
A
f
p
a
s
f
w
u
c
i
p
R
i
m
�

I
C
o
d
c
n
l
p
s
o
i
d
r
s
p
c

t
t
p
m
o
t
a
t

R
o

1

Journal of Imaging Science and Technology® 53(3): 030501–030501-6, 2009.
© Society for Imaging Science and Technology 2009

J

Envelope Mapping Algorithm and Its Applications in
Enhancement and Segmentation of Pancreatic Cell Images

Hai-Shan Wu, Mireille Bitar, David Burstein, Marie Ramer and Joan Gil
Department of Pathology, Box 1194, Mount Sinai School of Medicine, One Gustave L. Levy Place,

New York, NY 10029

E-mail: haishan.wu@mssm.edu

c
p
a
t
c
p

b
r
t
n
s
g
n
m
o
i
e

E
A
t
p
e
u
m
n
h
8
n
c
t
i

r
d
a
c
r
s
s
x
s

bstract. In this paper, we present an intensity mapping algorithm
or enhancement and segmentation of pancreatic ductal nuclei in
ancreatic ductal cell images acquired from pancreatic fine needle
spiration specimens with Papanicolaou stain. The upper envelope
urface is obtained by rolling a ball of fixed size on the image sur-
ace followed by a moving average filtering to smooth out the down-
ard spikes. When the upper envelope surface is mapped to the
niform intensity of the maximum intensity of the original image, the
ontrasts inside nuclei are magnified and the difference between

ntensities in the cytoplasm regions and the void background is com-
ressed, resulting in improved separation of the nuclei from the rest.
esults of enhancement and segmentation of pancreatic nucleus

mages are provided and compared to those without envelope
apping. © 2009 Society for Imaging Science and Technology.

DOI: 10.2352/J.ImagingSci.Technol.2009.53.3.030501�

NTRODUCTION
arcinoma of the pancreas is the fifth most common cause
f cancer related deaths in the Unites States. Most patients
ie within a year of diagnosis.1 Fine needle aspiration (FNA)
ytology2 of the pancreas is often used because the relative
uclear changes are sometimes subtle, making it quite chal-

enging to distinguish tumors such as adenocarcinoma of the
ancreas from reactive ductal cells. Papanicolaou stain (Pap
tain) is a polychromatic stain that allows the differentiation
f cellular morphology, maturity, and metabolic activity and

s the preferable method to enhance nuclear and chromatin
etails. In pathology, diagnoses of diseases are based on the
ecognition of visual clues or diagnostic criteria from the
pecimens. The enhancement of the nuclear contents is im-
ortant since the enhanced images can reveal more and
learer details of nuclei for the viewing of pathologists.3

The main use of anatomic pathology is to secure the
issue diagnosis, in particular, the differential diagnosis be-
ween benign and malignant tumors.4,5 The general ap-
roach used involves characterizing cells or nuclei with nu-
erical measures of factors considered by pathologists based

n visual estimate. A diagnosis is assigned on the basis of
hese features in accordance with a prescribed classificatory
pproach determined and validated on the basis of represen-
ative sets of cases. Among the most useful features for

eceived Sep. 27, 2008; accepted for publication Feb. 14, 2009; published
nline Apr. 27, 2009.
d062-3701/2009/53�3�/030501/6/$20.00.
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ytological applications have been measures of nuclear size,
leomorphism, and chromatin appearance.4,6 To evaluate
nd identify the diagnostically important malignancy indica-
ors from the microscopic cell images, segmentation of nu-
lei from the images is required so that the image analysis is
erformed only on the nuclei.6–13

The pancreatic cell images from FNA specimens stained
y the Papanicolaou process usually have dark nuclei sur-
ounded by lighter cytoplasm areas in a void background
hat is almost uniformly white. Considering the small size of
uclei against the large area including both nuclei and the
urrounding cytoplasm, a very smooth surface that is tan-
ent to the image surface should appear relatively flat in the
uclear regions. With an appropriate intensity mapping, we
ay enhance the contents in the dark nucleus regions with-

ut noticeable distortion while suppressing the difference in
ntensities between the cytoplasm and white background ar-
as for the subsequent nuclear segmentation.

NVELOPE MAPPING
typical pancreatic cell image from a specimen stained by

he Papanicolaou process consists of three parts. The first
art consists of the nucleus regions with relatively lower av-
rage intensities. The second part is the cytoplasm areas that
sually surround the nuclear regions. The cytoplasm area
ay appear slightly lighter on average in gray level than the

uclear regions. The third part is the void regions that have
ighest intensities since no stain occurs. [Figures 7(a) and
(a) show two of the typical pancreatic cell images]. The
uclei, consisting of darker spots of nucleoli and chromatin
lumps and whiter fillers, usually have sharp and wide fluc-
uating intensities, while the cytoplasm areas also fluctuate in
ntensities but in a slower pace.

Let a discrete pancreatic cell image of size N1 �N2 be
epresented by x�n1 ,n2�, for �n1 ,n2��D, where the image
omain D= ��n1 ,n2� �0�n1 �N1 and 0�n2 �N2�. The im-
ge x can be viewed as a surface for which the n1 and n2

oordinates represent the position and the gray-level x rep-
esents the height.14 The envelope of an image is a pair of
mooth surfaces that embrace the image. If the top envelope
urface of x is represented by x̃, we have x�n1 ,n2��

˜�n1 ,n2� for �n1 ,n2��D. If we let a large ball roll over the
urface of the cell image x, the lowest point of the ball will

raw a surface above the image surface. The top envelope
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urface and the image surface are occasionally in touch. If
he ball is chosen much larger than the nuclei, the nuclei,
hich usually have lower average intensities, will have little

ffect on the upper surface x̃. Referring to Figure 1, which
hows a section along the n1 axis, we let a large ball of radius

sit at the position �n1 ,n2�. If a pixel at �k1 ,k2� is located in
istance less than R from the center �n1 ,n2�, we place a ball,
entered at �n1 ,n2�, to intersect with the image surface at
�k1 ,k2�. Fig. 1 shows three such balls, centered at o, o�, and
�, intersecting with the image surface at B, B�, and B�,
espectively. The lowest points of the balls are at C, C�, and
�, respectively. When intersecting the image surface at
�k1 ,k2�, the height of the lowest point of the ball centered
t �n1 ,n2� is

�n1,n2��k1,k2� = x�k1,k2�

− �R − �R2 − ��k1 − n1�2 + �k2 − n2�2�� �1�

s shown the point marked as C� in Fig. 1. Since the ball that
s tangent to the image surface (just in touch with the image
urface but without any image surface inside the ball) as
hown in the solid circle in Fig. 1 is the highest ball at
n1 ,n2�, its bottom point marked by C in the figure is the

ighest for ���k1 −n1�2 + �k2 −n2�2��R. If we let the ball roll
ver the image surface, the C point will draw a surface that

s above and touching the image surface such as

y�n1,n2� = max
�k1,k2���D�D�n2,n2��

c�n1,n2��k1,k2� , �2�

or n1 =0 ,1 , . . . ,N1 −1, and n2 =0 ,1 , . . . ,N2 −1, where the

igure 1. Schematic display of envelope surface in the dashed thick
urve derived from a rolling ball of radius R along the top of the image
urface in thick line. The rolling ball shown as a solid circle is tangent to
he image surface, meaning that one or more image surface points are
ocated exactly on the circle but none of them inside the circle.
et F

. Imaging Sci. Technol. 030501-
D�n1,n2� = ��k1,k2�����k1 − n1�2 + �k2 − n2�2� � R� �3�

s a circular region centered at �n1 ,n2�. The surface y is
mooth at the local tops but may have sharp downward
pikes at the local bottoms. To have a smooth envelope sur-
ace, we use a moving average filter that can smooth the
ownward spikes, while having little effect on the smooth
reas of y at or near its local tops. Thus, we have the upper
nvelope surface of the image x as

x̃�n1,n2� =
1

N�n1,n2�
��

�k1,k2���D�D�n1,n2��
y�k1,k2�,

for ∀ �n1,n2� � D , �4�

here N�n1 ,n2� is the number of elements in the set
�D�n1,n2�.

Figure 2 illustrates the comparisons between the result-
ng envelope surface of the proposed algorithm and that of
he closing operation, the cascade of the dilation that re-
laces each pixel with the brightest pixel in the R-pixel dis-

ance neighborhood and the erosion that replaces each pixel
ith the darkest pixel in the R-pixel distance
eighborhood.15–17 While the closing operation produces a

ine consisting of linear segments, the proposed algorithm
ields a much smoother one that touches the image surface
n more places.

To show the algorithm graphically, we display the simu-
ated surfaces in one dimension in Figure 3. Fig. 3(a) shows
n ideal signal in which the highest level on both ends stands
or the bright background, the lowest level in center repre-
ents the nucleus region, and the rest represents the cyto-
lasm areas. Since images of natural scenes can often be
escribed by the first-order Markov processes with the coef-
cients 0.9���1,18,19 we use the simulated signal, shown

n Fig. 3(b), of the first-order Markov process generated
y the first-order recursive system such as
�n�=�y�n−1�+w�n�, where �=0.9, w is the input, a white
oise sequence, and y is the output sequence of the system;

igure 2. Comparison of the resulting envelope surfaces between the
orphological closing �the dotted line� and the proposed algorithm �the
ashed curve�.
ig. 3(c) is the simulated nucleus image in one dimension
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hat is the addition of the ideal signal in (a) and the first-
rder Markov process in Fig. 3(b). The dashed line in
ig. 3(c) is the middle of the intensity range simulating an
utomatic threshold

Tx =
1

2
�max�x�n1,n2���n1,n2� � D�

+ min�x�n1,n2���n1,n2� � D�� , �5�

here the functions max{·} and min{·} select the respective
inimum and maximum elements from the sets. If we apply

he automatic threshold Tx to the simulated original image x
n (c), the large portion of the cytoplasm area below the
ashed straight line will be misclassified as the nucleus pix-
ls. Fig. 3(d) shows the simulated image x with its morpho-
ogical closing on its top, while Fig. 3(e) shows the simulated
mage with the derived envelope surface x̃, a smooth line on
he top of the image surface. An envelope mapping that
rags the envelope intensities to the maximum intensity of

he image x is given by

Table I. Enveloping algorithm ve

Markov processes, �= 0.9 1

Error rates
Enveloping 0.0108

Homomorphic filtering 0.1432

igure 3. The envelope mapping algorithm illustrated by a simulated
ne-dimension cell signal. �a� the ideal one-dimensional signal; �b� the
rst-order Markov signal ��=0.9�; �c� the simulated one-dimensional cell
ignal, constructed by the addition of the first-order Markov signal in �b�
nd the ideal signal in �a�, and the supposed global threshold line that is

he halfway of the intensity dynamic range; �d� the simulated signal with
ts morphological closing; �e� the simulated one-dimensional cell signal
ith the extracted upper envelope surface on top by the proposed envel-
ping algorithm; �f� mapped signal in solid line and the global threshold
s the dashed line that is the halfway point of the dynamic range of the
ignal intensities �error rate 0.0148�; and �g� homomorphic filtering result
nd the global threshold �dashed line� that is the halfway of the dynamic
ange of the signal intensities �error rate 0.1081�.
. Imaging Sci. Technol. 030501-
x̃�n1,n2� =
max�x̃�k1,k2���k1,k2� � D�

x̃�n1,n2�
x�n1,n2� , �6�

or ∀�n1 ,n2��D. The mapped image x̃ is shown in Fig. 3(f)
long with the midthreshold

Tx̃ =
1

2
�max�x̃�n1,n2���n1,n2� � D�

+ min�x̃�n1,n2���n1,n2� � D�� �7�

n the leveled dashed line. As we can see, the intensities in
ytoplasm regions are dragged to that of background, result-
ng in a more homogeneous combined background against
he nucleus regions. There is a much smaller portion of the
ytoplasm area crossing over the dashed threshold line,
eaning smaller misclassification error after the envelope
apping. The error rate measured as the ratio of the num-

er of the misclassified points to the total is 0.0149.
Homomorphic filtering, one type of Retinex algorithm,

an produce simultaneous contrast enhancement and dy-
amic range reduction.20,21 For the purpose of comparison,
ig. 3(g) shows the filtering result of the input signal in
ig. 3(c) by the homomorphic filter whose frequency re-
ponse of the linear part is H���=�i =0.5 for ���c −�w,
���=�r =2 for ���c +�w, and linear H���=�i +

omorphic filtering in error rates.

3 4 5 6

0.0027 0.0081 0.0054 0.0149

0.2649 0.1608 0.1864 0.1351

igure 4. The simulated nucleus regions, both before and after the map-
ing to show the enhancement of the contents. The variance in the region

s increased from 29.287 in �a� to 63.502 in �b� while the waveforms
emain approximately identical because of the smoothness of the enve-
ope surface based on which the intensity mapping is performed.
rsus hom

2

0.0000

0.0649
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��− ��c −�w�� /2�w	��r −�i� for �c −�w ����c +�w,
here �c =	 /6, and �w =�c /3. The error rate from the ho-
omorphic filtering is measured to be 0.1081, which is

igher than 0.0149, the error rate from the proposed envel-
ping algorithm. Similar results from the enveloping algo-
ithm and the homomorphic system on the six other ran-
omly generated Markov processes are listed in Table I,
howing that the enveloping algorithm performs better with
ower errors.

Since the waveforms in the image x are fluctuating
uch quicker than the envelope x̃, a basically smooth sur-

ace, the waveforms are preserved with minimal distortions
s shown in Figure 4, in which (a) shows the portion of the
imulated nucleus area in Fig. 3(c) and 3(b), shows the cor-
esponding area after the envelope mapping in Fig. 3(f). The
ariance, measured as

1

M
�
m=0

M−1

v2�m� − 
 1

M
�
m=0

M−1

v�m��2

,

here v is the discrete signal of length M, is increased from
9.287 in Fig. 4(a) to 63.502 in Fig. 4(b), while the wave-
orms remain approximately identical because of the
moothness of the envelope surface based on which the in-
ensity mapping is performed. Thus, the contents inside the
uclei are magnified significantly without large distortions.

When images are enhanced by either homomorphic sys-
em or enveloping algorithm, distortions occur both inside
nd outside of cell regions. To compare the quality of the
nhanced signals, we calculate the correlation coefficients
etween the input Markov processes and the output en-
ancements. Figure 5(a) shows the sample Markov process
hich appeared in Fig. 3(b); Fig. 5(b) shows the enveloping
utput signal from Fig. 3(f) with the class means removed,
nd Fig. 5(c) shows the homomorphic filtering result in
ig. 3(g) with the class means removed. The enveloping out-
ut signal appears more similar to the original than does the
omomorphic result. The correlation coefficients are 0.8571
etween the original signal in Fig. 5(a) and the enveloping
utput signal (class means removed) in Fig. 5(b), and 0.6007
etween the original and the homomorphic filtering output
class means removed) in Fig. 5(c).

With the same input signals used for Table I, we com-
ute the correlation coefficients between the input signals
nd each of the mean-neutralized outputs of the enveloping
nd homomorphic filtering systems and list them in Table II,
hich shows that the coefficients for the enveloping system

re much higher, implying higher similarities and less
istortions.

Table II. Co

Markov processes, �= 0.9 1

Correlation coefficients
Enveloping 0.86

Homomorphic filtering 0.57
. Imaging Sci. Technol. 030501-
ESULTS
e have applied the proposed algorithm to images of pan-

reatic ductal cells with Pap stain. Figure 6 displays two
riginal color images of pancreatic ductal cells from speci-
ens obtained via FNA-guided procedure and with Pap

tain by a microscope with a lens of magnification 40�. The
etric image dimension is 121.5�92.1 
2. Although the

mages are color stained, they do not have significant color
ariations. The blue component has a very narrow dynamic
ntensity range located at the high intensity end, while the
reen and blue components are very similar to each other,
esulting in a bluish color image. For simplicity of compu-
ation and analysis, we apply the proposed algorithm on the
ray-level images as shown in Figures 7(a) and 8(a). To pre-
erve the waveforms inside nuclei, we wish the derived en-
elope to be smooth and leveled. Thus, the diameter of the
olling ball should be selected larger than the diameter of the
uclei in the image. In the images in Figs. 7 and 8, the
iameters of nuclei are limited in the range between 20 and
0 pixels. Thus, we select the radius of the ball as 25, the
igh end of the radius range of nuclei. Fig. 7(b) displays the
nhanced image of (a) by the envelope mapping that drags
he intensities in the area of cytoplasm toward the bright
ackground intensities resulting in whitened cytoplasm re-
ions and higher contrasts inside nuclei. Fig. 7(c) shows the
lobal thresholding segmentation of the image x in (a) with
he automatic threshold, Tx, the middle of the dynamic im-
ge intensity range of x, while Fig. 7(d) shows the segmen-
ation of x̃ by applying the automatic threshold, Tx̃, the

iddle value in the dynamic intensity range of the mapped

coefficients.

2 3 4 5 6

0.7709 0.8371 0.8286 0.8179 0.8208

0.4545 0.4680 0.6080 0.3481 0.5421

igure 5. Similarities between the original and the enhanced signals.
a� Markov process, �b� the enveloping output signal �class means re-
oved�, and �c� homomorphic filtering result �class means removed�.
rrelation

21

98
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mage x̃ in (b). It is observed that the segmentation has
mproved significantly, especially in the congested area where
he cytoplasm intensities are relatively more uniform.

Fig. 8(a) shows another pancreatic cell image. Fig. 8(b)
hows the enhanced image of (a) by the envelope mapping.
ig. 8(c) shows the global thresholding segmentation of the

mage in (a) with the automatic threshold, Tx, while image
d) shows the segmentation of envelope-mapped image in
b) by applying the automatic threshold, Tx̃. As we can see
gain, the segmentation has improved significantly in (d)
nd nuclear contents are enhanced greatly in (b).

Since the mapping algorithm assumes a very slow
hanging envelope on an image surface, the regions of the
ow intensities such as the regions formed by both the cyto-
lasm and the cells should be very large. The images of
alignant cells usually have large cell clusters and thus are

pplicable to the proposed algorithm. Images of benign cases
sually have cells in a very homogeneous distribution, there-

ore are relatively easier to be segmented with the global
hresholding without a prior intensity equalization mapping.

ONCLUSIONS
e have presented an equalization mapping algorithm for

nhancement and segmentation of pancreatic ductal nucleus
mages from FNA specimens with Papanicolaou stain. The
lgorithm assumes that clustered dark nuclei are embedded
n large cytoplasm regions. Results for images of malignant
ancreatic ductal cells show that the segmentations of nuclei
ith the proposed mapping are improved significantly over

hose without the mapping. Comparing to the homomor-
hic system, the proposed algorithm produces enhanced im-

igure 6. Original color images of pancreatic ductal cells. Images ap-
ear overwhelmingly blue since, in each image, the blue component has
n almost uniform intensity at the high end, and the other two components
re similar to each other. Both images contain malignant cells.
ges with smaller distortions.

. Imaging Sci. Technol. 030501-
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