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Abstract. Spectral imaging is becoming popular. Spectral accuracy
in measurements is an important factor, especially now when fluo-
rescent and light emitting diode (LED) based light sources are be-
coming common. Browsing image sets in a modern network is also
becoming relevant, but the problem with spectral data is that the file
sizes are so large. An efficient compression method suitable for
browsing purposes consists of principal component analysis with
spatial subsampling. In this study, the optimal combinations of a
sampling interval and parameters of the developed compression
method are found for different data sets under several light sources.
It is shown that depending on the light source, 3-20 nm sampling
intervals are required. In addition, with different light sources and
data sets, between three and six principal components must be
used. With a suitable spatial subsampling mask, high compression
ratios can be achieved with good results. The spatial subsampling is
a fast operation and can be done online before transmission, which
gives the client user a possibility to choose the compression ratio.
© 2009 Society for Imaging Science and Technology.
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INTRODUCTION

Color is usually represented in a three-dimensional space,
such as in a RGB space. However, ordinary trichromatic rep-
resentations of color have been shown to be problematic:
one cannot describe color accurately enough, there is
metamerism,’ and three-dimensional color coordinations
are device dependent.” Therefore, the full spectrum of a
color is needed to avoid these problems. Several examples
exist that describe the needs of spectral imaging. Different
applications are found in telemedicine,” quality control,*
e.g., in plastics, wood and paper industries, digital
museums,” and also in e-commerce in items where color is
meaningful, such as in clothing, fine arts, or paints.

It is not possible to capture a full digital spectral image
with a single shot. Commercial displays or printers are inca-
pable of representing a spectral image on a computer screen
as a picture or of printing it. The closest examples nowadays
are six-primary color gamut based high definition television
(HDTV) monitors’ and video cameras.” Multiprimary
printers producing color with more than four primaries have
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also been developed.® Still, different types of very sophisti-
cated and accurate measuring devices have been developed
for the saving of spectral images. These devices are spectral
or spatial scanners based on different technologies, such as
an acousto-optic tunable filter,” liquid crystal tunable filter,"’
spectral scanning with a grating,” or interferometry."" Many
spectral measurements are done with 10 nm or even wider
sampling intervals because of the limitations of the measure-
ment devices. However, it has been shown that, for example,
a 10 nm sampling interval is not enough under fluorescent
light sources.">" The sampling interval issue is becoming
more and more important because of the increasing popu-
larity of fluorescent and LED based illumination.

One problem in spectral images is that the raw format
usually requires a large memory space, e.g., a 16-bit spectral
image between a 380 and 780 nm range with a 5 nm interval
and a spatial size of 1920 X 1080 pixels requires 320 MB.
Therefore, one cannot save several images on a DVD or a
USB memory stick. In addition, transferring the images
through an ordinary network is very slow. Several compres-
sion methods have been developed to correct these prob-
lems. One proposal is a method compatible with standard
trichromatic methods,'* where additional components are
saved with some standard trichromatic information, and for
which it was shown that four additional components were
required to get all used 354 reflectance spectra of objects
below AE<3.0. A method based on address-predictive vec-
tor quantization (VQ) has also been developed,” where
compression ratio (CR) of 40:1 and signal-to-noise ratio
(SNR) of 23 dB can be achieved. Independent component
analysis'®'” and principal component analysis (PCA)"* " are
also widely used, where the eigenimages are projections of
the image formed by the eigenvectors. Parkkinen et al.'®
used eight eigenvectors for the Munsell matte data set to
obtain an average AE<0.5. Lim et al.”* found six compo-
nents for SNR of 40 dB for 220-band airborne visible/
infrared imaging spectrometer (AVIRIS) airborne images.
Additionally, different methods are used to compress the
eigenimages, for example standard JPEG based straightfor-
ward subsampling” or via discrete cosine transform
(DCT).** With fast straightforward subsampling, 40-band
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images of natural scenes were used, resulting in CR of 27:1.
With the DCT method,” 16-band airborne multispectral
images between 360 and 1210 nm were used, resulting in CR
of 5:1 and 40:1 for a near lossless and visually lossless result,
respectively. In addition, a discrete wavelet transform
(DWT) familiar with JPEG2000 is used in Kaarna® and Du
and Fowler.”® A combination of DWT and gain shape VQ
has been developed,” where SNR of 16-19 dB with CR of
40:1-10:1 and SNR of 12-20 dB with CR of 50:1-10:1 for
6-band LANDSAT satellite images and 14-19 bands of GER
satellite images were achieved, respectively. Comparison be-
tween PCA, Fourier, and wavelet bases for reflectance repre-
sentation and estimation was done by Mansouri et al.”’ A
region-based eigensubspace transform added with JPEG is a
method® that results in a peak signal-to-noise ratio (PSNR)
near 30 dB with CR of 15:1 and 36:1. An adaptive recursive
bidirection prediction is (RBP) with JPEG is also a
method,” resulting in SNR of 39 dB with CR of 47:1 for
224-band AVIRIS airborne images. An adaptive PCA
method,” which continuously adjusts the eigenvectors, re-
sults in PSNR of 26-30 dB with CR of 34:1-27:1 for 7-band
satellite images. In addition, lossless methods are
region-based’’ and DWT based” compression of PCA
eigenimages, resulting in CR of 2.3:1 and 2.8-2.9:1 for
7-band satellite and 224-band airborne images, respectively.
PCA and some nonlinear dimensional reduction techniques,
such as Laplacian eigenmaps and isometric feature mapping
were used by Carmona and Lenz”' for performance
evaluation.

Since spectral imaging is expanding for several
purposes,” spectral image browsing via internet will also be
needed. The client user should be able to browse several
spectral images located in a server with an internet browser
in an ordinary network. PCA is a very efficient way to reduce
memory requirements. Also, straightforward spatial
subsampling of the eigenimages is so fast operation that it
can be done on uncompressed eigenimages online before
transmitting the image to the user. Because of this, the user
may adjust the final compression ratio and image accuracy
by selecting from different subsampling masks. Hauta-Kasari
et al.”> proposed this method with reflectance spectral data
for browsing purposes. By using this method, this study de-
termines optimal selections for a sampling interval used in
measuring, and the number of required principal compo-
nents and suitable subsampling mask used in compression.
The analysis is done with several modern data sets and for
data under different light sources and illuminants. According
to Lehtonen et al.'> with a Munsell matte spectra set,” even
a 20 nm sampling interval is sufficient for reflectance spec-
tra, but 10 nm may not be adequate for peaky fluorescent
light sources. The same conclusion was reached by Trussell
and Kulkarni,” i.e., a 10 nm sampling interval for illumina-
tions with sharp spectral peaks. In this study, we expand the
point color estimation to spectral images that include com-
pression with PCA and spatial JPEG based subsampling.
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THEORY

Let $° be the original spectral image with a 1 nm sampling
interval and with dimensions m X nXw°, where m and n
denote the height and width of the image and w° denotes the
number of channels in a spectral dimension. Let the spectral
image with AN nm sampling interval be S with dimensions
m X n X w, where w denotes the number of channels in the
spectral dimension w=w?°. To determine the best param-
eters, the original data are first converted to a AN nm sam-
pling interval from the original. This is straightforward, by
taking the values of every ANth wavelength from the mea-
sured image. The values in other wavelengths are removed.

Spectral Image Compression

The spectral image compression method used is based on
PCA and JPEG based subsampling. Following the standard
procedure in spectral image analysis, we use a correlation
matrix instead of a covariance matrix in defining eigenvec-
tors for color spectrum reconstruction. Let S” be a vector-
ordered w X mn dimensional representation of spectral im-
age S, whose mn pixels are ordered as a vector. Let C be the
correlation matrix

mn T
C=28s, (1)
i=1

where S} is the ith spectrum of spectral image S” and T
means matrix transpose. Next, the h first eigenvectors
(h=w) ordered by the largest eigenvalues can be calculated,
which will form the eigenvectors (7,7, ..., 7,) of the spec-
tral image, where 7 is the kth eigenvector of the matrix C.
The vector-ordered eigenimages P” are then formed with the
inner product

)8 (2)

PV:(TI,Tz, e

Let P denote the normal spectral image form of P with
dimensions m X n X h. Let By also be a predefined mask ma-
trix of predefined size t, X t, for kth eigenimage, where

b
> X Bylij) = 1. (3)

i=1 j=1

This mask defines weights for calculating a weighted sum of
a block in spatial subsampling, which will replace the block.
The new subsampled eigenimages P* are then

o h

Pi(x),x) = 2 2 [Bi(i,/)P(y1,2)]
i=1 j=1
with y, =[x, - D, +4] e [1,...,m],

v, =[x, — Dt +j] € [1,...,n],

m

x1:1...L—
1

n
X x2=1...H, k=2,...,h, (4
2

where P, is the kth mXmn dimensional unsubsampled
eigenimage and h is the number of eigenimages. The
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subsampling phase is not applied for the first eigenimage.
The final compressed spectral image is then a combination
of the first eigenimage, other subsampled eigenimages, and
eigenvectors. The subsampling is based on a known method
of JPEG subsampling, where the image is calculated accord-
ing to a YC,C, color coordinate system.” The Y component
represents the achromatic information, while the other two
components Cy, and C, represent the color information. The
Y component is untouched while the other components are
compressed with the mask. Similarly, while the first eigenim-
age is close to the achromatic data, one can apply this
method to eigenimages.

Spectral Image Reconstruction

In the reconstruction, these two phases are conducted in
reverse order by filling the block with the calculated pixel,
which replaced it in compression. The unsubsampling phase
is defined as

Pi(y1,72) = Pix1,x5),
With ylz[(xl_l)tl+l] (S [1,...,m],
yZ = [(x2 - 1)t2+]:| € [l) 3”])

m

3]

x1=1...

n
N xzzl...—, k:2,...,h,
15}

Vi=1,....,t;, Vj=1,....5, (5)

where P is the kth reconstructed eigenimage, and Pj=P;.
The pixels of the eigenimages are reordered to a vector, thus,
generating vector-formed eigenimages P"', which are used
for the spectral image reconstruction, as follows:

S = (71, Ty oor s ) TP (6)
This compression method can also be done in reverse order
by first subsampling all channels in the original spectral im-
age and then calculating the correlation matrix, eigenvectors,
and eigenimages from the subset of pixels. This reverse al-
gorithm arrives at the same result and is also computation-

ally faster.”> However, all channels must then have the same
mask.

Quality and Error Measures

Let S” be a representation of S, where the pixels are reor-
dered as in the original spectral image S°. One error measure
(AE) and two quality measures (PSNR, GFC) were used to
compare the original spectral image S° and reconstructed
image S". The AE error is based on the properties of the
human eye and is used as the error of visuality. The spectra
are first converted to the CIE L*a*b* color space via an XYZ
space using CIE 1931 color matching functions (2° standard
observer). After this, the AE error is calculated as
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AE = (AL + Aa™ + Ab*)'2 (7)

where AL*, Aa”, and Ab™ are the color coordinate differences
between the original and reconstructed spectra in the CIE
L*a*b* color space. Usually, average AE<<1.0 is not visually
discernable.” In this study, we used several spectral image
sets under different light sources. Since the light source is
already included in the data, equal-energy illuminant E was
used to calculate the AE error. For the quality measures, the
reconstructed image needs to be interpolated from the AN
nm interval to the original one, where Lagrange interpola-
tion given by Fairman® was used. The quality measure
PSNR is peak signal-to-noise ratio in decibels (dB) and it is
defined as
§2

€psnr = 10 10%108 , (8)
MSE

where § is the theoretical maximum of a channel value and
emsk 15 the mean square error. PSNR is widely used in image
compression analysis. The GFC error is a correlation mea-
sure, defined as

o _r
2sysy
A

EGEC = [%(Si)z} 1/2[%(5;)2}1/2’ )

where s and s} are channel values of the original and re-
constructed spectrum from the A nm wavelength, respec-
tively. Herndndez-Andrés et al.”” defined this quality mea-
sure with a value of 0.995 as an accurate limit and 0.999 as a
good limit. These quality measures are used to describe the
mathematical difference of the original and reconstructed
spectral image. All the symbols used in this study are listed
in Table I.

TEST DATA

Five different spectral image sets were used in this
research,”*** described in more detail in Table II. In ad-
dition, five different real light sources shown in Figure 1 and
five standard illuminants (A, D65, F2, F8, and F11) were
used. All the images were computationally converted to be
like the spectra that have been measured under the light
sources. Different combinations between image sets and
light sources generated a total of 55 different test sets, in-
cluding image sets without a light source. This light source
conversion simulates the result of spectral image measure-
ment under the light source by assuming that the reflectance
spectra are unknown.

All original spectral images contain 61 or 31 compo-
nents, between 400 and 700 nm with a 5 nm or a 10 nm
interval. Color distributions of different sets are shown in
Figure 2 as (a*,b*) coordinate pairs projected from a CIE
L*a*b* color space. The color conversion was done with CIE
1931 color matching functions (2° standard observer) and
under a D65 illuminant. The darker the point is in the co-
ordination, the more pixels with the same coordinate exist in
the set. It can be seen that the colors vary greatly, especially
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Table 1. Symbols.

Symbol  Definition Symbol  Definition
By Mask for kth eigenimage P Reconstructed eigenimages
A ith mask value for kth eigenimage P, kth reconstructed eigenimage
( Correlation matrix P Vector-ordered representation of P
AE AF error measure P Vector-ordered representation of P
AN Sampling interval S Spectral image with AN nm sampling inferval
£65¢ GFC quality measure $ Original speciral image
eps Mean square error s Reconstructed speciral image
EpsR PSNR quality measure s Vector-ordered representation of §
h Number of eigenvectors/eigenimages [ ith spectrum of §
ii Counters for spatial directions v Vector-ordered representation of §'
Counter for eigenvectors/eigenimages s Value of original specirum in wavelength X nm
Wavelength counter (A nm) s\ Value of reconstructed specirum in wavelength \ nm
m Height of original spectral image S Theoretical maximum of a channel value
n Width of original spectral image T kth eigenvector, ordered by highest eigenvalues
P Eigenimages ity Mask height and width
Py kth eigenimage w Number of wavelength channels in §
P Mask-sized block in kih eigenimage WP Number of wavelength channels in §°
Value of ith row and jth column (spatial surface) in matrix Z
P Subsampled eigenimages Z(i,j)  where Ziis any matrix with spatial dimensions.
P, kih subsampled eigenimage X1, Xy, spatial indexes
n.n
Table Il. Data sets.

Image set  Original sampling (hm) ~ Nr. of images  Contents

Mixed collection of objects, including oil paint, Japanese paint,

bottles, fruits, portrait, wool of different colors and an image of
Misc® 5 7 several colorful objects.

Colorful cardboard packages of different products, e.g., packages
Cardboard® 10 18 of cereals, rice, tea, foothpaste, washing powder, etc.
Scenery" 10 6 Natural and urban images from the Minho region of Portugal.
lcons! 5 9 Various orthodox icons.

Magazine papers, postcards and business cards printed with various
Printed? 5 24 printing devices.
Total 64 Total number of images.

“Reference 38.
bReference 39.
‘Reference 40.
IReference 33.

for the cardboard set with high color saturation, contrary to
the scenery and icons sets. The icons set consists mostly of
red and yellow colors, but also some small blue areas.

The light sources used are measured between 376 and
776 nm with a 2 nm interval. Spectral images and light
sources spectra were interpolated to a 1 nm step with inter-
polation presented by Fairman.™ The light source spectra
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were then converted to between 400 and 700 nm by remov-
ing the wavelengths outside this range. After that, the spec-
tral images were combined under the light source spectrum.
The final data are then between 400 and 700 nm with a 1 nm
sampling interval and defined as original data S°. According
to our previous study,'® this interpolation phase does not
generate a significant error in the results since the interpo-
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Figure 2. Color distribution of each set shown in (a*,b*) coordinate
pairs projected from a CIE [*a*b* color space. The darker the point is in
the coordination, the more pixels with same coordinate exist in the set.

lated reflectance spectra are very near to spectra measured

with 1 nm interval. Similar results are also found by Sandor
41

et al.

EXPERIMENTS

Spatial Subsampling Masks

Typical mask matrixes based on JPEG-compression are
called 4:4:4, 4:2:2, and 4:2:0 methods.” The corresponding
masks for the spectral image compression used in this study
are

B2:4:4 _ [l],

B;t:Z:Z _ |:1 0]’

1 0
Bi.z.o _ ,
00

Vk=2,...,h. (10)

The same mask is used for eigenimages P,—P. In 4:4:4,
there is no spatial subsampling since the mask dimensions
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are 1 X 1. In addition, three different 3 X 3 masks were used

000
B2X3 center _ 010

000

>

/9 1/9 1/9
BI?:XS average _ | 1/9 1/9 1/9
/9 1/9 1/9

>

bi bi b
3X3 di 4 5 6
Bk median _ bk bk bk

bi b} b

)1 for median pixel bi=Md(PY)
b= .
0 otherwise,

Vk=2,...,h, (11)

where P} is a corresponding 3% 3 block from the kth
eigenimage and i=1-9. In the last median method, the
mask is different in each eigenimage since the median value
may be positioned differently in different eigenimages. In all
other methods, the mask is the same for all eigenimages
P,—P,

In the case where the image height or width is not di-
visible by the size of the mask, the eigenimages were tempo-
rally continued spatially with its mirror before subsampling,
but only so much so that the size becomes divisible. For
example, if the spatial size of an image is 301 X 299 and we
use a 3 X 3 mask, one column needs to be added at the right
edge of the eigenimage and two rows to the bottom edge to
make the eigenimage size 303 X 300. This is now divisible by
the size of the mask. In this case, the last and second last
rows are doubled to the bottom edge of the image in this
order. The last column is then doubled to the right edge.
These extra rows and columns were removed in the
unsubsampling phase.

Quality and Error Limits

Average quality and error limits were chosen, which com-
bined to give satisfactory results. As previously explained,
AE<1.0 is not visually discernable and GFC>0.995 is an
accurate limit for spectra. These limits could also be used for
spectral images of good quality, but spatial subsampling
would not then be possible in any case. However, very accu-
rate data may not be needed in the browsing phase. One
may also think that the accuracy required in point color is
not usually needed in spectral imaging. Unlike in point color
measurements, spectral imaging may take a long time and
therefore the risk of noise is higher. In addition, color quality
is not usually required in such accuracy as in point spectra.
When a spectrum is located in a huge spectral image, the
observer does not see just one color of a certain pixel, but
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Figure 3. Average AE, GFC, and PSNR values for reflectance data
(solid) and data under artificial daylight (dashed) in the printed and
cardboard image set with @ mask 4:4:4 and with 3-8 principal compo-
nents (curves).

also all other pixels in the image. The surrounding pixels
give an effect to the visualization, and so, the color of one
pixel cannot be seen accurately. Therefore, the less strict
threshold limits were chosen, as average PSNR>30 dB, av-
erage GFC>0.99 and average AE<<3.0. The limit AE<3.0
for spectral images was also recommended by Zhang and
Wandell,”” and the limit GFC=0.99 was defined as accept-
able by Romero et al.*’ with different natural and artificial
illuminants. The chosen quality and error limits correlate
depending on the used light source. For example, with data
under an F2 illuminant, all quality and error measures result
in the same selections. For data under artificial daylight,
AE<3.0 is gained very easily, but PSNR and GFC limit the
selections most. For data under D65 illuminant, the major
limiter for the selections is the AE measure. Generally, the
correspondence of the limits used is a compromise with the
light sources used.

However, with increasing sampling interval, oscillation
of the error and quality values may occur with wide sam-
pling intervals, especially for the data under peaky light
sources, because with some sampling intervals the peaks are
caught and with others they are missed. To avoid this issue,
it is necessary that the quality and error limits must also be
established with all the more accurate sampling intervals and
higher number of principal components than the chosen
ones. With subsampling, it is possible to choose a mask of
smaller size than the selected one. If the selected replacement
pixel is one selected pixel from the block, then an average or
median pixel can also be used. Similarly, a median pixel can
be used instead of an average pixel.

Evaluation of Quality and Error Measures

Let us first concentrate on the reflectance data and on the
data under an artificial daylight source. The average AE er-
ror and average PSNR and GFC quality values of the printed
and cardboard sets are shown in Figure 3. Here, sampling
intervals of 1 and 20 nm are used, which is shown in the
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horizontal axis. The data are compressed with 3-8 principal
components. No subsampling is used. The quality of the
reconstructed spectra with a different number of principal
components is shown as different curves in the image. The
solid curves are generated with reflectance data and dashed
curves with data under an artificial daylight source. In GFC
and PSNR calculations, the lowest curve corresponds to
compression with three principal components, and in the
higher curves more principal components are used. Like-
wise, in AE calculations, the highest curve corresponds to
compression with three principal components, and in the
lower curves more principal components are used. The re-
sults are very different between these two sets. The curves in
the printed set are practically stacked together. On the con-
trary, with the cardboard reflectance set, the curves are dif-
ferent with a different number of principal components, but
again stacked together in the set under the light source. The
AE errors for the reflectance data of the printed set show
that all used sampling intervals give good results, especially if
four or more principal components are used. GFC and
PSNR give good results with any sampling interval and with
any number of principal components used. In the case of the
cardboard set, five, six, and three principal components are
required for AE, GFC, and PSNR limits, respectively, for any
sampling interval. Therefore, because of the GFC limit, six
principal components should be chosen. For the printed
data under the artificial daylight source, a 16 nm interval
with three principal components is enough with the AE er-
ror. If using a GFC measure, an 11 nm interval with three
principal components is enough. In the case of PSNR, 8 nm
sampling with three principal components is required. The
quality is a lot poorer with wider sampling intervals. For the
cardboard data under the artificial daylight source, GFC and
PSNR values are above the limits with 8 nm and 9 nm
intervals, respectively, with three principal components.
With the AE limit, an interval as wide as 14 nm could be
used, but now PSNR and GFC measures limit the selections.

The subsampling phase gives a high negative effect for
the errors, which is shown in Figure 4. It can be also seen
that a 3 X3 mask gives similar results to a 4:2:0 mask, with
the exception of the AE error. Here, the printed set (unplot-
ted curves) and the cardboard set (plotted curves) with eight
principal components and a 5 nm sampling interval were
used. The dashed curves are created from data under an
artificial daylight source and solid curves from data from
reflectance spectral images.

Procedure for Selecting the Parameters

A suitable sampling interval and number of principal com-
ponents, which satisty the quality and error limits, were cho-
sen for each subsampling mask and for each image set sepa-
rately, by using average quality and error measures from each
image. The selection process can be done in several ways,
resulting in different combinations of sampling interval,
number of principal components, and subsampling mask;
but the method shown in Figure 5 was used. At first, for
each image in a set, the widest possible sampling interval
with the required number of principal components was cal-
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Figure 5. Selection procedure.

culated. Then, the lowest number of principal components
with the required sampling interval was calculated. These
selections were set as the lower and upper boundaries for the
final selections of sampling interval and principal compo-
nents. In this boundary search, all narrower sampling inter-
vals and higher number of principal components must also
satisfy the results. After this, all possible combinations were
found between these boundaries. For each image, such final
selections were found where the standard deviations of sam-
pling intervals and number of principal components be-
tween the images are the smallest. This was done with each
spatial subsampling mask and image set separately. However,
it was found that with some subsampling masks, few images
of some data sets under some light sources failed to achieve
the quality and error limits for any number of principal
components below 20. Therefore, only such combinations
were considered as candidates, where over 75% of the images
satisfy the error and quality limits and, if possible, standard
deviations of selected sampling intervals and numbers of
principal components are less than 3 nm and three compo-
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nents, respectively. Next, such selections for each image were
found from the candidates, which cause the smallest stan-
dard deviations with the largest possible subsampling mask.
The final selections for the whole data set are the averages of
these selections. With these conditions, the quality and error
values of the failed images are also close to the limits, and
the overall results remain acceptable.

RESULTS

The final chosen sampling intervals, number of principal
components, and subsampling masks for each data set are
shown in Figure 6. Each ellipse is created with the data set
under certain light source. The central point of an ellipse
shows the average selected sampling interval and number of
principal components for the data set. The ellipse denotes
the standard deviations of the sampling intervals and prin-
cipal components selected for each image in the set. The
color of the ellipse shows the spatial subsampling mask used.
The text on the side of the ellipse denotes the light source
used and relative number of images in a set used in the
selection procedure. Almost all ellipses are small in the cho-
sen selections, which means that the selections of different
images are, in general, close to average selections.

Generally, a 20 nm sampling interval is enough for re-
flectance data and data under such light sources, whose
spectrum is smooth. The cardboard and scenery sets require
five or six and four or five principal components, respec-
tively. With the icons set, data under a tungsten light source
and illuminant A also require six principal components. All
other reflectance data sets or data sets under a smooth light
source require four principal components. Mask 4:4:4 must
be used for the cardboard sets and also for the scenery data
under illuminant A. Mask 4:2:2 is needed for reflectance
data and data under illuminant D65 in the misc and icons
sets. Mask 4:2:0 was selected for the scenery data under a
tungsten light source. Mask size 3 X3 is enough for all the
other reflectance sets and sets under smooth light sources. In
the icons set under a tungsten light source or illuminant A,
high subsampling creates high error, which is compensated
with a high number of principal components. With the re-
flectance cardboard data and the same data under smooth
light sources, subsampling does not work at all.

For the data under an artificial daylight or deluxe natu-
ral light source, a 6-9 nm interval with 3-5 principal com-
ponents are required. With different data sets under a
Northlight source, a 10-16 nm interval with 3—4 principal
components are needed, with the exception of the cardboard
set, where 4:2:2 subsampling causes a high error requiring
eight principal components with an 8 nm sampling interval.
The selected sampling interval and number of principal
components for data under a white LED light is similar to
selections for data under a Northlight source. Generally, a
4:2:2 mask can be used for the cardboard data under differ-
ent real fluorescent light sources. Depending on the peaky
light source, a 4:2:2 or 4:2:0 mask is required for the misc
and icons sets. For the scenery and printed set, a 3X 3 av-
erage mask can be used, generally. However, some exceptions
are found, for example, masks 4:2:0 and 4:2:2 are required in
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Figure 6. Optimal average selections for different data sefs under different light sources. Ellipses represent the
standard deviation of selections done for each image separately.

the printed set with a Northlight source and in the scenery
set with a white LED source.

For F illuminants, a 3-6 nm sampling interval with 3—6
principal components are needed with different sets. In ad-
dition, mask 4:2:2 or 4:2:0 can be used for the misc and
icons sets. Mask 4:4:4 is required for the cardboard set, but a
3 X 3 mask is possible with the scenery and printed sets. The
replacement pixel can be a center pixel with an F2 il-
luminant, but must be a median pixel for the printed set
under F8 illuminant, and an average (or median) pixel with
other F illuminants.

Some average errors for all images in the printed and
cardboard reflectance sets and sets under an artificial day-
light source are found in Table III. For reflectance data sets,
the errors are clearly smaller than the limits, so a sampling
interval wider than 20 nm would also be accepted. However,
with the cardboard set under an artificial light source, the
AE and PSNR results are close to the error and quality lim-
its, and with the printed set under an artificial daylight
source, the GFC and PSNR results are close to the quality
limits. The compression ratio is calculated between the
uncompressed data with a selected sampling interval and

Table II. Optimal average selections and results of the cardboard and printed refleciance data sets and data sets under artificial

daylight.
Reflectance Artificial daylight
Average
Image set Selections Quality/Error Selections Quality/Error
Cardhoard 20 nm, AE 1.6 7 nm, AE 28
6 PGs, GFC 0.994 4P, GFC 0.993
4:4:4, PSNR 35.9 4:2:2, PSNR 314
(R" 31 (R% 181
Printed 20 nm, AE 27 7 nm, AE 2.6
4 PG, GFC 0.998 3PCGs, GFC 0.997
3% 3 median, PSNR 35.7 3% 3 center, PSNR 319
R%12:1 (R 36:1
“Compression rafio.
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Table IV. Compression ratios of an image measured between 400—700 nm.

Sampling interval

of uncompressed image 5nm 10 nm 20 nm
4 PCA, 4:4:4 151 81 41
4 PCA, 4:2:0 351 18:1 9:1
4PCA, 33 46:1 231 12:1
6 PCA, 4:4:4 10:1 51 KR
6 PCA, 4:2:0 71 14:1 71
6 PCA, 33 391 20:1 10:1
8 PCA, 4:4:4 81 41 21
8 PCA, 4:2:0 221 11:1 6:1
8 PCA, 33 341 17:1 91
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Figure 7. Average and bad cases of a reconstructed spectrum. In com-
pression, 20 nm sampling, four principal components, and a 4:2:0 mask
matrix were used.

compressed data with a selected number of principal com-
ponents and subsampling mask. Different examples of com-
pression ratios for the method are shown in Table IV. In
these examples, the compression ratio varies between
2:1-12:1, 4:1-23:1, and 8:1-46:1 with a 20 nm, 10 nm, and 5
nm sampling interval of the uncompressed image, respec-
tively. An average and bad case example of spectrum recon-
struction can be found in Figure 7, when four principal
components and a 4:2:0 subsampling mask was used.

DISCUSSION

The results fall into three groups: reflectance data and data
under smooth light sources, data under real fluorescent light
sources, and data under standard F illuminants. The light
source has a very high effect on the sampling interval. For
reflectance data and data under smooth light sources, 20 nm
is enough. For real fluorescent light sources, 6-9 nm is re-
quired, with the exception of the smoother light sources
Northlight and white LED, where a wider sampling interval
between 10 and 17 nm can be used. With these light sources,
the subsampling mask used affects the sampling interval: a
larger mask requires a more accurate sampling interval. This
compensates for the error generated in subsampling. The
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required sampling interval is most accurate for the data un-
der F illuminants, with 3-6 nm. In the printed set, the four
CMYK primaries between different printers are similar and,
therefore, the required number of principal components is
also low, between three and four. On the other hand, there
are various strong colors in the cardboard set, creating a
need for several principal components. The items in the
misc and in the scenery sets are more common targets for
spectral imaging, and four or five principal components are
required. In general, the results of all sets fall between four
and six principal components. While the peaks of a peaky
light source require an accurate sampling interval, the light
source spectrum converts the spectra more similar to each
other, which may require less principal components in some
cases than with reflectance spectra, e.g., in the scenery set.
Since the spectra are similar, the overall dimensionality is
smaller. Stacking, shown in Fig. 3, occurs, and adding more
principal components does not develop the data at all.

It is usual that spectral measurements are done with a
10 nm sampling interval. But in the measuring phase, one
should be careful in choosing the sampling interval. This
study, among others,'>"? shows that a 10 nm sampling in-
terval is not enough for fluorescent light sources. This ques-
tion will become more and more important due to the in-
creasing popularity of fluorescent and LED based light
sources.

Subsampling is highly dependent on the data set and
light source and, practically, it does not work with the card-
board set. The product packages include a lot of sharp edges
between totally different color hues. These edges made it
impossible to use subsampling since the color edge would
clearly change after subsampling. However, if the data set
contains images with weak color edges or the edges are not
important, subsampling can be used even up to a 3X3
mask. In general, a 3 X3 mask can well be used with sets
similar to the printed or scenery sets, but 4:2:0 and 4:2:2 is
good with the icons and misc data. In the icons and misc set,
sharp color edges also exist, but not with as strong a color
change as in the cardboard set.

The AE and PSNR results with the reflectance data sets
are very similar to the results in the study of Hauta-Kasari et
al.”> with the Coral database.** If the quality and error limits
are used, three principal components and a 4:2:0 mask seem
to not be acceptable for the Coral database nor for the re-
flectance data sets used in this study. Similar PSNR values as
in Table III were also arrived at by Chang”™ and Chang et
al.”* The resulting compression ratios are also generally simi-
lar to other compression methods given in the introduction
section. A small practical test was done and repeated five
times with an Intel Pentium 4 HT 2.4GHz CPU and with
2X512 MB of memory. Downloading an uncompressed
image required an average 78.3 s with a broadband 4 Mbit
ADSL connection. However, downloading the compressed
image required only 3.4 s, including reconstruction time
with MATLAB software. Here the original image was mea-
sured with a 5 nm sampling interval. The compression was
done with five principal components and a 4:2:0
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subsampling mask. Because of the simplicity of the
subsampling, the spatial reconstruction requires minimal
processor time. In addition, spatial subsampling required
only 0.2 s with MATLAB software, which makes it possible for
the user to choose the subsampling mask that is applied to
the spectral image before transmission.

CONCLUSIONS

A suitable sampling interval, number of principal compo-
nents, and spatial subsampling mask were found for a spec-
tral image browsing method, with different spectral image
sets under various light sources and standard illuminants. It
was shown that even a 20 nm sampling interval is enough
for spectral imaging under smooth light sources. However,
10 nm is not enough for spectral imaging under peaky light
sources. A suitable number for principal components was
found to range between four and six. Spatial subsampling
affects the image quality, but for browsing purposes, a mask
of up to 3X 3 can be used.
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