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Abstract. The aim of the study was to create an improved colori-
metric and broadband spectral characterization for scanners and
cameras. In such characterization, selecting an adequate number of
color samples of known reflection spectra is necessary. And though
countless sample data sets are available, the properties required of
a data set for such optimal characterization remain elusive. There-
fore a new methodology was required to address the characteriza-
tion task. Such a characterization method is introduced in this article
and is based on statistical classification of the colorimetric and
broadband spectral properties of color sample sets. It introduces
and effectively utilizes both the reflectance spectrum of the color
sample and the spectral power distribution of the source. However it
is shown that characterization methods based on a regression
model can be used only if the conditions of the regression model are
satisfied and that most statistical estimation errors are caused by
conditions of the regression model not being satisfied (for instance
heteroscedasticity, autocorrelation, multicollinearity). Nevertheless,
the method introduced selects optimal representative color samples,
so that with these samples the spectral responsivity of the detector
can be estimated more precisely. The selection method is self-
adaptive. If the reflectance spectra of the color samples and the
spectral power distribution of the source are known, the optimal
number of color samples, the number of principal eigenvectors, etc.,
are automatically set up according to the given a priori information,
and the responsivity curves are determined where, the given z tar-
get function [see Eq. (5)] is minimal. The study has shown that the
estimation error of broadband characterization can be decreased
significantly if an optimal set of color samples is selected using
these statistical methods. If there is more a priori information (for
instance the spectral power distribution of the source of the scanner)
the estimation error can be further decreased. © 2009 Society for
Imaging Science and Technology.

[DOI: 10.2352/J.ImagingSci.Technol.(2009)53:1(010501)]

INTRODUCTION

Determining the sensitivity of a scanner or camera can be
performed using two methods. The spectral responsivity of
the detector can be determined directly using a monochro-
mator or interference filters." This will be called the direct
or narrowband method. The responsivities of the detectors
can also be determined indirectly using reflecting color
samples.™ This method will be called the broadband or in-

Received Mar. 24, 2008; accepted for publication Dec. 6, 2008; published
online Feb. 4, 2009.

1062-3701/2009/53(1)/010501/10/$20.00.

J. Imaging Sci. Technol.

010501-1

direct characterization method. There are two different types
of the broadband method: the spectral’ and the colorimetric
characterization.® The applicability of these methods is
highly dependent on the reflectance spectra of the selected
color samples.”® Using the broadband method, color
samples of known reflectance spectra are scanned. One
would expect that the characterization of the responsivity of
the detector would be very simple using a regression
method.” Using more reflectance spectra in the regression
model should improve the estimation of the detector
responsivity — determination. Using earlier published
methods™® experiments have shown that with some samples
one could improve the estimation, but with other color
samples this was not possible. For example, there are many
redundant color samples in the Munsell, or the Natural
Color System (NCS) atlases.”® The use of these violates, in
the regression methods, the condition of independent vari-
ables (avoiding correlation) of the characterization process.

The colorimetric characterization method handles the
input device as a “black box.” In this method we do not
examine the functioning of the different parts of the device
(it is not necessary to determine the spectral power distri-
bution of the source, the spectral transmission of the color
filters, and the spectral responsivity of the detectors). Only
the input and the output values are known, the transforma-
tion function between device dependent RGB and device
independent CIE XYZ or CIELAB color space has to be
determined with linear or polynomial regression.”'’ In the
colorimetric characterization it is very relevant to question
the nature of the optimal color sample set.® Vien Chung and
Stephen Westland created a selection method in which the
Euclidean distance D;;=||Bi(\), Bi(N)||, between the reflec-
tance spectra of the test samples should be as high as pos-
sible for any (B,(N\), By(N\),...B,(N\)) color sample pairs.
However in the broadband characterization it is practical to
select color samples with spectra which have a wide range
(the range is defined as max(B(\)) —min(B(\))=R €[0,1]),
or high relative spectral deviation [see Eq. (3)], because
color samples with a narrow range, or low chroma, provide
very little information in the course of the characterization
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process. The next section will show that the distance func-
tion between two different reflectance spectra should be
based on the correlation function [see Eq. (4)], instead of
the Euclidean distance, if the primary goal is improvement
of the condition of the regression method.

In the case of the spectral characterization, the spectral
responsivity function must be determined.”’ In this case the
following model-equations can be used:*

rij= 2 SO)BMNs(NAN — §(N)AX, (1)
A

2 SMBMNSNAN == y=X-b+u, )
A

where i=1,2,3 (for the R,G,B measuring channels);
j=1,...,n is the number of color samples. T is the re-
sponse of the detector i for measuring sample 7, S(\) is the
spectral power distribution of the source, B(\) is the reflec-
tance spectrum of the j-th color sample, and, s;(\) is the
spectral responsivity of ith detector, and the " sign is used to
show the estimate.

In the case of broadband characterization, the detector
responsivity cannot be determined directly but can be esti-
mated using mathematical or statistical methods.” Equation
(2) can be transformed into the y=Xb+u regression equa-
tion, where y is the response of the detector, X is the product
of the spectral power distribution of the source and of the
reflectance spectrum of a color sample, and b describes the
responsivity of the detector which has to be estimated. One
possibility is to estimate the detector responsivity b=s;(\) as
a linear regression using the least squares method."" How-
ever, the conditions of linear regression are not always satis-
fied, therefore this method is very sensitive to noise. Thus
the errors of estimation may be very high."

Nevertheless, a possibility exists to decrease noise sensi-
tivity by using only the singular vectors and singular values
for the approach. This method is the principal eigenvector
method (PE).” In spite of the fact that this method has lower
noise sensitivity than the least squares method, the applica-
tion of this method has some limitation. For accurate mod-
eling, some a priori information is needed and this method
ignores this information, e.g., the restriction that the color
sensitivity functions must be smooth functions. If the spec-
tral power distribution of the scanner’s source has sharp
peaks, then after using the PE method, sharp peaks (local
maxima) will be observed in the responsivity functions.

In summary, one can see that there are a number of
characterization methods which are different from each
other in their detector responsivity error estimation and de-
mands on computation and cost. However, most broadband
characterization methods (both spectral and colorimetric)
use a regression calculation scheme. The question is whether
the conditions of the regression methods are satisfied or not
satisfied.
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SPECTRAL CHARACTERIZATION OF DETECTOR
RESPONSIVITY

Regression Methods for Characterizing Detector
Responsivity

In the regression model, the response depends on the spec-
tral power distribution of the source, the reflectance spec-
trum of the color sample, and the detector spectral
responsivity. In this case an overdetermined equation system
is received, where the equations are highly correlated. Unfor-
tunately the least squares or quadratic programming meth-
ods, or any other similar methods, will supply satisfactory
results only if some conditions are fulfilled, otherwise the
estimation could be unreliable. First, it has to be assumed
that there is no systematic error in the measurement. If a
linear regression method is used, some systematic errors (for
instance the dark current) can be corrected by adding the
dark current component to the model and the systematic
error can be handled in a very simple way. However, there
are further problems that cannot be handled in such a
simple way. Such problems are caused by the correlation
among the reflectance spectra of the color samples. On the
one hand, the low number of base color pigments, from
which the color samples are mixed, produces correlations.
This causes autocorrelations (errors of the estimation are
not independent from each other) and the inner correlation
causes multicollinearity. On the other hand the reflectance
spectra of the different color samples have different slopes.
(For instance the reflectance spectrum of a neutral sample
has a lower slope compared to the reflectance spectra of
samples with high chroma.) Thus the variances of the errors
will not be the same. This symptom is called
heteroscedasticity. If the variances of the errors is not
homoscedous then the estimation will not be distorted, but
the estimation will be inefficient (estimation of variances
will increase). The received responsivity curves will show
high oscillations. This situation can be explained as follows:
The X matrix of the regression model contains the products
of the reflectance spectra of the samples, the spectral power
distribution of the source(s), and the responsivity spectra of
the detectors. This causes the heteroscedasticity to be lower
if the source has a continuous spectral power distribution
(like CIE illuminant A), but becomes large for fluorescent
lamps with band-plus-line spectra.

The oscillation effect can also be caused by the
overdetermined regression model. The redundant reflectance
samples are correlated with each other, therefore the estima-
tion error can increase. This effect is the (stochastic)
multicollinearity, where the reflectance of sample x; from a
sample database X depends from other reflectance
sample(s). [If the reflectance spectrum of the color sample x;
can be constructed using the reflectance spectra of other
samples, (for instance, x;=ax;+bx;) then there is a deter-
ministic multicollinearity. (x; correlates with x; and x;, and
their correlation value is unity)]. Autocorrelation (estima-
tion errors correlate) and stochastic multicollinearity (corre-
lation of the independendent variables) are not the same
effect. However if there is multicollinearity (caused by
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overdetermined  regression models) and there s
heteroscedasticity (errors of estimation are not identical, for
instance, they depend on the independent variables) that can
cause autocorrelation. {x; correlates with x; [there is a (sto-
chastic) muticollinearity], u; correlates with x;, and u; corre-
lates x; (there is a heteroscedasticity), then u; can correlate
with u; (can also cause autocorrelation)}. Autocorrelation
causes the estimation to be distorted. If there is multicol-
linearity and there are measurement errors, then even if the
reflectance spectra of the samples are measured accurately,
high estimation errors may be caused. One cannot assume
that the independent variables are deterministic, because
they are the result of measurements that also have some
uncertainties.

Evaluation Methods for Characterizing Color Scanners
and Cameras

We have tested many methods, from least squares regression
(LSQR),'" quadratic programming (QPROG),” principal ei-
genvector method (PE),”"* projection onto convex set
(POCS)," and some other ones. Tests have shown that the
functioning of the different methods was highly influenced
by how well the method fulfilled the requirements of the
model. It was observed that the PE model is one of the best
estimation methods, because it uses a lower number of
equations, which are more significant, and therefore the un-
certainty of estimation will be lower. If too few principal
eigenvectors are used, the estimation will be distorted. If too
many principal eigenvectors are used, the estimation will be
inefficient (variance of estimation will increase), similar to a
least squares regression calculation.

Least squares regression and quadratic programming
methods are forms of regression methods. Therefore these
methods have the same requirements as regression methods.
Fulfillment of assumptions of the regression methods can be
tested with hypothesis tests. We have tested fulfillment of
assumptions by these tests and methods. (Null hypothesis:
there is no autocorrelation). This was investigated by the
Durbin  Watson test and the general LM test.
Homoscedasticity can be tested by the Ramsey test,
Goldfield Quandt test, Breusch Pagan test, etc. Multicol-
linearity can be measured by the variance inflation factor
(VIF), or condition number. Normality of estimation error
can be measured by One-sample Kolmogorov—Smirnov test
or x° test.

POCS method determines convex sets, but the partition
cannot be determined if the color samples are highly corre-
lated. Since PE vectors are uncorrelated vectors, there is no
multicollinearity (principal vectors are independent from
each other).

In spite of the fact that the principle eigenvector method
produces the best estimate—because this method uses few
orthogonal principal eigenvectors, and this way decreases the
effect of autocorrelation—it is also very sensitive to the
source and the reflecting samples. Principal eignenvectors
are noncorrelated vectors, but the error of estimation is not
necessarily identical for all eigenvectors. If the PE method is
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Camera sensitivity of the RED channel
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Figure 1. Results of a camera channel (R) defermination using PE and
adapted PE (PE and smoothing function), where the smoothing param-
eters and the number of principal eigenvectors are automatically set up.

modified using a smoothing function, the oscillations pro-
duced by heteroscedasticity can be reduced, see Figure 1.

If this modification is used, where the postsmoothing
parameters are automatically set up for the given target
function, the correlation between the real and the estimated
sensitivity curves can be increased, and the CIELAB color
differences between the real and estimated responsivities can
be decreased at the same time. (This method is called the
adapted principal Eigenvector method.) Decreasing the color
differences becomes more significant if the source of the
scanner is also considered, since the oscillation effect pro-
duced by heteroscedasticity (and multicollinearity) are more
significant in the case of fluorescent lamp irradiation. While
the oscillation effect of heteroscedasticity can be decreased
by using the smoothing parameters, the effect of
heteroscedasticity itself is not eliminated.

Introducing Selection Methods—Decreasing the Number
of the Reflecting Samples

The previous section shows that if the color samples are not
selected properly, heteroscedasticity will occur. For spectral
characterization, the statistical distribution of the color
samples is also important, as the mapping is from low-
dimensional device response space to high-dimensional
spectral reflectance space. If the proper method is used to
select the samples, the requirements of the detector
responsivity estimation method can more easily be satisfied.
The following method shows how optimal selection of color
samples can be achieved.

In the new method introduced here, color samples are
separated into two batches: The first group, classified as so-
called representative color samples; the second group will
serve as test color samples. Sensitivity curves can be esti-
mated with the representative color samples, but the color
differences will be calculated using all color samples. This
statistical clustering method for reflectances and sources
method (SCRS) has three steps.

The first step is the initial filtering. For this we have to
define a deviation function and a scatter coefficient. (The
deviation function describes the slope of the spectral reflec-
tance functions.)
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Figure 2. Selecting 24 color samples from Munsell aflas with the SCRS method.

In this initial filtering, the color samples, which have no
additional information for the characterization, must be put
into the test color samples set. These samples are the neutral
(gray) samples (with low chroma). Their spectra are typi-
cally similar over the 400 to 700 nm wavelength range. To
group the samples into these two groups, their dispersion
has to be measured. There are two common measures of
dispersion, the range and the relative deviation. The range is
simply the highest value minus the lowest value of the re-
flectance of a given jth color sample. (It is represented as
R (range): {max{ B;(\)]-min[B;(\)]}=R, € [0, 1],
j=1,2,...,n. The other possible measure is the relative
spectral deviation of a given color sample defined as:

Rp= \/f (ﬁ(M—B)Zd)x/B, (€)
A

where B=E(B(\)) and B(\) is the spectral reflectance of the

color sample, B3 is a constant, independent of wavelength.

The advantage of both indicators is that the results are
fractions. Both indicators show the spectral dispersion of a
reflectance spectrum. These values are low in the case of
neutral samples and high in the case of color samples with
high chroma. One can set a minimal value (a scatter coeffi-
cient): If for a sample, the value of the relative spectral de-
viation (or the range) is lower than the given scatter coeffi-
cient, the sample will not be included in the representative
color sample base (e.g., gray samples), and will be put into
the test sample set. With this step the heteroscedasticity can
be avoided.

The second step is clustering. For this, a distance func-
tion has to be defined. Cheung and Westland® used the
Euclidean distance between two reflectance spectra in their
method. For the distance function, we use the correlation
between two reflectance spectra in the following form:
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(BN, BN) = 1~ r(B(N), BN)
cov(BN,B(N)
\vargB;(\)yvar;(\)

(4)
0=<d(B(N),BN) <1,

where 7(Bi(N),Bi(N)) is the correlation between ith and jth
reflectance spectra. If the correlation between two reflectance
spectra is high then the value of distance function is low. If
there is no correlation between two reflectance spectra, then
the value of the distance function is unity. If there is negative
correlation between the two spectra, then the value of the
distance function can increase to two.

If correlation functions are used for clustering, one can
get significant clusters where the inner elements (color
samples) of a cluster are highly correlated, but the correla-
tion between two chosen clusters is below a given threshold;
thus autocorrelation can be avoided. Thus samples from dif-
ferent clusters have to be selected into the group of repre-
sentative samples. It is practical to choose the color sample
from each cluster with the highest value of the relative spec-
tral deviation (Rp).

After performing this selection we have k representative
color samples, where the reflectance spectra of these samples
exhibit low correlation and there is low heteroscedasticity. If
the reflectance spectra of these samples are multiplied by the
spectral power distribution of the source, a unique color
stimuli is received for the given source. Figure 2 shows the
results of a selection process.

For the broadband spectral characterization, the main
problem is whether the assumptions of the regression
method are satisfied or not satisfied. This is the case irre-
spective of which version of the regression method is used.
In the overdetermined regression models, the main prob-
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lems are the multicollinearity, heteroscedasticity, and the
autocorrelation. If we manually select some reflectance
samples of different hues, we can decrease the variance of
estimation in the regression model,’ because correlations
among reflectance samples are decreased. In this way the
effect of multicollinearity (independent variables are corre-
lated) can be decreased, and if there is heteroscedasticity, the
effect of autocorrelation can also be decreased [multicol-
linearity and heteroscedasticity can also cause autocorrela-
tion (see below)]. The Cheung and Westland method can
also decrease the multicollinearity because their optimal se-
lection method selects reflectance samples, where the Euclid-
ean distance between every two reflectance spectra is maxi-
mal. In spite of the fact that this method can decrease
multicollinearity directly, and the autocorrelation indirectly,
this method does not consider the heteroscedasticity. Our
proposed method improves all assumptions of the regression
methods directly. The estimation error can be decreased sig-
nificantly if the assumptions of the regression methods are
satisfied. One way of improving the regression methods is to
tulfill the assumptions of the regression formulas. The fol-
lowing example compares some selection methods in the
case of a real flatbed scanner characterization.

Real Flatbed Scanner Characterization

Characterizing real flatbed scanners is a more difficult task
because there is no a priori information on detector
responsivities. Because the real and the estimated responsiv-
ity curves cannot be compared, selecting an optimal number
of color samples is accordingly more difficult.

First, after scanning color samples there are
j=1,2,...,n responses for i=1,2,3 channels, and if the
spectral power distribution of the lamp and the reflecting
spectra of the samples are known, then the spectral
responsivity curves can be estimated by a linear regression
calculation.

In the target function, the color differences and the
standard deviations of the color differences between the real
and the estimated responsivities must decrease simulta-
neously.

z= E(AE;’h(ri,j’f'i,j)) + K- uc((AE;’b(ﬁ

ip1ij))) — min,

(5)

where z is a target function, E(AE (rl j>Tij) is the mean
value, and u ((AE (r, j>Tij) is the comblned standard un-
certainty of the color difference between the real and the
estimated responsivities. k is a constant which usually can be
set between 2 and 3, taking into consideration the signifi-
cance levels and the distribution of errors of color differ-
ences. (For instance, k=2, if the significance level is 95, 45%
of the color difference errors have a normal distribution.)
If one uses the spectral power distribution of the lamp
in the scanner as a priori information, a source-dependent
selection of the color samples can be made for estimating
the detector responsivities. In this way the effect of
heteroscedasticity and the autocorrelation can be diminished
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IN: minClust, maxClust, B, r

i:=minClust;
opt_Bs:=B;
s":=adaptive_PE(B);
opt_s:=s’;
r:=CumSum(B,s’);
Z":=opt(r,r);

§‘7

[Bs, Bt]:=SCRS(B,i);
s":=Adaptive_| PE(Bs)
r":=CumSum(B,s”)
z":=opt(r,r");

Jyes
opt_Bs:=Bs;
opt_: s =s”";

opt_s, opt_Bs;

Figure 3. Flowchart of adaptive statistical classification method for select-
ing color samples (adaptive SCRS).

to an insignificant level. After selection, the responsivity
curves must be estimated using the above target.

Using an adaptive selection method, as described in the
previous section, the optimal number of color samples can
be determined. Figure 3 shows a flow chart of the procedure.

Ist step (initialization): Input, determine the minimal
and maximal number of clusters (minimal number of clus-
ters can be the relevant principal components of reflecting
samples, maximal number of clusters can be the number of
reflectance samples of a given database B). Estimate the s’
sensitivity curve and r’ responses for the full reflecting
sample database with adaptive PE algorithm, which has al-
ready been mentioned above. The z' is the value of the
target function in case of using Eq. (5); B can be the spectral
reflectance of the samples or the array multiplication of
reflectances and the spectral power distribution of the
sources. In the first case r'=CumSum(B,S,s’), where S is a
spectral power distribution of the source and B is the spec-
tral reflectance of the samples. In the second case
r’=CumSum(B,s’), where B is an array multiplication of
the spectral reflectance of the samples and the spectral
power distribution of the source. In this way, this selection
method can take into consideration the spectral power dis-
tribution of the sources during the selection process.

2nd step (iterations): Let i be the actual number of
clusters [minClust (minimal number of clusters)
<=i< =maxClust (maximum number of clusters)]. Sepa-
rate the full set of reflecting samples (B) into the selected
(B,) and the test (B,) sample base with the SCRS method.
Determine the sensitivity s” of the detector based on the
measured reflecting sample base, but determine the target
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Table 1. Resulis of comparison.

36 selected reflecting

Color Al color

36 selected reflecting 36 selected reflecting

color samples

color sumples

color sumples

Sensifivities Sources differences  samples  (with random selection) ~ (with Cheung and Westland's method)  (with adaptive SCRS method)
Sensitivity=CIE x(\) function (IE-A E(AE;,b) 1.3815 0.9816 0.1904 0.0889
DAE, 04134 0.2752 0.1622 0.0597
(IE D65 E(AE;,I;) 0.9312 0.6711 0.1415 0.0397
D(AE;,b) 0.3451 0.2715 0.0505 0.0212
AGFA E(Af;,b) 1.9561 1.6578 0.7309 0.2315
STUI)I|(|)S(AN D(AE;,b) 0.9311 0.8562 0.4043 0.1105
HP SCANNER 3300C E(AE;,I;) 1.9312 1.3452 0.3511 0.1207
E(AE;,b) 1.5152 1.1236 0.1612 0.0714
HP SCANNER E(AE;b) 21512 2.0230 0.5153 0.1224
4T DAE,) 133 11250 0.4602 0.0540
DEXXA EAE) 15134 1.0244 0.2583 0.1381
SCANNER : 0.8044 0.1673 0.0606

DAE,) 09334

function and the responsivity r” based on the full sample
base. The 2" is the value of the target function used in Eq.
(5). If 2" is lower than the z’ the optimal sensitivity curve
(opt-s), and the selected samples (opt-B,) are saved.

3rd step (printing): Print the optimal number of clus-
ters, the optimal estimated sensitivity curve s”, and the esti-
mated responsivity .

RESULTS

In order to test the selection method, an ideal responsivity of
the detector and ideal spectral power distribution of the
source was assumed. If the model Egs. (1) and (2) are as-
sumed, and a different source and detector, as well as reflect-
ing samples’ spectra are known or can be simulated, differ-
ent methods (adapted PE with or without selection method)
can be used for restoring the given detector responsivity and
one can estimate how different the responsivity of the detec-
tor is from the responsivity of the restored detector.

We have determined, for a number of sources, the color
differences between the evaluated and the restored
responsivities, E(AE;)b), as well as their standard deviations,
D(AE;h). The following test was performed.

A virtual scanner was assumed, where the responsivities
of its detectors corresponded to the CIE x(\),y(\),z(N)
color matching functions (CMFs). The sources adopted were
CIE A, CIE D65, and sources of four flatbed scanners (three
with fluorescent lamps and one LED scanner). The test
samples used were the 1269 color samples of our Munsell
atlas, 205 photographic samples, 2008 color samples of our
NCS atlas, and 24 color samples of the Machbeth Color
Checker Chart. Using Eq. (1) the detector responses could
be determined. The aim was to restore the spectral
responsivities with target function, Eq. (5). Assuming that
the target responsivities, reflectance spectra, and the spectral
power distribution of the source are known, the real and
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restored responsivities could be compared. The results
achieved with the new method have been compared with
those of the Cheung and Westland method and a random
selection method, where the color samples have been se-
lected randomly. Data are shown in Table 1.

Figure 4, shows the target CIE X(\) function and the
reconstructed responsivity curves using PE method with and
without different selection methods.

As shown in Table I, the mean and the standard devia-
tion of color differences between the responses can be sig-
nificantly decreased with optimal sample selection. The
characterization can be further improved if the spectral
power distribution of the source is taken into consideration.
In this case, instead of distance function (4) a modified dis-
tance function can be defined:

d(S(NBN),S(N)BHN)) = 1 = (SN BN, S(N)B{(N)).
(6)

In this way, a source-dependent selection method can be
established. The source-dependent selection method is espe-
cially effective in the case of the fluorescent sources. Table II
compares the results of using the source-dependent and
source-independent methods.

Cheung and Westland’s method does not take into con-
sideration the spectral power distribution of the light source.
However in the scanner regression model, the sum of prod-
uct of the detector sensitivity of the spectral power distribu-
tion of the source and of the spectral reflectance of the
samples is used [see Eq. (1)]. Especially in the case of fluo-
rescent sources, the spectral power distribution of the source
can improve the estimation, because the lack of multicol-
linearity assumption must be satisfied in matrix X of Eq. (2),
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Estimation of the CIE x(A) curve

rel. sensitivity
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Figure 4. Comparison of estimates of the CIE x(\) funcfion with general PE method, and using PE method ofter

an opfimal selection.

which is the array multiplication of the spectral reflectance
of the samples and of the spectral power distribution of the
source.

The results obtained show very low color differences,
but the assumed responsivities were the theoretical CIE
CMFs: %(N),7(N),z(N) and the spectral responsivities of a
color camera are near to a linear transformation of CIE
CMFs. Unfortunately spectral responsivities of flatbed scan-
ners usually are very different from the theoretical CIE
CMFs.

Next, in order to act as an example, a real HP 5470C
scanner was characterized using the adapted PE method
with and without selection. The responsivities of the scanner
detectors were measured with an independent spectral mea-
surement and these data were used as target spectra. In the
first case, the color samples were the 1269 samples of the
Munsell atlas. In the second case, the 24 color samples of the
Macbeth Color Checker Chart plus 205 photographic
samples, and 2008 color samples of NCS atlas were added to
this database. In both cases, without selection, the color dif-
ferences between the real scanned (target) and the estimated
responsivities was higher than SAE;J’. In this case, the best
estimator method, the adapted PE method, was used. As
discussed in the Introduction, without selecting color
samples the determined responsivity curves show oscilla-
tions around the mean values. This is due to heteroscedastic-
ity. Autocorrelation and multicollinearity distort the estima-
tion. If the adaptive selection method is used, the effects of
autocorrelation, multicollinearity, and heteroscedasticity can
be decreased. The responsivity curves have to be estimated
using the selected (representative) color samples, but the
color differences have to be calculated for the all-color
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sample base (using the procedure shown in Fig. 3). The
necessary parameters (number of eigenvectors, smoothing
parameters, the number of clusters/selected color samples)
can be automatically setup with this procedure. A compari-
son is made of cases when all the 1269 Munsell samples are
used in determining the spectral responsivities—if 36
samples are selected randomly, or by using Cheung and
Westland’s method, or by using the SCRS selection
method—can be seen in Table III. The sensitivity curves
have been estimated using a 36 color sample.

Characterization using color samples only from the
Munsell atlas can be performed with a lower estimation er-
ror than published earlier (see Refs. 5-8, 13, and 14). The
characterization method can be further improved if samples
from more color sample bases are used, and selection can be
made from a united big color sample set. In this way, the
effect of multicollinearity can be reduced significantly. In
this study the samples of the Munsell atlas, the 24 element
Macbeth color checker chart, 205 photographic samples, and
the 2008 samples form the NCS atlas were united. To char-
acterize a real HP SCANJET 5470C flatbed scanner, nine
color samples have been selected from the Munsell atlas, 13
from NCS atlas, eight photographic samples, and six color
samples from the Macbeth color checker chart, using the
earlier adaptive selection method. The results are shown in
Table IV. The relative spectral sensitivity of the scanner can
be seen in Figure 5.

The characterization method cannot be significantly
further improved because the standard deviation of the DAC
values of the responsivities are in the order of one to three
for each color sample. This produces a mean error of the
scanning process of about O.SAE;)b for all color samples.
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Table I1. Table I1. Comparison of source-dependent and source-independent SCRS selecting methods with the Cheung and Westland method and randomly selected reflectance samples.
(Sample database=1269 reflectance samples from Munsell atlas+205 photographic samples+2008 reflectance samples from NCS atlas+24 color samples from Macheth color

checker chart. (The number of selected samples is 36.)

Sources

Mean of Mean of CIE Mean of  AGFA HP HP DEXXA

Color QEFl-  F31—  CEHP1— STUDIO SCANJET SCANJET FLATBED
Sensitivities Selection methods differences CIEA CIED65  F12 F3.15 HP5  SCANII  3300C 5470C SCANNER Average
Sensitvity = CIE XYZ 1SQR method HAE,) 63416 52351 84587 94362  8.945% 114612 104629 115744 74772 8956
DIAE,) 38767 23425 64223 64789 58932 51788 48832 74663 34652 60771
Rondom seecion ~~ F(AF, ) 09616 06311 13851 14104 19048 15623 12991 1421 09921 14255
D(AE,) 02452 02672 07823 07542 0983 08032 10312 10422 07631 07834
Cheung ond Westlonds ~ F(AE ) 0.189 01407 0214 02152 05012 07032 03412 04972 02455 02742
method D(AFHI ) 01561 00499 01469 0151 0329 03904 01576 04515 01655 0.1854
Source-independent EAE,) 00568 00334 01403 01767 0194 01703 01023 00805 01395 0155
selecton D(AE;' ) 00319 00201 00876 01164 01481 00924 0058 00451 00831 01018
Source-dependent selection E(AE;:b) 00557 00331 00841 00898 0103 0121 0.0699 0.0699 0.0924 0.0872
D(AE,) 00398 00184 00394 00476 0069 00831 00863 00534 0088 0.0501
Sensitivity = Camera RGB 1SQR method HAE,) 67477 54262 87326 97351 91643 117413 106288 11824 78117 92319
D(AE,) 3942 31348 6331 63728 49162 44161 5771 61787 37811 58791
Random selecion ~~ E(AE ) 09816 0.6711 14512 14104 19731 16578 13452 203 1024 14773
D(AE,) 02752 02715 08341 07542 10401 08562 11236 1125 08044 08152
Cheung ond Westlonds ~ F(AE ) 01904 01415 02452 02152 0512 07309 03511 0515 02583 0.2873
. D(AE;I ) 01622 00505 01501 0151 03402 04043 01612 04602 01673 0.1888
Source-independent E(AE:IJ) 0.0889 00397 01414 01401 02139 02315 01207 01224 01381 0.1476
selecton D(AE;' ) 00597 00212 00771 00% 0149 01105 00714 0054 00606 0.0925
Source-dependent selection E(AE;:b) 0088 00391 01047 01191 01747 014001 00817 00999 01042 0.1176
D(AE,) 00502 0021 00631 00666 01027 01048 00511 00661 00783 0.0695

Weights/Number of sources 1 1 12 15 5 1 1 1 1

Table Il Expected values, E(AE; ;) and standard deviations, D(AE, ) of color dif-
ferences between the real scanned dnd the determined responses of the scanner for the
1269 samples of the Munsell atlas (applied characterization method is adaptive PE
method) for four methods of selecting the characterizing samples (see text).

Munsell color samples E(AE; » D(AE; »
All samples 1269 samples of Munsell atlas 6.77 5.52
without selection:
Random selected samples (36): 519 4.37
Selected samples with Cheung and Westland's 2.90 240
method (36):
Selected samples with SCRS (36): 1.65 1.04

Table IV. Expected values, E(AE; ) and standard deviations, D(AE; ) of color dif-
ferences between the real responsivities and the estimated responsivities. (Applied
characterization method is adaptive PE method, see fext.)

Color samples E(AE; » D(AE; »
All samples without selection: 717 541
Random selected samples 6.02 419
(for 36 selected samples):
Selected samples with Cheung and Westland's 2.86 233
method (for 36 selectedsamples):
Selected samples with SCRS 1.19 0.91

(for 36 selected samples):

In order to verify our results, it is not enough to calcu-
late the responsivity curves and the color differences between
the scanned and the estimated responsivities, because the
value of the target function z [see Eq. (6)] might have a low
value, and the color differences between the scanned and the
estimated responsivities might be very low, but using the
estimated responsivity curves in another color sample base
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[using Eq. (1)], one might get different results. Therefore to
be sure of the effectiveness of the introduced method, scan-
ner detector responsivities have been determined using in-
terference filters (the narrowband spectral characterization
method). For this, the source of the scanner was switched off
and an external CIE-A standard lamp was used. With inter-
ference filters, the detector responsivity and the
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Relative sensitivities of HP Scanner

1,0000 = _

A 2 7
0,9000 A 3 yi
4 %
0,8000 < 4

0,7000 /
/

0,6000 1
/
!

0,5000 1

rel. sensitivity

0,4000 >
/

I, N
0,3000 - =

[\

-
0,0000 T —

\.
".
A

0,2000 / T
/ 4\
0,1000

380 430 480 530

580

680 730

630

| — = -CWmethod(R) — — -CWmethod(G) — — -CWmethod(B) ——— SCRS method (R) ———SCRS method (G) ——— SCRS method (B) I

Figure 5. Relative spectral responsivities determined with broadband adaptive SCRS method and Cheung

and Westland's method.

nonsystematic (measurement) errors can be determine di-
rectly, with ISO GUM" and Monte-Carlo simulation. The
results can be seen in Figure 6. The detector responsivity
functions obtained by the new method, by the Cheung and
Westland method (see Fig. 5), and by the narrowband
method (see Fig. 6), are very close to each other.

In Fig. 6 mean responsivities and their combined stan-
dard uncertainties can be seen in both the case of the nar-

rowband spectral characterization method and the new
method, determined on an HP 5470C scanner. Using these
values, together with the estimated uncertainties, the spectral
method was compared with the broadband method. Table V
compares the two determination methods.

Comparing the results of Tables IV and V one can see
that despite the fact that the responsivity curves using the
direct (spectral) and the indirect (broadband) methods are

Relative Sensitivity of HP Scanner
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Figure 6. Relative spectral responsivities defermined using the broadband (adaptive SCRS) and narrowband

method (with interference filters).
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Table V. Expecied values, E(AE; ;) and standard deviations, D(AE p of color dif-
ferences using the narrowband spéctral method and the adaptive SCRS method.

Color samples for all color selected samples (3506).

GUM method for all samples EAE, 5 2.87
D(AE; b) 216
Monte-Carlo simulation for all KAE ) 278
samples DA E.i,b) 207
Adaptive SCRS for all samples KAE ) 1.19
DAE ) 0.91

nearly the same, the color differences are lower if we use the
indirect (broadband) method with the statistical classifica-
tion selection method. Theoretically, lower uncertainty could
be achieved if instead of the quasimonochromatic light of
the incandescent lamp filtered with interference filters, tun-
able lasers would be used, but these were not at our disposal.
Actually the narrowband method to determine the spectral
responsivities was only used to control our measurement
data, and we have not dealt with this method in detail.

CONCLUSIONS

The conditions of the regression model using broadband
characterization for scanners and cameras were investigated.
If these conditions are not satisfied, the estimation of detec-
tor responsivity would be distorted and/or the determina-
tion would be inefficient.

The importance of optimal color sample selection was
emphasized. Selection methods which improve the condi-
tion of the characterization method are judged to be effec-
tive. The selection method, based on statistical classification,
introduced in this article improves all broadband character-
ization methods based on a regression analysis. In this case,
the error of estimation can be decreased very significantly
because the conditions of the regression models are im-
proved. The selection method can be used for any arbitrary
color sample set. The selection methods improve the as-
sumptions of the characterization method directly. In this
way, the error of the estimation of sensitivity curves can be
very significantly decreased. In the case of characterization
using regression models, other selecting methods that in-
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crease the effect of multicollinearity and autocorrelation in-
directly can also be very useful. However, better results can
be achieved if the assumptions of the characterization
method are investigated and one selects samples for the
characterization where the assumptions are satisfied.

In case of flatbed scanners, where the illuminant is a
fluorescent source, the selection method should also take
into consideration the spectral power distribution of the
source, because the assumptions of the regression method
must be fulfilled and can only be investigated in this way.
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