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bstract. Spectral imaging is becoming popular. Spectral accuracy
n measurements is an important factor, especially now when fluo-
escent and light emitting diode (LED) based light sources are be-
oming common. Browsing image sets in a modern network is also
ecoming relevant, but the problem with spectral data is that the file
izes are so large. An efficient compression method suitable for
rowsing purposes consists of principal component analysis with
patial subsampling. In this study, the optimal combinations of a
ampling interval and parameters of the developed compression
ethod are found for different data sets under several light sources.

t is shown that depending on the light source, 3–20 nm sampling
ntervals are required. In addition, with different light sources and
ata sets, between three and six principal components must be
sed. With a suitable spatial subsampling mask, high compression
atios can be achieved with good results. The spatial subsampling is
fast operation and can be done online before transmission, which

ives the client user a possibility to choose the compression ratio.
2009 Society for Imaging Science and Technology.

DOI: 10.2352/J.ImagingSci.Technol.2009.53.6.060503�

NTRODUCTION
olor is usually represented in a three-dimensional space,

uch as in a RGB space. However, ordinary trichromatic rep-
esentations of color have been shown to be problematic:
ne cannot describe color accurately enough, there is
etamerism,1 and three-dimensional color coordinations

re device dependent.2 Therefore, the full spectrum of a
olor is needed to avoid these problems. Several examples
xist that describe the needs of spectral imaging. Different
pplications are found in telemedicine,3 quality control,4

.g., in plastics, wood and paper industries, digital
useums,5 and also in e-commerce in items where color is
eaningful, such as in clothing, fine arts, or paints.

It is not possible to capture a full digital spectral image
ith a single shot. Commercial displays or printers are inca-
able of representing a spectral image on a computer screen
s a picture or of printing it. The closest examples nowadays
re six-primary color gamut based high definition television
HDTV) monitors6 and video cameras.7 Multiprimary
rinters producing color with more than four primaries have
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lso been developed.8 Still, different types of very sophisti-
ated and accurate measuring devices have been developed
or the saving of spectral images. These devices are spectral
r spatial scanners based on different technologies, such as
n acousto-optic tunable filter,9 liquid crystal tunable filter,10

pectral scanning with a grating,4 or interferometry.11 Many
pectral measurements are done with 10 nm or even wider
ampling intervals because of the limitations of the measure-

ent devices. However, it has been shown that, for example,
10 nm sampling interval is not enough under fluorescent

ight sources.12,13 The sampling interval issue is becoming
ore and more important because of the increasing popu-

arity of fluorescent and LED based illumination.
One problem in spectral images is that the raw format

sually requires a large memory space, e.g., a 16-bit spectral
mage between a 380 and 780 nm range with a 5 nm interval
nd a spatial size of 1920�1080 pixels requires 320 MB.
herefore, one cannot save several images on a DVD or a
SB memory stick. In addition, transferring the images

hrough an ordinary network is very slow. Several compres-
ion methods have been developed to correct these prob-
ems. One proposal is a method compatible with standard
richromatic methods,14 where additional components are
aved with some standard trichromatic information, and for
hich it was shown that four additional components were

equired to get all used 354 reflectance spectra of objects
elow �E�3.0. A method based on address-predictive vec-
or quantization (VQ) has also been developed,15 where
ompression ratio (CR) of 40:1 and signal-to-noise ratio
SNR) of 23 dB can be achieved. Independent component
nalysis16,17 and principal component analysis (PCA)18–21 are
lso widely used, where the eigenimages are projections of
he image formed by the eigenvectors. Parkkinen et al.18

sed eight eigenvectors for the Munsell matte data set to
btain an average �E�0.5. Lim et al.22 found six compo-
ents for SNR of 40 dB for 220-band airborne visible/

nfrared imaging spectrometer (AVIRIS) airborne images.
dditionally, different methods are used to compress the
igenimages, for example standard JPEG based straightfor-
ard subsampling23 or via discrete cosine transform

24 23
DCT). With fast straightforward subsampling, 40-band
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mages of natural scenes were used, resulting in CR of 27:1.
ith the DCT method,24 16-band airborne multispectral

mages between 360 and 1210 nm were used, resulting in CR
f 5:1 and 40:1 for a near lossless and visually lossless result,
espectively. In addition, a discrete wavelet transform
DWT) familiar with JPEG2000 is used in Kaarna25 and Du
nd Fowler.26 A combination of DWT and gain shape VQ
as been developed,27 where SNR of 16–19 dB with CR of
0:1–10:1 and SNR of 12–20 dB with CR of 50:1–10:1 for
-band LANDSAT satellite images and 14–19 bands of GER
atellite images were achieved, respectively. Comparison be-
ween PCA, Fourier, and wavelet bases for reflectance repre-
entation and estimation was done by Mansouri et al.20 A
egion-based eigensubspace transform added with JPEG is a

ethod28 that results in a peak signal-to-noise ratio (PSNR)
ear 30 dB with CR of 15:1 and 36:1. An adaptive recursive
idirection prediction is (RBP) with JPEG is also a
ethod,29 resulting in SNR of 39 dB with CR of 47:1 for

24-band AVIRIS airborne images. An adaptive PCA
ethod,30 which continuously adjusts the eigenvectors, re-

ults in PSNR of 26–30 dB with CR of 34:1–27:1 for 7-band
atellite images. In addition, lossless methods are
egion-based31 and DWT based32 compression of PCA
igenimages, resulting in CR of 2.3:1 and 2.8–2.9:1 for
-band satellite and 224-band airborne images, respectively.
CA and some nonlinear dimensional reduction techniques,
uch as Laplacian eigenmaps and isometric feature mapping
ere used by Carmona and Lenz21 for performance

valuation.
Since spectral imaging is expanding for several

urposes,3–5 spectral image browsing via internet will also be
eeded. The client user should be able to browse several
pectral images located in a server with an internet browser
n an ordinary network. PCA is a very efficient way to reduce

emory requirements. Also, straightforward spatial
ubsampling of the eigenimages is so fast operation that it
an be done on uncompressed eigenimages online before
ransmitting the image to the user. Because of this, the user

ay adjust the final compression ratio and image accuracy
y selecting from different subsampling masks. Hauta-Kasari
t al.23 proposed this method with reflectance spectral data
or browsing purposes. By using this method, this study de-
ermines optimal selections for a sampling interval used in

easuring, and the number of required principal compo-
ents and suitable subsampling mask used in compression.
he analysis is done with several modern data sets and for
ata under different light sources and illuminants. According

o Lehtonen et al.12 with a Munsell matte spectra set,33 even
20 nm sampling interval is sufficient for reflectance spec-

ra, but 10 nm may not be adequate for peaky fluorescent
ight sources. The same conclusion was reached by Trussell
nd Kulkarni,13 i.e., a 10 nm sampling interval for illumina-
ions with sharp spectral peaks. In this study, we expand the
oint color estimation to spectral images that include com-
ression with PCA and spatial JPEG based subsampling.
e

. Imaging Sci. Technol. 060503-
HEORY
et So be the original spectral image with a 1 nm sampling
nterval and with dimensions m�n�wo, where m and n
enote the height and width of the image and wo denotes the
umber of channels in a spectral dimension. Let the spectral

mage with �� nm sampling interval be S with dimensions
�n�w, where w denotes the number of channels in the

pectral dimension w�wo. To determine the best param-
ters, the original data are first converted to a �� nm sam-
ling interval from the original. This is straightforward, by

aking the values of every ��th wavelength from the mea-
ured image. The values in other wavelengths are removed.

pectral Image Compression
he spectral image compression method used is based on
CA and JPEG based subsampling. Following the standard
rocedure in spectral image analysis, we use a correlation
atrix instead of a covariance matrix in defining eigenvec-

ors for color spectrum reconstruction. Let Sv be a vector-
rdered w�mn dimensional representation of spectral im-
ge S, whose mn pixels are ordered as a vector. Let C be the
orrelation matrix

C = �
i=1

mn

Si
vSi

vT
, �1�

here Si
v is the ith spectrum of spectral image Sv and T

eans matrix transpose. Next, the h first eigenvectors
h�w� ordered by the largest eigenvalues can be calculated,
hich will form the eigenvectors ��1 ,�2 , . . . ,�h� of the spec-

ral image, where �k is the kth eigenvector of the matrix C.
he vector-ordered eigenimages Pv are then formed with the

nner product

Pv = ��1,�2, . . . ,�h�TSv . �2�

Let P denote the normal spectral image form of Pv with
imensions m�n�h. Let Bk also be a predefined mask ma-
rix of predefined size t1 � t2 for kth eigenimage, where

�
i=1

t1

�
j=1

t2

Bk�i, j� = 1. �3�

his mask defines weights for calculating a weighted sum of
block in spatial subsampling, which will replace the block.
he new subsampled eigenimages Pc are then

Pk
c�x1,x2� = �

i=1

t1

�
j=1

t2

�Bk�i, j�Pk�y1,y2�� ,

with y1 = ��x1 − 1�t1 + i� � �1, . . . ,m� ,

y2 = ��x2 − 1�t2 + j� � �1, . . . ,n� ,

x1 = 1 . . . �m
t1

�, x2 = 1 . . . � n

t2
�, k = 2, . . . ,h , �4�

here Pk is the kth m�n dimensional unsubsampled

igenimage and h is the number of eigenimages. The

Nov.-Dec. 20092



s
T
o
e
o
i
r
c
Y
c
a
m

S
I
r
w
i

w
T
g
f

T
b
a
a
g
a
m

Q
L
d
�
c
i
h
a
s
o

w
b
L
d
s
a
u
r
n
t
P
d

w
�
c
s

w
c
t
s
g
m
s
i

T
F
r
d
fi
u
l
s
l
c
c
m
s

n
i
F
L
1
u
o

Lehtonen et al.: Optimal sampling and principal component selections for spectral image browsing

J

ubsampling phase is not applied for the first eigenimage.
he final compressed spectral image is then a combination
f the first eigenimage, other subsampled eigenimages, and
igenvectors. The subsampling is based on a known method
f JPEG subsampling, where the image is calculated accord-

ng to a YCbCr color coordinate system.34 The Y component
epresents the achromatic information, while the other two
omponents Cb and Cr represent the color information. The

component is untouched while the other components are
ompressed with the mask. Similarly, while the first eigenim-
ge is close to the achromatic data, one can apply this
ethod to eigenimages.

pectral Image Reconstruction
n the reconstruction, these two phases are conducted in
everse order by filling the block with the calculated pixel,
hich replaced it in compression. The unsubsampling phase

s defined as

Pk
r�y1,y2� = Pk

c�x1,x2� ,

with y1 = ��x1 − 1�t1 + i� � �1, . . . ,m� ,

y2 = ��x2 − 1�t2 + j� � �1, . . . ,n� ,

x1 = 1 . . . �m
t1

�, x2 = 1 . . . � n

t2
�, k = 2, . . . ,h ,

∀i = 1, . . . ,t1, ∀ j = 1, . . . ,t2, �5�

here Pk
r is the kth reconstructed eigenimage, and P1

r =P1.
he pixels of the eigenimages are reordered to a vector, thus,
enerating vector-formed eigenimages Pvr, which are used
or the spectral image reconstruction, as follows:

Svr = ��1,�2, . . . ,�h�TPvr . �6�

his compression method can also be done in reverse order
y first subsampling all channels in the original spectral im-
ge and then calculating the correlation matrix, eigenvectors,
nd eigenimages from the subset of pixels. This reverse al-
orithm arrives at the same result and is also computation-
lly faster.23 However, all channels must then have the same
ask.

uality and Error Measures
et Sr be a representation of Svr, where the pixels are reor-
ered as in the original spectral image So. One error measure
�E� and two quality measures (PSNR, GFC) were used to
ompare the original spectral image So and reconstructed
mage Sr. The �E error is based on the properties of the
uman eye and is used as the error of visuality. The spectra
re first converted to the CIE L�a�b� color space via an XYZ
pace using CIE 1931 color matching functions (2° standard

bserver). After this, the �E error is calculated as t

. Imaging Sci. Technol. 060503-
�E = ��L�2 + �a�2 + �b�2�1/2, �7�

here �L�, �a�, and �b� are the color coordinate differences
etween the original and reconstructed spectra in the CIE
�a�b� color space. Usually, average �E�1.0 is not visually
iscernable.35 In this study, we used several spectral image
ets under different light sources. Since the light source is
lready included in the data, equal-energy illuminant E was
sed to calculate the �E error. For the quality measures, the
econstructed image needs to be interpolated from the ��
m interval to the original one, where Lagrange interpola-

ion given by Fairman36 was used. The quality measure
SNR is peak signal-to-noise ratio in decibels (dB) and it is
efined as

�PSNR = 10 log10

ŝ2

�MSE

, �8�

here ŝ is the theoretical maximum of a channel value and

MSE is the mean square error. PSNR is widely used in image
ompression analysis. The GFC error is a correlation mea-
ure, defined as

�GFC =

�
�

s�
os�

r

��
�

�s�
o�2�1/2��

�

�s�
r �2�1/2

, �9�

here s�
o and s�

r are channel values of the original and re-
onstructed spectrum from the � nm wavelength, respec-
ively. Hernández-Andrés et al.37 defined this quality mea-
ure with a value of 0.995 as an accurate limit and 0.999 as a
ood limit. These quality measures are used to describe the
athematical difference of the original and reconstructed

pectral image. All the symbols used in this study are listed
n Table I.

EST DATA
ive different spectral image sets were used in this
esearch,33,38–40 described in more detail in Table II. In ad-
ition, five different real light sources shown in Figure 1 and
ve standard illuminants (A, D65, F2, F8, and F11) were
sed. All the images were computationally converted to be

ike the spectra that have been measured under the light
ources. Different combinations between image sets and
ight sources generated a total of 55 different test sets, in-
luding image sets without a light source. This light source
onversion simulates the result of spectral image measure-
ent under the light source by assuming that the reflectance

pectra are unknown.
All original spectral images contain 61 or 31 compo-

ents, between 400 and 700 nm with a 5 nm or a 10 nm
nterval. Color distributions of different sets are shown in
igure 2 as �a� ,b�� coordinate pairs projected from a CIE
�a�b� color space. The color conversion was done with CIE
931 color matching functions (2° standard observer) and
nder a D65 illuminant. The darker the point is in the co-
rdination, the more pixels with the same coordinate exist in

he set. It can be seen that the colors vary greatly, especially

Nov.-Dec. 20093
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or the cardboard set with high color saturation, contrary to
he scenery and icons sets. The icons set consists mostly of
ed and yellow colors, but also some small blue areas.

The light sources used are measured between 376 and
76 nm with a 2 nm interval. Spectral images and light
ources spectra were interpolated to a 1 nm step with inter-
olation presented by Fairman.36 The light source spectra

Table

Image set Original sampling �nm� Nr. of images

Misca 5 7

Cardboardb 10 18

Sceneryc 10 6

Iconsd 5 9

Printedd 5 24

Total 64
aReference 38.
bReference 39.
cReference 40.
dReference 33.

Table

Symbol Definition Symb

Bk Mask for kth eigenimage Pr

bk
i ith mask value for kth eigenimage Pk

r

C Correlation matrix Pv

�E �E error measure Pvr

�� Sampling interval S

�GFC GFC quality measure So

�MSE Mean square error Sr

�PSNR PSNR quality measure Sv

h Number of eigenvectors/eigenimages si
v

i , j Counters for spatial directions Svr

k Counter for eigenvectors/eigenimages s�
o

� Wavelength counter �� nm� s�
r

m Height of original spectral image ŝ

n Width of original spectral image �k

P Eigenimages t1 , t2

Pk kth eigenimage w

Pk
B Mask-sized block in kth eigenimage wo

Pc Subsampled eigenimages Z�i , j

Pk
c kth subsampled eigenimage x1 , x

y1 , y
. Imaging Sci. Technol. 060503-
ere then converted to between 400 and 700 nm by remov-
ng the wavelengths outside this range. After that, the spec-
ral images were combined under the light source spectrum.
he final data are then between 400 and 700 nm with a 1 nm

ampling interval and defined as original data So. According
o our previous study,12 this interpolation phase does not
enerate a significant error in the results since the interpo-

sets.

s

ollection of objects, including oil paint, Japanese paint,
fruits, portrait, wool of different colors and an image of
colorful objects.

cardboard packages of different products, e.g., packages
ls, rice, tea, toothpaste, washing powder, etc.

and urban images from the Minho region of Portugal.

orthodox icons.

e papers, postcards and business cards printed with various
devices.

mber of images.

bols.

finition

constructed eigenimages

h reconstructed eigenimage

ctor-ordered representation of P

ctor-ordered representation of Pr

ectral image with �� nm sampling interval

iginal spectral image

constructed spectral image

ctor-ordered representation of S

spectrum of Sv

ctor-ordered representation of Sr

lue of original spectrum in wavelength � nm

lue of reconstructed spectrum in wavelength � nm

eoretical maximum of a channel value

h eigenvector, ordered by highest eigenvalues

sk height and width

mber of wavelength channels in S

mber of wavelength channels in So

lue of ith row and jth column �spatial surface� in matrix Z,
ere Z is any matrix with spatial dimensions.

atial indexes
II. Data

Content

Mixed c
bottles,
several

Colorful
of cerea

Natural

Various

Magazin
printing

Total nu
I. Sym

ol De

Re

kt

Ve

Ve

Sp

Or

Re

Ve

ith

Ve

Va

Va

Th

kt

Ma

Nu

Nu

�
Va
wh

2, sp

2
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ated reflectance spectra are very near to spectra measured
ith 1 nm interval. Similar results are also found by Sándor

t al.41

XPERIMENTS
patial Subsampling Masks
ypical mask matrixes based on JPEG-compression are
alled 4:4:4, 4:2:2, and 4:2:0 methods.34 The corresponding
asks for the spectral image compression used in this study

re

Bk
4:4:4 = �1� ,

Bk
4:2:2 = �1 0� ,

Bk
4:2:0 = �1 0

0 0
� ,

∀k = 2, . . . ,h . �10�

he same mask is used for eigenimages P2 −Ph. In 4:4:4,

Figure 1. Spectra of real light sources.

igure 2. Color distribution of each set shown in �a� ,b�� coordinate
airs projected from a CIE L�a�b� color space. The darker the point is in

he coordination, the more pixels with same coordinate exist in the set.
here is no spatial subsampling since the mask dimensions o

. Imaging Sci. Technol. 060503-
re 1�1. In addition, three different 3�3 masks were used

Bk
3�3 center = �0 0 0

0 1 0

0 0 0
	 ,

Bk
3�3 average = �1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9
	 ,

Bk
3�3 median = �bk

1 bk
2 bk

3

bk
4 bk

5 bk
6

bk
7 bk

8 bk
9	 ,

bk
i = 
1 for median pixel bk

i =̂Md�Pk
B�

0 otherwise,
�

∀k = 2, . . . ,h , �11�

here Pk
B is a corresponding 3�3 block from the kth

igenimage and i=1–9. In the last median method, the
ask is different in each eigenimage since the median value
ay be positioned differently in different eigenimages. In all

ther methods, the mask is the same for all eigenimages

2 −Ph.
In the case where the image height or width is not di-

isible by the size of the mask, the eigenimages were tempo-
ally continued spatially with its mirror before subsampling,
ut only so much so that the size becomes divisible. For
xample, if the spatial size of an image is 301�299 and we
se a 3�3 mask, one column needs to be added at the right
dge of the eigenimage and two rows to the bottom edge to
ake the eigenimage size 303�300. This is now divisible by

he size of the mask. In this case, the last and second last
ows are doubled to the bottom edge of the image in this
rder. The last column is then doubled to the right edge.
hese extra rows and columns were removed in the
nsubsampling phase.

uality and Error Limits
verage quality and error limits were chosen, which com-
ined to give satisfactory results. As previously explained,
E�1.0 is not visually discernable and GFC�0.995 is an

ccurate limit for spectra. These limits could also be used for
pectral images of good quality, but spatial subsampling
ould not then be possible in any case. However, very accu-

ate data may not be needed in the browsing phase. One
ay also think that the accuracy required in point color is

ot usually needed in spectral imaging. Unlike in point color
easurements, spectral imaging may take a long time and

herefore the risk of noise is higher. In addition, color quality
s not usually required in such accuracy as in point spectra.

hen a spectrum is located in a huge spectral image, the

bserver does not see just one color of a certain pixel, but

Nov.-Dec. 20095
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lso all other pixels in the image. The surrounding pixels
ive an effect to the visualization, and so, the color of one
ixel cannot be seen accurately. Therefore, the less strict

hreshold limits were chosen, as average PSNR�30 dB, av-
rage GFC�0.99 and average �E�3.0. The limit �E�3.0
or spectral images was also recommended by Zhang and

andell,42 and the limit GFC	0.99 was defined as accept-
ble by Romero et al.43 with different natural and artificial
lluminants. The chosen quality and error limits correlate
epending on the used light source. For example, with data
nder an F2 illuminant, all quality and error measures result

n the same selections. For data under artificial daylight,
E�3.0 is gained very easily, but PSNR and GFC limit the

elections most. For data under D65 illuminant, the major
imiter for the selections is the �E measure. Generally, the
orrespondence of the limits used is a compromise with the
ight sources used.

However, with increasing sampling interval, oscillation
f the error and quality values may occur with wide sam-
ling intervals, especially for the data under peaky light
ources, because with some sampling intervals the peaks are
aught and with others they are missed. To avoid this issue,
t is necessary that the quality and error limits must also be
stablished with all the more accurate sampling intervals and
igher number of principal components than the chosen
nes. With subsampling, it is possible to choose a mask of
maller size than the selected one. If the selected replacement
ixel is one selected pixel from the block, then an average or
edian pixel can also be used. Similarly, a median pixel can

e used instead of an average pixel.

valuation of Quality and Error Measures
et us first concentrate on the reflectance data and on the
ata under an artificial daylight source. The average �E er-
or and average PSNR and GFC quality values of the printed
nd cardboard sets are shown in Figure 3. Here, sampling

igure 3. Average �E, GFC, and PSNR values for reflectance data
solid� and data under artificial daylight �dashed� in the printed and
ardboard image set with a mask 4:4:4 and with 3-8 principal compo-
ents �curves�.
ntervals of 1 and 20 nm are used, which is shown in the w

. Imaging Sci. Technol. 060503-
orizontal axis. The data are compressed with 3–8 principal
omponents. No subsampling is used. The quality of the
econstructed spectra with a different number of principal
omponents is shown as different curves in the image. The
olid curves are generated with reflectance data and dashed
urves with data under an artificial daylight source. In GFC
nd PSNR calculations, the lowest curve corresponds to
ompression with three principal components, and in the
igher curves more principal components are used. Like-
ise, in �E calculations, the highest curve corresponds to

ompression with three principal components, and in the
ower curves more principal components are used. The re-
ults are very different between these two sets. The curves in
he printed set are practically stacked together. On the con-
rary, with the cardboard reflectance set, the curves are dif-
erent with a different number of principal components, but
gain stacked together in the set under the light source. The
E errors for the reflectance data of the printed set show

hat all used sampling intervals give good results, especially if
our or more principal components are used. GFC and
SNR give good results with any sampling interval and with
ny number of principal components used. In the case of the
ardboard set, five, six, and three principal components are
equired for �E, GFC, and PSNR limits, respectively, for any
ampling interval. Therefore, because of the GFC limit, six
rincipal components should be chosen. For the printed
ata under the artificial daylight source, a 16 nm interval
ith three principal components is enough with the �E er-

or. If using a GFC measure, an 11 nm interval with three
rincipal components is enough. In the case of PSNR, 8 nm
ampling with three principal components is required. The
uality is a lot poorer with wider sampling intervals. For the
ardboard data under the artificial daylight source, GFC and
SNR values are above the limits with 8 nm and 9 nm

ntervals, respectively, with three principal components.
ith the �E limit, an interval as wide as 14 nm could be

sed, but now PSNR and GFC measures limit the selections.
The subsampling phase gives a high negative effect for

he errors, which is shown in Figure 4. It can be also seen
hat a 3�3 mask gives similar results to a 4:2:0 mask, with
he exception of the �E error. Here, the printed set (unplot-
ed curves) and the cardboard set (plotted curves) with eight
rincipal components and a 5 nm sampling interval were
sed. The dashed curves are created from data under an
rtificial daylight source and solid curves from data from
eflectance spectral images.

rocedure for Selecting the Parameters
suitable sampling interval and number of principal com-

onents, which satisfy the quality and error limits, were cho-
en for each subsampling mask and for each image set sepa-
ately, by using average quality and error measures from each
mage. The selection process can be done in several ways,
esulting in different combinations of sampling interval,
umber of principal components, and subsampling mask;
ut the method shown in Figure 5 was used. At first, for
ach image in a set, the widest possible sampling interval

ith the required number of principal components was cal-
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ulated. Then, the lowest number of principal components
ith the required sampling interval was calculated. These

elections were set as the lower and upper boundaries for the
nal selections of sampling interval and principal compo-
ents. In this boundary search, all narrower sampling inter-
als and higher number of principal components must also
atisfy the results. After this, all possible combinations were
ound between these boundaries. For each image, such final
elections were found where the standard deviations of sam-
ling intervals and number of principal components be-

ween the images are the smallest. This was done with each
patial subsampling mask and image set separately. However,
t was found that with some subsampling masks, few images
f some data sets under some light sources failed to achieve
he quality and error limits for any number of principal
omponents below 20. Therefore, only such combinations
ere considered as candidates, where over 75% of the images

atisfy the error and quality limits and, if possible, standard
eviations of selected sampling intervals and numbers of

igure 4. Average �E, GFC, and PSNR values for reflectance data
solid� and data under an artificial daylight �dashed� in the printed
unplotted� and the cardboard �plotted� image sets with a 5 nm sampling,
ight principal components, and different subsampling masks.

Figure 5. Selection procedure.
rincipal components are less than 3 nm and three compo- a

. Imaging Sci. Technol. 060503-
ents, respectively. Next, such selections for each image were
ound from the candidates, which cause the smallest stan-
ard deviations with the largest possible subsampling mask.
he final selections for the whole data set are the averages of

hese selections. With these conditions, the quality and error
alues of the failed images are also close to the limits, and
he overall results remain acceptable.

ESULTS
he final chosen sampling intervals, number of principal
omponents, and subsampling masks for each data set are
hown in Figure 6. Each ellipse is created with the data set
nder certain light source. The central point of an ellipse
hows the average selected sampling interval and number of
rincipal components for the data set. The ellipse denotes

he standard deviations of the sampling intervals and prin-
ipal components selected for each image in the set. The
olor of the ellipse shows the spatial subsampling mask used.
he text on the side of the ellipse denotes the light source
sed and relative number of images in a set used in the
election procedure. Almost all ellipses are small in the cho-
en selections, which means that the selections of different
mages are, in general, close to average selections.

Generally, a 20 nm sampling interval is enough for re-
ectance data and data under such light sources, whose
pectrum is smooth. The cardboard and scenery sets require
ve or six and four or five principal components, respec-

ively. With the icons set, data under a tungsten light source
nd illuminant A also require six principal components. All
ther reflectance data sets or data sets under a smooth light
ource require four principal components. Mask 4:4:4 must
e used for the cardboard sets and also for the scenery data
nder illuminant A. Mask 4:2:2 is needed for reflectance
ata and data under illuminant D65 in the misc and icons
ets. Mask 4:2:0 was selected for the scenery data under a
ungsten light source. Mask size 3�3 is enough for all the
ther reflectance sets and sets under smooth light sources. In
he icons set under a tungsten light source or illuminant A,
igh subsampling creates high error, which is compensated
ith a high number of principal components. With the re-
ectance cardboard data and the same data under smooth

ight sources, subsampling does not work at all.
For the data under an artificial daylight or deluxe natu-

al light source, a 6–9 nm interval with 3–5 principal com-
onents are required. With different data sets under a
orthlight source, a 10–16 nm interval with 3–4 principal

omponents are needed, with the exception of the cardboard
et, where 4:2:2 subsampling causes a high error requiring
ight principal components with an 8 nm sampling interval.
he selected sampling interval and number of principal
omponents for data under a white LED light is similar to
elections for data under a Northlight source. Generally, a
:2:2 mask can be used for the cardboard data under differ-
nt real fluorescent light sources. Depending on the peaky
ight source, a 4:2:2 or 4:2:0 mask is required for the misc
nd icons sets. For the scenery and printed set, a 3�3 av-
rage mask can be used, generally. However, some exceptions

re found, for example, masks 4:2:0 and 4:2:2 are required in
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he printed set with a Northlight source and in the scenery
et with a white LED source.

For F illuminants, a 3–6 nm sampling interval with 3–6
rincipal components are needed with different sets. In ad-
ition, mask 4:2:2 or 4:2:0 can be used for the misc and

cons sets. Mask 4:4:4 is required for the cardboard set, but a
�3 mask is possible with the scenery and printed sets. The

eplacement pixel can be a center pixel with an F2 il-
uminant, but must be a median pixel for the printed set
nder F8 illuminant, and an average (or median) pixel with
ther F illuminants.

Table III. Optimal average selections and results of the card
daylight.

Reflectance

Image set Selections Quality/

Cardboard 20 nm, �E

6 PCs, GFC

4:4:4, PSNR

CRa: 3:1

Printed 20 nm, �E

4 PCs, GFC

3�3 median, PSNR

CRa: 12:1

Figure 6. Optimal average selections for different d
standard deviation of selections done for each ima
Compression ratio.

. Imaging Sci. Technol. 060503-
Some average errors for all images in the printed and
ardboard reflectance sets and sets under an artificial day-
ight source are found in Table III. For reflectance data sets,
he errors are clearly smaller than the limits, so a sampling
nterval wider than 20 nm would also be accepted. However,
ith the cardboard set under an artificial light source, the
E and PSNR results are close to the error and quality lim-

ts, and with the printed set under an artificial daylight
ource, the GFC and PSNR results are close to the quality
imits. The compression ratio is calculated between the
ncompressed data with a selected sampling interval and

d printed reflectance data sets and data sets under artificial

Artificial daylight

Average

Selections Quality/Error

7 nm, �E 2.8

4 4 PCs, GFC 0.993

4:2:2, PSNR 31.4

CRa: 18:1

7 nm, �E 2.6

8 3 PCs, GFC 0.997

3�3 center, PSNR 31.9

CRa: 36:1

s under different light sources. Ellipses represent the
rately.
board an

Error

1.6

0.99

35.9

2.7

0.99

35.7

a

ata set
Nov.-Dec. 20098
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ompressed data with a selected number of principal com-
onents and subsampling mask. Different examples of com-
ression ratios for the method are shown in Table IV. In

hese examples, the compression ratio varies between
:1-12:1, 4:1-23:1, and 8:1-46:1 with a 20 nm, 10 nm, and 5
m sampling interval of the uncompressed image, respec-

ively. An average and bad case example of spectrum recon-
truction can be found in Figure 7, when four principal
omponents and a 4:2:0 subsampling mask was used.

ISCUSSION
he results fall into three groups: reflectance data and data
nder smooth light sources, data under real fluorescent light
ources, and data under standard F illuminants. The light
ource has a very high effect on the sampling interval. For
eflectance data and data under smooth light sources, 20 nm
s enough. For real fluorescent light sources, 6–9 nm is re-
uired, with the exception of the smoother light sources
orthlight and white LED, where a wider sampling interval
etween 10 and 17 nm can be used. With these light sources,
he subsampling mask used affects the sampling interval: a
arger mask requires a more accurate sampling interval. This

igure 7. Average and bad cases of a reconstructed spectrum. In com-
ression, 20 nm sampling, four principal components, and a 4:2:0 mask
atrix were used.

Table IV. Compression ratios of an image measured between 400–700 nm.

ampling interval
f uncompressed image 5 nm 10 nm 20 nm

PCA, 4:4:4 15:1 8:1 4:1

PCA, 4:2:0 35:1 18:1 9:1

PCA, 3�3 46:1 23:1 12:1

PCA, 4:4:4 10:1 5:1 3:1

PCA, 4:2:0 27:1 14:1 7:1

PCA, 3�3 39:1 20:1 10:1

PCA, 4:4:4 8:1 4:1 2:1

PCA, 4:2:0 22:1 11:1 6:1

PCA, 3�3 34:1 17:1 9:1
ompensates for the error generated in subsampling. The d

. Imaging Sci. Technol. 060503-
equired sampling interval is most accurate for the data un-
er F illuminants, with 3–6 nm. In the printed set, the four
MYK primaries between different printers are similar and,

herefore, the required number of principal components is
lso low, between three and four. On the other hand, there
re various strong colors in the cardboard set, creating a
eed for several principal components. The items in the
isc and in the scenery sets are more common targets for

pectral imaging, and four or five principal components are
equired. In general, the results of all sets fall between four
nd six principal components. While the peaks of a peaky
ight source require an accurate sampling interval, the light
ource spectrum converts the spectra more similar to each
ther, which may require less principal components in some
ases than with reflectance spectra, e.g., in the scenery set.
ince the spectra are similar, the overall dimensionality is
maller. Stacking, shown in Fig. 3, occurs, and adding more
rincipal components does not develop the data at all.

It is usual that spectral measurements are done with a
0 nm sampling interval. But in the measuring phase, one
hould be careful in choosing the sampling interval. This
tudy, among others,12,13 shows that a 10 nm sampling in-
erval is not enough for fluorescent light sources. This ques-
ion will become more and more important due to the in-
reasing popularity of fluorescent and LED based light
ources.

Subsampling is highly dependent on the data set and
ight source and, practically, it does not work with the card-
oard set. The product packages include a lot of sharp edges
etween totally different color hues. These edges made it

mpossible to use subsampling since the color edge would
learly change after subsampling. However, if the data set
ontains images with weak color edges or the edges are not
mportant, subsampling can be used even up to a 3�3

ask. In general, a 3�3 mask can well be used with sets
imilar to the printed or scenery sets, but 4:2:0 and 4:2:2 is
ood with the icons and misc data. In the icons and misc set,
harp color edges also exist, but not with as strong a color
hange as in the cardboard set.

The �E and PSNR results with the reflectance data sets
re very similar to the results in the study of Hauta-Kasari et
l.23 with the Coral database.44 If the quality and error limits
re used, three principal components and a 4:2:0 mask seem
o not be acceptable for the Coral database nor for the re-
ectance data sets used in this study. Similar PSNR values as

n Table III were also arrived at by Chang28 and Chang et
l.30 The resulting compression ratios are also generally simi-
ar to other compression methods given in the introduction
ection. A small practical test was done and repeated five
imes with an Intel Pentium 4 HT 2.4GHz CPU and with
�512 MB of memory. Downloading an uncompressed

mage required an average 78.3 s with a broadband 4 Mbit
DSL connection. However, downloading the compressed

mage required only 3.4 s, including reconstruction time
ith MATLAB software. Here the original image was mea-

ured with a 5 nm sampling interval. The compression was

one with five principal components and a 4:2:0
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ubsampling mask. Because of the simplicity of the
ubsampling, the spatial reconstruction requires minimal
rocessor time. In addition, spatial subsampling required
nly 0.2 s with MATLAB software, which makes it possible for
he user to choose the subsampling mask that is applied to
he spectral image before transmission.

ONCLUSIONS
suitable sampling interval, number of principal compo-

ents, and spatial subsampling mask were found for a spec-
ral image browsing method, with different spectral image
ets under various light sources and standard illuminants. It
as shown that even a 20 nm sampling interval is enough

or spectral imaging under smooth light sources. However,
0 nm is not enough for spectral imaging under peaky light
ources. A suitable number for principal components was
ound to range between four and six. Spatial subsampling
ffects the image quality, but for browsing purposes, a mask
f up to 3�3 can be used.
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