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bstract. In this study, the red-green-blue (RGB) color values of
olored solutions captured from a digital camera are employed for
econstruction of spectral transmission of the transparent solutions.

capturing box is assembled and a spectral data set gathered from
olored solutions prepared for this purpose. Principal component
nalysis (PCA), pseudoinverse, and matrix R methods are em-
loyed to reconstruct the spectral transmission of clear solutions

rom their RGB data. Two different illuminants are employed to
chieve two sets of RGB data. According to the results, the PCA
ethod led to inadequate accuracy when a set of RGB data and

hree eigenvectors are used, while results are improved by using
rst six basis functions. On the other hand, pseudoinverse leads to
he worse results in comparison with PCA by using the first six basis
unctions. However, the results obtained from matrix R method
hows considerable improvement in terms of the root mean square
rror between the actual and reconstructed spectral transmission
urves. In fact, matrix R method diminishes the spectral errors in the
wo ends of spectrum in relation to other methods. © 2010 Society
or Imaging Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.2010.54.1.010508�

NTRODUCTION
he measurement of spectral behavior of an object, i.e., re-
ectance or transmission behavior, is a routine technique for

dentification and analyzing of materials. Spectrophotom-
ters are the most classical instruments usually employed to
ollect accurate data for this purpose, but they are not always
vailable. There has been tremendous interest during the
ast decade to employ the outputs of more popular color
easurement devices, such as scanners and/or digital cam-

ras, for some scientific applications. Such devices are able to
rovide colorimetric data with higher spatial resolution,
hile the classical instruments, such as colorimeters, average

he results over the region of measurement. Several process-
ng methods with different computational complexities and
ccuracies have been introduced to extract valuable spectral
ata from device dependent RGB colorimetric information.
deally, this approach could replace the classical color mea-
urement instruments, such as spectrophotometers and
olorimeters, with more accessible one, i.e., digital image
apturing devices. The efforts can be broadly categorized
nto two groups: colorimetric and spectral characterization

eceived Apr. 27, 2009; accepted for publication Aug. 27, 2009; published
nline Dec. 14, 2009.
s062-3701/2010/54�1�/010508/8/$20.00.

. Imaging Sci. Technol. 010508-
f image capturing devices. By the colorimetric characteriza-
ion method, device dependent RGB data are converted to
ne of the classical color specification systems1 most often
IEXYZ or CIELAB color systems. Different methods have
een suggested for data transformation between dependent
nd independent spaces, and the most popular one is the
onlinear regression using a standard color chart.2–7 In the
pectral domain, some methods have been presented for the
etermination of spectral responses of digital image captur-

ng devices. Basically, the methods can be divided into two
roups: pseudoinverse and principal eigenmethods. These
ethods have been improved by several modification

pproaches.5,8–13

Hyperspectral and multispectral imaging devices are
lso used for data gathering. However, such devices are ex-
ensive and less accessible. There is no doubt that these
evices would effectively change the camera into an imaging
pectrophotometer. Owing to the smoothness of spectral
roperties of objects within the visible spectrum, the appli-
ation of a multispectral camera with limited number of
lters has been also reported.14

In multispectral imaging methods, the response of an
bject, which can be described by the product of spectral
eflectance of its surface and the illuminant spectrum, can be
epresented by low-dimensional models based on principal
omponent analysis (abbreviated as PCA)8,9 or independent
omponent analysis (abbreviated as ICA)15,16 techniques. So,
or a given linear model, if the number of PCA or ICA
oefficients of a particular set of spectra is equal to the num-
er of camera responses, then the spectra can be easily esti-
ated by an inverse transformation of the set of camera

esponses, with the forward transformation being estimated
rom a representative “training” data set.5,10,14,17–22 If the
umbers of coefficients are more than the numbers of device
esponses, then the number of responses may need to be
ncreased by imaging the scene under different illuminants
r by introducing suitable filters in front of the camera to
odify the sensor spectra. A conventional trichromatic digi-

al camera combined with either absorption filters23,24 or
ifferent light sources20,25 has been recommended for cap-

uring multispectral images.
In the field of spectral recovery from colorimetric data,

ost research has been focused on the reconstruction of

pectral reflectance of opaque surface color and did not con-
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ider the transparent media, which are important in identi-
cation and quantitative analysis of materials in chemistry
nd physics.

This article presents the results of the recovery of spec-
ral transmission of a set of transparent colored solutions
rom the RGB data obtained by a Canon EOS D350 com-

ercial still camera. A wide range of colored solutions has
een prepared, different reconstruction techniques are em-
loyed, and the recovery results compared with each other.
ore specifically, the PCA, pseudoinverse, and matrix R
ethods26 are employed with some modification to recover

pectral transmission of different examples of colored
olutions.

ECONSTRUCTION OF SPECTRAL DATA FROM
OLORIMETRIC INFORMATION
CA
rincipal component analysis has been the most successful
ethod for the reconstruction of reflectance data from the

orresponding standard tristimulus values as exemplified by
IEXYZ color space.8,9 The method was employed by many

esearchers and simply formulated by Fairman and Brill.8

ince the reflectance spectra of natural color and most
onfluorescent surfaces are smooth functions of wavelength,

he reflectance curve could be represented by a limited num-
er of the most significant eigenvectors. Hence, a linear
odel, as shown in Eq. (1), can be implemented for reflec-

ance spectra reconstruction

R�� = V0,� + V�C , �1�

here R� shows the estimated reflectance value and V0,� and

�, respectively, represent the mean of spectral reflectance
nd the selected eigenvectors of a suitable reflectance data
et. The selected eigenvectors correspond to the highest ei-
envalues. Accordingly, C is a column vector of k elements,
hich contains the principle component coordinates, and it

an be calculated from Eq. (2),

C = T−1�Q − Q0� , �2�

here T−1 is a 3�3 matrix and contains the tristimulus
alues of the first three selected eigenvectors; Q and Q0 show
he color coordinates of proposed sample and the mean vec-

or of the database, respectively. So, R� may be easily calcu-
ated from Eq. (1). When a set of tristimulus values i.e.,
IEXYZ under a given viewing condition are available, three

igenvectors can be considered and a fully defined equation
s employed. Obviously, in such cases the recovery of the
eflectance factor cannot be ideal, and the reproduced spec-
ra would be improved by introducing additional coordi-
ates, such as another set of tristimulus values, under a sec-
nd illuminant. Accordingly, the size of the matrix in such

ondition increases to six, as shown in Eq. (3), d

. Imaging Sci. Technol. 010508-
T = �
X1,1 X1,2 X1,3 X1,4 X1,5 X1,6

Y1,1 Y1,2 Y1,3 Y1,4 Y1,5 Y1,6

Z1,1 Z1,2 Z1,3 Z1,4 Z1,5 Z1,6

X2,1 X2,2 X2,3 X2,4 X2,5 X2,6

Y2,1 Y2,2 Y2,3 Y2,4 Y2,5 Y2,6

Z2,1 Z2,2 Z2,3 Z2,4 Z2,5 Z2,6

� , �3�

here the first subscript refers to the illuminant-observation
nd the second shows the index of the selected eigenvectors.

seudoinverse Method
he simplest approach for the determination of spectral data

rom colorimetric information can be the pseudoinverse
ethod. Recently, the method was implemented by Berns

nd Zhao using a six-channel camera signal. In this work,
he transformation matrix was constructed by the Moore-
enrose pseudoinverse method.26

The spectral transformation was derived to convert
ultichannel camera signals D of color targets to spectral

ransmission factors N, as shown in Eqs. (4) and (5),

N = TSD , �4�

TS = N � PINV�D� . �5�

hey employed two different light sources to provide two
ets of RGB data for each sample. Hence, six-dimensional
olorimetric data were converted to 31 dimensional reflec-
ance spectra by this method.

atrix R Method
n 1953, Wyszcki27 presented his hypothesis that each spec-
rum can be decomposed into a fundamental stimulus and a

etameric black. Later, a mathematical method was devel-
ped by Cohen and Kapuff28–31 for performing such decom-
osition idea. Finally, Fairman32 suggested a correction com-
ensation technique for parametric pairs based on Wyszecki
ecomposition hypothesis.

Recently, Zhao and Berns26 offered a new technique for
he reconstruction of spectral reflectance based on the
mplementation of the matrix R method. As Cohen and
apuff showed, matrix R can be calculated from matrix A.
atrix A can be formed from the inner products of spectral

olor matching functions of a standard observer and the
elative spectral power of the applied light source. Matrix A
s an n-by-3 matrix, where n is the number of wavelength,
.e., n=31 in the visible spectrum, and the three columns are
hree independent primaries. Matrix R, an n-by-n symmet-
ic matrix, can be mathematically defined as shown in Eq.
6),

R = A�A�A�−1A� . �6�

hao and Berns first computed the spectral reflectance of
he sample from camera signals using the pseudoinverse

ethod. Then, as shown by Eq. (7), the metameric black,

enoted by B, was calculated from spectral reflectance data

Jan.-Feb. 20102
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B = �I − R�N , �7�

here I is an n-by-n identity matrix and N is the estimated
pectral reflectance factor determined from the
seudoinverse method. The second set of tristimulus values
as predicted from camera signals by employing the classical

haracterization method.2–4 The proposed transformation
atrix designated by TC can be calculated by Eq. (8)

TC = NC � PINV�DL� , �8�

here DL represents the linearized camera signals and NC

hows the tristimulus vector. Then, fundamental stimulus
N�� can be calculated from estimated values using Eq. (9),

N� = A�A�A�−1T . �9�

inally, the metameric black from predicted spectral reflec-
ance factors B was fused with the fundamental stimulus
rom estimated tristimulus values N� to get the spectral re-

ectance factors R� , as shown in Eq. (10)

R� = N� + B . �10�

XPERIMENTAL
Canon EOS D350 single-lens-reflex digital still camera

quipped with a 100 mm f /2 :8 Canon macro lens EF was
sed in this research. The camera uses complementary metal
xide semiconductor (CMOS) image sensors in an 8
egapixel array; a UV filter (Sigma DG) was placed in front

f the lens to remove any ultraviolet radiation. The captured
ata were saved in CR2 (RAW) format.

A suitable box was assembled to capture the images of
est solutions. The schematic diagram of the image captur-

Figure 1. A schematic dia
ng box is shown in Figure 1. The inner layers of box were l

. Imaging Sci. Technol. 010508-
ade of matt white acrylic sheets. In order to avoid the
ffect of unwanted ambient light, the outer faces of the box
ere covered with thick black acrylic sheets. A suitable ap-

rture for the camera lens was arranged at one end of the
ox, while two fluorescent lamps (Philips, TL 8W/965) with
000 K correlated color temperature and two halogen lamps
Osram, 41870 WFL, 12 V, 50 W) with 2500 K color tem-
erature were placed in the other end. To prevent direct

llumination of solutions and prepare a uniform lighting
ondition, a light diffuser sheet was fixed in front of the
amps. The spectral energy distributions of these lamps were

easured using a GretagMacbeth Eye-One Pro™ spectro-
hotometer from 380 to 730 nm at 10 nm intervals, while

he measurement aperture was 4.5 mm. Figure 2 shows the
elative spectral energy distribution of the light sources
mployed.

f the image capturing box.

igure 2. The spectral energy distributions of fluorescent and halogen
gram o
amps.

Jan.-Feb. 20103
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As Fig. 1 shows, the sample was placed between the
iffuser and lens over a black separator, so that no light
ould reach to the camera except that which passed through
he sample holder. A standard glass sample holder with the
ize of 2 cm width, 1 cm depth, and 3 cm height was used in
he hole arranged in the black separator. Commercial
amples of methyl violet, methylene blue, malachite green,
ismark brown, magenta, and auramine were used as prima-
ies. Different tertiary combinations of these dyes were used
or preparation of different colored solutions. To prepare a
ariety of transparent samples, dye solutions were mixed in
ifferent concentrations. The spectral transmissions of
amples were measured using a Varian Cary 50 double beam
bsorption spectrophotometer. Samples were measured from
00 to 700 nm at 1 nm intervals. The spectral transmissions
f the experimental samples are shown in Figure 3. The
IEXYZ and CIELAB color specifications of the samples
nder D65 illuminant and 1964 standard observer were also
omputed from these data. Figure 4 shows the a�b� chroma-
icity coordinates of samples in the CIELAB color spaces.

All computations were conducted with MATLAB 7 from
he Mathworks. The captured images in raw CR2 format
ere converted to a readable MATLAB file using public do-
ain software named DCRAW.C

33; the CR2 data format was
hanged into 16-bit PPM (Portable PIXMAP) format by this
ode.

To balance the camera responses to gray samples, gray
atches of a Kodak Q_60 color chart (IT8.7/2) were used.
amera signals corresponding to these patches are illustrated

n Figure 5. As this figure shows, responses of the Canon
igital camera to these patches were adequately linear.
ence, linearization was not conducted and the raw data
ere directly used in subsequent processing.

ESULTS AND DISCUSSION
olorimetric Characterization of Camera

nonlinear regression method was performed to convert
GB raw data to CIELAB values with a precorrection, in-

igure 3. Spectral transmission of prepared transparent colored
olutions.
olving the cube root function of the RGB data. Different

. Imaging Sci. Technol. 010508-
ransformation matrixes were examined and a 17 term poly-
omial led to the best results. As training and testing sets
uring the optimization process 105 clear solutions were
sed. To select the most suitable samples for the training
tep, the technique suggested by Hardeberg5 was employed
nd the optimal samples were determined. Fig. 4 shows the
istributions of selected samples in a�b� chromaticity coor-
inates along with the samples, which were used in testing
tep. Results of colorimetric characterization of the digital
amera with the training and testing sets of colored solutions
ere evaluated by the color difference values using
IEDE2000 under fluorescent and halogen illuminants and
resented in Tables I and II for the training and testing steps,
espectively.

As the tables show, the accuracy of colorimetric charac-
erization of captured images under the fluorescent lamp is
igher than under the halogen light source for both the
raining and testing groups. The CIEDE2000 values were,
espectively, 3.38 and 3.95 for fluorescent and halogen light
ources in the testing set.

igure 4. Color distributions of prepared transparent colored solutions
nd the selected samples in training sequence in a�b� chromaticity coor-
inates along with the samples which were used in testing step �training
nd testing samples are shown with “o” and “ �,” signs, respectively�.

igure 5. The results of camera signals into gray patches of Kodak Q_60
IT8.7/2� chart.
Jan.-Feb. 20104
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ecovery of Spectral Transmission
he first six most significant basis functions to describe

pectral transmission of solutions were extracted and are
hown in Figure 6, while Table III shows the corresponding
umulative variance of the database. As the figure shows, the
umulative variance for the first three eigenvectors is 93.24
nd suggests that three eigenvectors may be inadequate for
pectral recovery; the corresponding result for six basis func-
ions is 99.45.

To provide two sets of XYZ tristimulus values, the RGB
ata of samples obtained under fluorescent illumination
ere converted to L�a�b� color coordinates under D65 and A

lluminants and 1964 standard observer. The L�a�b� data
ere then converted to XYZ values and used for spectral

econstruction.
In order to investigate the effect of the number of se-

ected eigenvectors on results, the reconstruction of spectral
ransmission was also conducted under D65 and A il-

Table I. Statistical results of colo

ean �b� Mean �a� Mean �L� STD CIEDE2000 Max CIEDE2000

.95 1.01 1.84 1.64 7.71

.33 0.91 2.33 1.75 8.56

Table II. Statistical results of col

ean �b� Mean �a� Mean �L� STD CIEDE2000 Max CIEDE2000

.90 2.34 3.24 1.57 7.59

.01 2.42 3.48 1.75 8.68

Table III. Cumulative variances

igenvalues 1 2 3 4 5

V% 47.10 82.10 93.24 96.34 98.54

igure 6. The first six most significant eigenvectors of spectral transmis-
ion data of colored solutions.
. Imaging Sci. Technol. 010508-
uminants individually by using three basis functions. The
GB values captured under the fluorescent illuminant were
onverted to CIELAB values under D65 illuminant. Table IV
hows the results of reconstruction of spectral transmission
n terms of the root mean square error (RMS) between the
ctual and reconstructed spectra and the color difference
alues under different illuminants. Obviously, poor recovery
esults were achieved when three eigenvectors were used and
noticeable improvement could be realized when the num-

er of eigenvectors was increased to six. In this approach, the
GB values captured under one illuminant (fluorescent

amp) were converted to two sets of CIELAB values under
65 and A illuminants. However, the results indicate that

urther improvements are still needed for acceptable recov-
ry results.

For better analysis of results, the residue of differences
etween the actual and the reconstructed spectra, using three
nd six eigenvectors, was calculated and shown in Figures 7
nd 8, respectively. As these figures show, the residuals be-
ome smaller when six eigenvectors are employed; the errors
re more noticeable at the two extrema of the spectra.

Apparently, the recovery errors are greater in compari-
on with those reported in articles on reconstruction of re-
ectance spectral from CIEXYZ tristimulus values. So, other
odification methods were examined to enhance the results.

To improve the recovery results, the pseudoinverse as
ell as matrix R methods were employed as suggested by
hao and Berns.26 In this case, two sets of RGB data, which
ere gathered under fluorescent and halogen lamps, were

onverted to spectral transmission by the pseudoinverse
ethod. Because of good linear response of the camera, the

inearization step was omitted and the raw RGB data under
uorescent illuminant were directly transformed to CIELAB

characterization in training step.

CIEDE2000 Polynomial parameters number Samples number Illuminant

1.78 17 30 Fluorescent

2.11 17 30 Halogen

characterization in testing step.

CIEDE2000 Polynomial parameters number Samples number Illuminant

3.38 17 75 Fluorescent

3.95 17 75 Halogen

l transmissions of dye solutions.

7 8 9 10 11 12

5 99.77 99.86 99.91 99.96 99.98 99.99
rimetric

Mean
orimetric

Mean
of spectra

6

99.4
Jan.-Feb. 20105
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Table IV. Statistical results of recovery using PCA with three and six basis functions, pseudoinverse, and matrix R methods.

ethods
Mean RMS

�%�
Median RMS

�%�
Min RMS

�%�
Max RMS

�%� Std RMS
Mean �E2000

�D65�
Std �E2000

�D65�
Max �E2000

�D65�
Mean �E2000

�A�
Std �E2000

�A�
Max �E2000

�A�

CA �3eigs� 17.78 16.10 4.90 47.88 8.97 2.50 2.82 8.53 4.20 1.77 12.90

CA �6eigs� 10.88 10.08 4.18 19.05 3.87 2.42 1.54 8.42 2.44 1.40 8.97

seudoinverse 11.31 10.28 5.20 31.50 4.34 5.76 3.77 27.64 5.62 4.08 31.84

atrix R 3.24 3.09 0.17 8.10 1.90 2.96 1.71 11.32 2.75 1.54 10.92
F
m

igure 7. The recovery errors �T�−T��� vs wavelengths for PCA method.
hree eigenvectors have been used.
F
igure 8. The recovery errors �T�−T��� vs wavelengths for PCA method.

ix eigenvectors have been used. m

. Imaging Sci. Technol. 010508-
igure 9. The recovery errors �T�−T��� vs wavelengths for pseudoinverse
ethod.
igure 10. The recovery errors �T�−T��� vs wavelengths for matrix R

ethod.

Jan.-Feb. 20106
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alues and then converted to CIEXYZ data. As suggested by
hao and Berns, the metameric black from spectral trans-
ission factors predicted by the pseudoinverse method was

used with the fundamental stimuli from tristimulus values
stimated by colorimetric characterization to get the spectral
ransmission factors. Table IV summarizes the results of the
erformances of the pseudoinverse and matrix R methods.
s the results show, the performance of pseudoinverse
ethod for the reconstruction of spectral behavior of trans-

arent samples is better than PCA, using three eigenvectors.
n the other hand, this method led to the worst colorimet-

ic error. As Figure 9 shows, the residuals between the actual
nd reconstructed transmission spectra at the two ends of
he spectra decrease in comparison with PCA methods.

Finally, the matrix R method was also examined in the
econstruction process; it led to the minimum spectral error.
s Figure 10 shows, the residuals between the actual and

econstructed transmission spectra are significantly smaller
n comparison to other methods, and satisfactory recoveries
ave been achieved by this technique.

As Table IV shows, the colorimetric errors of PCA
ethod by using six eigenvectors are the least among the

Figure 11. Spectral recovery of eight randomly se
eigenvectors, �b� PCA with six eigenvectors, �c� ps
mployed methods under both D65 and A illuminants, while b

. Imaging Sci. Technol. 010508-
he spectral error of this method is greater than obtained
ith the matrix R method. On the other hand, as Fig. 9

hows, the maximum residual differences between the actual
nd reconstructed spectra have been concentrated in the two
nds of the visible spectrum, where color matching func-
ions are smallest. As the figures show, the minimum error
n spectral reconstruction by PCA methods, opposite to ma-
rix R method, are approximately located around 450, 550,
nd 610 nm, where the color matching functions benefit
rom their highest values. Clearly, this could lead to the

inimum color difference values achieved by the PCA
ethod.

The results of spectral recovery of eight randomly se-
ected samples with the different reconstruction methods are
hown in Figure 11. The superior performance of the matrix

method over the PCA and matrix pseudoinverse technique
s clearly evident in this figure. On the other hand, using the
CA method and three eigenvectors leads to the worst re-
ults among the employed methods.

ONCLUSION
variety of transparent colored solutions and a capturing

samples by different methods. �a� PCA with three
erse, and �d� matrix R.
lected
ox, which was equipped with a conventional digital camera

Jan.-Feb. 20107
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nd two sets of commercial light sources, were prepared to
xamine different methods of spectral transmission recovery
echniques from the corresponding RGB data. Several meth-
ds including PCA, pseudoinverse, and matrix R techniques
ere employed in the recovery process, while some types of
odifications were applied to improve their performance
ith transparent samples. Results of reconstructions were

valuated by mean, maximum, and standard deviation of
olor difference values under D65 and A illuminants and
964 observer, for which the CIEDE2000 color difference
ormula was used. Besides, root mean square errors between
he actual and reconstructed spectra were computed. The
esults showed that the pseudoinverse and PCA methods
ead to unacceptable recovery outcomes. However, results of
he PCA method improved on increasing the number of
igenvectors employed. Finally, the matrix R method led to
he most acceptable accuracies overall in both spectral and
olorimetric terms among the methods applied.
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