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Abstract. In this paper, we present an intensity mapping algorithm
for enhancement and segmentation of pancreatic ductal nuclei in
pancreatic ductal cell images acquired from pancreatic fine needle
aspiration specimens with Papanicolaou stain. The upper envelope
surface is obtained by rolling a ball of fixed size on the image sur-
face followed by a moving average filtering to smooth out the down-
ward spikes. When the upper envelope surface is mapped to the
uniform intensity of the maximum intensity of the original image, the
contrasts inside nuclei are magnified and the difference between
intensities in the cytoplasm regions and the void background is com-
pressed, resulting in improved separation of the nuclei from the rest.
Results of enhancement and segmentation of pancreatic nucleus
images are provided and compared to those without envelope
mapping. © 2009 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2009.53.3.030501]

INTRODUCTION
Carcinoma of the pancreas is the fifth most common cause
of cancer related deaths in the Unites States. Most patients
die within a year of diagnosis.' Fine needle aspiration (FNA)
cytology” of the pancreas is often used because the relative
nuclear changes are sometimes subtle, making it quite chal-
lenging to distinguish tumors such as adenocarcinoma of the
pancreas from reactive ductal cells. Papanicolaou stain (Pap
stain) is a polychromatic stain that allows the differentiation
of cellular morphology, maturity, and metabolic activity and
is the preferable method to enhance nuclear and chromatin
details. In pathology, diagnoses of diseases are based on the
recognition of visual clues or diagnostic criteria from the
specimens. The enhancement of the nuclear contents is im-
portant since the enhanced images can reveal more and
clearer details of nuclei for the viewing of pathologists.’
The main use of anatomic pathology is to secure the
tissue diagnosis, in particular, the differential diagnosis be-
tween benign and malignant tumors.*> The general ap-
proach used involves characterizing cells or nuclei with nu-
merical measures of factors considered by pathologists based
on visual estimate. A diagnosis is assigned on the basis of
these features in accordance with a prescribed classificatory
approach determined and validated on the basis of represen-
tative sets of cases. Among the most useful features for
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cytological applications have been measures of nuclear size,
pleomorphism, and chromatin appearance.*® To evaluate
and identify the diagnostically important malignancy indica-
tors from the microscopic cell images, segmentation of nu-
clei from the images is required so that the image analysis is
performed only on the nuclei.*™"

The pancreatic cell images from FNA specimens stained
by the Papanicolaou process usually have dark nuclei sur-
rounded by lighter cytoplasm areas in a void background
that is almost uniformly white. Considering the small size of
nuclei against the large area including both nuclei and the
surrounding cytoplasm, a very smooth surface that is tan-
gent to the image surface should appear relatively flat in the
nuclear regions. With an appropriate intensity mapping, we
may enhance the contents in the dark nucleus regions with-
out noticeable distortion while suppressing the difference in
intensities between the cytoplasm and white background ar-
eas for the subsequent nuclear segmentation.

ENVELOPE MAPPING

A typical pancreatic cell image from a specimen stained by
the Papanicolaou process consists of three parts. The first
part consists of the nucleus regions with relatively lower av-
erage intensities. The second part is the cytoplasm areas that
usually surround the nuclear regions. The cytoplasm area
may appear slightly lighter on average in gray level than the
nuclear regions. The third part is the void regions that have
highest intensities since no stain occurs. [Figures 7(a) and
8(a) show two of the typical pancreatic cell images]. The
nuclei, consisting of darker spots of nucleoli and chromatin
clumps and whiter fillers, usually have sharp and wide fluc-
tuating intensities, while the cytoplasm areas also fluctuate in
intensities but in a slower pace.

Let a discrete pancreatic cell image of size N; X N, be
represented by x(n,,n,), for (n,,n,) € D, where the image
domain D={(n,,n,)|0<n,; <N, and 0<n, <N,}. The im-
age x can be viewed as a surface for which the n; and n,
coordinates represent the position and the gray-level x rep-
resents the height."* The envelope of an image is a pair of
smooth surfaces that embrace the image. If the top envelope
surface of x is represented by X, we have x(n;,n,)<
xX(ny,n,) for (n;,n,) € D. If we let a large ball roll over the
surface of the cell image x, the lowest point of the ball will
draw a surface above the image surface. The top envelope
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Figure 1. Schematic display of envelope surface in the dashed thick
curve derived from a rolling ball of radius R along the fop of the image
surface in thick line. The rolling ball shown as a solid circle is tangent to
the image surface, meaning that one or more image surface points are
located exactly on the circle but none of them inside the circle.

surface and the image surface are occasionally in touch. If
the ball is chosen much larger than the nuclei, the nuclei,
which usually have lower average intensities, will have little
effect on the upper surface x. Referring to Figure 1, which
shows a section along the n, axis, we let a large ball of radius
R sit at the position (n,,1,). If a pixel at (k,,k,) is located in
distance less than R from the center (11,,7,), we place a ball,
centered at (n,,n,), to intersect with the image surface at
x(ky,k,). Fig. 1 shows three such balls, centered at 0, o', and
0", intersecting with the image surface at B, B, and B”,
respectively. The lowest points of the balls are at C, C’, and
C", respectively. When intersecting the image surface at
x(k,,k,), the height of the lowest point of the ball centered
at (ny,n,) is

)(kpkz) = x(ky, k)

~(R= R~ (k= m)?* + (ky = n,)%)) (1)

C(npn,

as shown the point marked as C’ in Fig. 1. Since the ball that
is tangent to the image surface (just in touch with the image
surface but without any image surface inside the ball) as
shown in the solid circle in Fig. 1 is the highest ball at
(n,,n,), its bottom point marked by C in the figure is the
highest for \((k; —,)2+ (ky—n,)?) <R. If we let the ball roll
over the image surface, the C point will draw a surface that
is above and touching the image surface such as

y(ny,ny) = max

C(nl,nz)(klsk2)> (2)
(ky,ky) €(DND,

(1y,11,)

for n,=0,1,...,N,—1, and #n,=0,1,...,N,—1, where the
set
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Figure 2. Comparison of the resulting envelope surfaces between the
morphological closing (the dotted line) and the proposed algorithm (the
dashed curve).

Dy oy =k k) [N ((ky = n)* + (k= n)) <R} (3)

is a circular region centered at (n,,1,). The surface y is
smooth at the local tops but may have sharp downward
spikes at the local bottoms. To have a smooth envelope sur-
face, we use a moving average filter that can smooth the
downward spikes, while having little effect on the smooth
areas of y at or near its local tops. Thus, we have the upper
envelope surface of the image x as

1
x(n,n)=—— s

y(kl) k2))
N(1,1) (k) ky) e(DNDy, )

for V (n,,n,) € D, (4)

where N(ny,n,) is the number of elements in the set
DN D, ).

Figure 2 illustrates the comparisons between the result-
ing envelope surface of the proposed algorithm and that of
the closing operation, the cascade of the dilation that re-
places each pixel with the brightest pixel in the R-pixel dis-
tance neighborhood and the erosion that replaces each pixel
with the darkest pixel in the R-pixel distance
neighborhood."”™” While the closing operation produces a
line consisting of linear segments, the proposed algorithm
yields a much smoother one that touches the image surface
in more places.

To show the algorithm graphically, we display the simu-
lated surfaces in one dimension in Figure 3. Fig. 3(a) shows
an ideal signal in which the highest level on both ends stands
for the bright background, the lowest level in center repre-
sents the nucleus region, and the rest represents the cyto-
plasm areas. Since images of natural scenes can often be
described by the first-order Markov processes with the coef-
ficients 0.9<p<1,"" we use the simulated signal, shown
in Fig. 3(b), of the first-order Markov process generated
by the first-order  recursive  system  such  as
y(n)=py(n—1)+w(n), where p=0.9, w is the input, a white
noise sequence, and y is the output sequence of the system;
Fig. 3(c) is the simulated nucleus image in one dimension
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Figure 3. The envelope mapping algorithm illustrated by a simulated
one-dimension cell signal. (a) the ideal one-dimensional signal; (b) the
firstorder Markov signal (p=0.9); (c) the simulated one-dimensional cell
signal, constructed by the addition of the firstorder Markov signal in (b)
and the ideal signal in (a), and the supposed global threshold line that is
the halfway of the infensity dynamic range; (d) the simulated signal with
its morphological closing; (e) the simulated one-dimensional cell signal
with the extracted upper envelope surface on top by the proposed envel
oping algorithm; (f) mapped signal in solid line and the global threshold
as the dashed line that is the halfway point of the dynamic range of the
signal intensities (error rate 0.0148); and (g) homomorphic filtering result
and the global threshold (dashed line) that is the halfway of the dynamic
range of the signal intensities (error rate 0.1081).

that is the addition of the ideal signal in (a) and the first-
order Markov process in Fig. 3(b). The dashed line in
Fig. 3(c) is the middle of the intensity range simulating an
automatic threshold

T, = %(max{x(nl,n2)|(nl,n2) e D}

+min{x(n,,n,)|(n},n,) € D}), (5)

where the functions max{-} and min{-} select the respective
minimum and maximum elements from the sets. If we apply
the automatic threshold T, to the simulated original image x
in (c), the large portion of the cytoplasm area below the
dashed straight line will be misclassified as the nucleus pix-
els. Fig. 3(d) shows the simulated image x with its morpho-
logical closing on its top, while Fig. 3(e) shows the simulated
image with the derived envelope surface X, a smooth line on
the top of the image surface. An envelope mapping that
drags the envelope intensities to the maximum intensity of
the image x is given by
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Figure 4. The simulated nucleus regions, both before and ofter the map-
ping fo show the enhancement of the contents. The variance in the region
is increased from 29.287 in (a) to 63.502 in (b) while the waveforms
remain approximately identical because of the smoothness of the enve-
lope surface based on which the intensity mapping is performed.

max{i(kl,k2)|(k1,k2) e D}

x(ny,m,) = x(ny,1,), (6)

x(ny,n,)

for V(n,,n,) € D. The mapped image % is shown in Fig. 3(f)
along with the midthreshold

T:= %(max{fc(nl,nzﬂ(nl,nz) e D}

+ min{x(n,n,)|(n,,n,) € D}) (7)

in the leveled dashed line. As we can see, the intensities in
cytoplasm regions are dragged to that of background, result-
ing in a more homogeneous combined background against
the nucleus regions. There is a much smaller portion of the
cytoplasm area crossing over the dashed threshold line,
meaning smaller misclassification error after the envelope
mapping. The error rate measured as the ratio of the num-
ber of the misclassified points to the total is 0.0149.
Homomorphic filtering, one type of Retinex algorithm,
can produce simultaneous contrast enhancement and dy-
namic range reduction.”®*" For the purpose of comparison,
Fig. 3(g) shows the filtering result of the input signal in
Fig. 3(c) by the homomorphic filter whose frequency re-
sponse of the linear part is H(w)=17y;=0.5 for o<w.—A,,
H(w)=v,=2 for w=w.+4A,, and linear H(w)=7y;+

Table 1. Enveloping algorithm versus homomorphic filtering in error rates.

Markov processes, p=0.9 1

3 4 5 6

Enveloping 0.0108

E i
fror res Homomorphic filtering 0.1432

0.0000 0.0027 0.0081 0.0054 0.0149
0.0649 0.2649 0.1608 0.1864 0.1351
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[(o—(w.—A))2A,](y,—y,) for o.—A,<o<w.+A,,
where w,=m/6, and A, =w./3. The error rate from the ho-
momorphic filtering is measured to be 0.1081, which is
higher than 0.0149, the error rate from the proposed envel-
oping algorithm. Similar results from the enveloping algo-
rithm and the homomorphic system on the six other ran-
domly generated Markov processes are listed in Table I,
showing that the enveloping algorithm performs better with
lower errors.

Since the waveforms in the image x are fluctuating
much quicker than the envelope X, a basically smooth sur-
face, the waveforms are preserved with minimal distortions
as shown in Figure 4, in which (a) shows the portion of the
simulated nucleus area in Fig. 3(c) and 3(b), shows the cor-
responding area after the envelope mapping in Fig. 3(f). The
variance, measured as

1 M-1 1 M-1 2
1\_/1,112:0 vi(m) — (A_/I > V(M)) ,

m=0

where v is the discrete signal of length M, is increased from
29.287 in Fig. 4(a) to 63.502 in Fig. 4(b), while the wave-
forms remain approximately identical because of the
smoothness of the envelope surface based on which the in-
tensity mapping is performed. Thus, the contents inside the
nuclei are magnified significantly without large distortions.

When images are enhanced by either homomorphic sys-
tem or enveloping algorithm, distortions occur both inside
and outside of cell regions. To compare the quality of the
enhanced signals, we calculate the correlation coefficients
between the input Markov processes and the output en-
hancements. Figure 5(a) shows the sample Markov process
which appeared in Fig. 3(b); Fig. 5(b) shows the enveloping
output signal from Fig. 3(f) with the class means removed,
and Fig. 5(c) shows the homomorphic filtering result in
Fig. 3(g) with the class means removed. The enveloping out-
put signal appears more similar to the original than does the
homomorphic result. The correlation coefficients are 0.8571
between the original signal in Fig. 5(a) and the enveloping
output signal (class means removed) in Fig. 5(b), and 0.6007
between the original and the homomorphic filtering output
(class means removed) in Fig. 5(c).

With the same input signals used for Table I, we com-
pute the correlation coefficients between the input signals
and each of the mean-neutralized outputs of the enveloping
and homomorphic filtering systems and list them in Table II,
which shows that the coefficients for the enveloping system
are much higher, implying higher similarities and less
distortions.
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Figure 5. Similarities between the original and the enhanced signals.
(@) Markov process, (b) the enveloping output signal (class means re-
moved), and (c) homomorphic filtering result (class means removed).

RESULTS

We have applied the proposed algorithm to images of pan-
creatic ductal cells with Pap stain. Figure 6 displays two
original color images of pancreatic ductal cells from speci-
mens obtained via FNA-guided procedure and with Pap
stain by a microscope with a lens of magnification 40X. The
metric image dimension is 121.5X92.1 u?. Although the
images are color stained, they do not have significant color
variations. The blue component has a very narrow dynamic
intensity range located at the high intensity end, while the
green and blue components are very similar to each other,
resulting in a bluish color image. For simplicity of compu-
tation and analysis, we apply the proposed algorithm on the
gray-level images as shown in Figures 7(a) and 8(a). To pre-
serve the waveforms inside nuclei, we wish the derived en-
velope to be smooth and leveled. Thus, the diameter of the
rolling ball should be selected larger than the diameter of the
nuclei in the image. In the images in Figs. 7 and 8, the
diameters of nuclei are limited in the range between 20 and
50 pixels. Thus, we select the radius of the ball as 25, the
high end of the radius range of nuclei. Fig. 7(b) displays the
enhanced image of (a) by the envelope mapping that drags
the intensities in the area of cytoplasm toward the bright
background intensities resulting in whitened cytoplasm re-
gions and higher contrasts inside nuclei. Fig. 7(c) shows the
global thresholding segmentation of the image x in (a) with
the automatic threshold, T, the middle of the dynamic im-
age intensity range of x, while Fig. 7(d) shows the segmen-
tation of ¥ by applying the automatic threshold, T the
middle value in the dynamic intensity range of the mapped

Table 1. Correlation coefficients.

Markov processes, p=0.9 1

2 3 4 5 6

Correlation coefficients

Enveloping 0.8621
Homomorphic filtlering ~ 0.5798

07709 08371  0.8286¢ 08179  0.8208
04545 04680  0.6080  0.3481  0.5421
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(b)

Figure 6. Original color images of pancreatic ductal cells. Images ap-
pear overwhelmingly blue since, in each image, the blue component has
an almost uniform intensity af the high end, and the other two components
are similar to each other. Both images contain malignant cells.

image X in (b). It is observed that the segmentation has
improved significantly, especially in the congested area where
the cytoplasm intensities are relatively more uniform.

Fig. 8(a) shows another pancreatic cell image. Fig. 8(b)
shows the enhanced image of (a) by the envelope mapping.
Fig. 8(c) shows the global thresholding segmentation of the
image in (a) with the automatic threshold, T, while image
(d) shows the segmentation of envelope-mapped image in
(b) by applying the automatic threshold, T;. As we can see
again, the segmentation has improved significantly in (d)
and nuclear contents are enhanced greatly in (b).

Since the mapping algorithm assumes a very slow
changing envelope on an image surface, the regions of the
low intensities such as the regions formed by both the cyto-
plasm and the cells should be very large. The images of
malignant cells usually have large cell clusters and thus are
applicable to the proposed algorithm. Images of benign cases
usually have cells in a very homogeneous distribution, there-
fore are relatively easier to be segmented with the global
thresholding without a prior intensity equalization mapping.

CONCLUSIONS

We have presented an equalization mapping algorithm for
enhancement and segmentation of pancreatic ductal nucleus
images from FNA specimens with Papanicolaou stain. The
algorithm assumes that clustered dark nuclei are embedded
in large cytoplasm regions. Results for images of malignant
pancreatic ductal cells show that the segmentations of nuclei
with the proposed mapping are improved significantly over
those without the mapping. Comparing to the homomor-
phic system, the proposed algorithm produces enhanced im-
ages with smaller distortions.
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Figure 7. (a) Pancreatic ducfal cell image; (b) envelopemapping en-
hanced image; (c) automatic thresholding of image (a) af the middle of
its intensity range; and (d) automatic thresholding of image (b) at the
middle of its intensity range.

(@) (b)

()

Figure 8. (a) Another pancreatic ductal cell image; (b) envelope-
mapping enhanced image; (c) automatic thresholding of the image (a);
and (d) automatic thresholding of the image (b).
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