly-
nomial led to the best results. As training and testing sets
during the optimization process 105 clear solutions were
used. To select the most suitable samples for the training
step, the technique suggested by Hardeberg® was employed
and the optimal samples were determined. Fig. 4 shows the
distributions of selected samples in a*b* chromaticity coor-
dinates along with the samples, which were used in testing
step. Results of colorimetric characterization of the digital
camera with the training and testing sets of colored solutions
were evaluated by the color difference values using
CIEDE2000 under fluorescent and halogen illuminants and
presented in Tables I and II for the training and testing steps,
respectively.

As the tables show, the accuracy of colorimetric charac-
terization of captured images under the fluorescent lamp is
higher than under the halogen light source for both the
training and testing groups. The CIEDE2000 values were,
respectively, 3.38 and 3.95 for fluorescent and halogen light
sources in the testing set.
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Table 1. Statistical results of colorimetric characterization in fraining step.

Mean Ab*  Mean Aa*  Mean AL*  STD CIEDE2000  Max CIEDE2000  Mean CIEDE2000  Polynomial parameters number  Samples number  Illuminant

0.95 1.01 1.84 1.64 1.1 1.78 17 30 Fluorescent

1.33 0.91 233 1.75 8.56 21 17 30 Halogen
Table 1. Stafistical results of colorimetric characterization in testing step.

Mean Ab*  Mean Aa*  Mean AL*  STD CIEDE2000  Max CIEDE2000  Mean CIEDE2000  Polynomial parameters number  Samples number  Illuminant

1.90 2.34 3.4 1.57 1.59 3.38 17 75 Fluorescent

2.01 242 3.48 1.75 8.08 3.95 17 75 Halogen

Recovery of Spectral Transmission

The first six most significant basis functions to describe
spectral transmission of solutions were extracted and are
shown in Figure 6, while Table III shows the corresponding
cumulative variance of the database. As the figure shows, the
cumulative variance for the first three eigenvectors is 93.24
and suggests that three eigenvectors may be inadequate for
spectral recovery; the corresponding result for six basis func-
tions is 99.45.

To provide two sets of XYZ tristimulus values, the RGB
data of samples obtained under fluorescent illumination
were converted to L*a*b™ color coordinates under D65 and A
illuminants and 1964 standard observer. The L*a*b* data
were then converted to XYZ values and used for spectral
reconstruction.

In order to investigate the effect of the number of se-
lected eigenvectors on results, the reconstruction of spectral
transmission was also conducted under D65 and A il-
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Figure 6. The first six most significant eigenvectors of speciral transmis-
sion data of colored solufions.

luminants individually by using three basis functions. The
RGB values captured under the fluorescent illuminant were
converted to CIELAB values under D65 illuminant. Table IV
shows the results of reconstruction of spectral transmission
in terms of the root mean square error (RMS) between the
actual and reconstructed spectra and the color difference
values under different illuminants. Obviously, poor recovery
results were achieved when three eigenvectors were used and
a noticeable improvement could be realized when the num-
ber of eigenvectors was increased to six. In this approach, the
RGB values captured under one illuminant (fluorescent
lamp) were converted to two sets of CIELAB values under
D65 and A illuminants. However, the results indicate that
further improvements are still needed for acceptable recov-
ery results.

For better analysis of results, the residue of differences
between the actual and the reconstructed spectra, using three
and six eigenvectors, was calculated and shown in Figures 7
and 8, respectively. As these figures show, the residuals be-
come smaller when six eigenvectors are employed; the errors
are more noticeable at the two extrema of the spectra.

Apparently, the recovery errors are greater in compari-
son with those reported in articles on reconstruction of re-
flectance spectral from CIEXYZ tristimulus values. So, other
modification methods were examined to enhance the results.

To improve the recovery results, the pseudoinverse as
well as matrix R methods were employed as suggested by
Zhao and Berns.”® In this case, two sets of RGB data, which
were gathered under fluorescent and halogen lamps, were
converted to spectral transmission by the pseudoinverse
method. Because of good linear response of the camera, the
linearization step was omitted and the raw RGB data under
fluorescent illuminant were directly transformed to CIELAB

Table 11l. Cumulative variances of speciral transmissions of dye solutions.

Eigenvalues 1 2 3 4 5

7 8 9 10 1 12

V% 47.10 82.10 93.24 96.34 98.54

99.45 99.77 99.86 99.91 99.96 99.98 99.99
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Table IV. Statistical results of recovery using PCA with three and six basis functions, pseudoinverse, and matrix R methods.

Mean RMS ~ Median RMS ~ Min RMS ~ Max RMS

Mean AE2000 Std AE2000 Max AE2000 Mean AE2000 Std AE2000 Max AE2000

Methods (%) (%) (%) (%) Std RMS (D65) (D65) (D65) ) (A )

PCA (3eigs) 17.78 16.10 4.90 47.88 8.97 2.50 2.82 8.53 420 1.77 12.90

PCA (6eigs) 10.88 10.08 418 19.05 387 242 1.54 8.42 2.44 1.40 8.97

Pseudoinverse ~ 11.31 10.28 5.20 31.50 4.34 576 377 27.64 5.62 4.08 31.84

Matrix R 3.4 3.09 0.17 8.10 1.90 2.96 1.71 11.32 275 1.54 10.92

"0 0 500 550 50 550 700
Wavelength nm Wavelength nm
Figure 7. The recovery errors (T, T,) vs wavelengths for PCA method. Figure 9. The recovery errors (Ty—T,) vs wavelengths for pseudoinverse
Three eigenvectors have been used. method.
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Figure 8. The recovery errors (T,=T,) vs wavelengths for PCA method. Figure 10. The recovery errors (T,=T,) vs wavelengths for matrix R

Six eigenvectors have been used. method.
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Figure 11. Spectral recovery of eight randomly selected samples by different methods. (a) PCA with three
eigenvectors, (b) PCA with six eigenvectors, (c) pseudoinverse, and (d) matrix R.

values and then converted to CIEXYZ data. As suggested by
Zhao and Berns, the metameric black from spectral trans-
mission factors predicted by the pseudoinverse method was
fused with the fundamental stimuli from tristimulus values
estimated by colorimetric characterization to get the spectral
transmission factors. Table IV summarizes the results of the
performances of the pseudoinverse and matrix R methods.
As the results show, the performance of pseudoinverse
method for the reconstruction of spectral behavior of trans-
parent samples is better than PCA, using three eigenvectors.
On the other hand, this method led to the worst colorimet-
ric error. As Figure 9 shows, the residuals between the actual
and reconstructed transmission spectra at the two ends of
the spectra decrease in comparison with PCA methods.

Finally, the matrix R method was also examined in the
reconstruction process; it led to the minimum spectral error.
As Figure 10 shows, the residuals between the actual and
reconstructed transmission spectra are significantly smaller
in comparison to other methods, and satisfactory recoveries
have been achieved by this technique.

As Table IV shows, the colorimetric errors of PCA
method by using six eigenvectors are the least among the
employed methods under both D65 and A illuminants, while
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the spectral error of this method is greater than obtained
with the matrix R method. On the other hand, as Fig. 9
shows, the maximum residual differences between the actual
and reconstructed spectra have been concentrated in the two
ends of the visible spectrum, where color matching func-
tions are smallest. As the figures show, the minimum error
in spectral reconstruction by PCA methods, opposite to ma-
trix R method, are approximately located around 450, 550,
and 610 nm, where the color matching functions benefit
from their highest values. Clearly, this could lead to the
minimum color difference values achieved by the PCA
method.

The results of spectral recovery of eight randomly se-
lected samples with the different reconstruction methods are
shown in Figure 11. The superior performance of the matrix
R method over the PCA and matrix pseudoinverse technique
is clearly evident in this figure. On the other hand, using the
PCA method and three eigenvectors leads to the worst re-
sults among the employed methods.

CONCLUSION

A variety of transparent colored solutions and a capturing
box, which was equipped with a conventional digital camera
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and two sets of commercial light sources, were prepared to
examine different methods of spectral transmission recovery
techniques from the corresponding RGB data. Several meth-
ods including PCA, pseudoinverse, and matrix R techniques
were employed in the recovery process, while some types of
modifications were applied to improve their performance
with transparent samples. Results of reconstructions were
evaluated by mean, maximum, and standard deviation of
color difference values under D65 and A illuminants and
1964 observer, for which the CIEDE2000 color difference
formula was used. Besides, root mean square errors between
the actual and reconstructed spectra were computed. The
results showed that the pseudoinverse and PCA methods
lead to unacceptable recovery outcomes. However, results of
the PCA method improved on increasing the number of
eigenvectors employed. Finally, the matrix R method led to
the most acceptable accuracies overall in both spectral and
colorimetric terms among the methods applied.
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