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bstract. The aim of the study was to create an improved colori-
etric and broadband spectral characterization for scanners and

ameras. In such characterization, selecting an adequate number of
olor samples of known reflection spectra is necessary. And though
ountless sample data sets are available, the properties required of
data set for such optimal characterization remain elusive. There-

ore a new methodology was required to address the characteriza-
ion task. Such a characterization method is introduced in this article
nd is based on statistical classification of the colorimetric and
roadband spectral properties of color sample sets. It introduces
nd effectively utilizes both the reflectance spectrum of the color
ample and the spectral power distribution of the source. However it

s shown that characterization methods based on a regression
odel can be used only if the conditions of the regression model are

atisfied and that most statistical estimation errors are caused by
onditions of the regression model not being satisfied (for instance
eteroscedasticity, autocorrelation, multicollinearity). Nevertheless,

he method introduced selects optimal representative color samples,
o that with these samples the spectral responsivity of the detector
an be estimated more precisely. The selection method is self-
daptive. If the reflectance spectra of the color samples and the
pectral power distribution of the source are known, the optimal
umber of color samples, the number of principal eigenvectors, etc.,
re automatically set up according to the given a priori information,
nd the responsivity curves are determined where, the given z tar-
et function [see Eq. (5)] is minimal. The study has shown that the
stimation error of broadband characterization can be decreased
ignificantly if an optimal set of color samples is selected using
hese statistical methods. If there is more a priori information (for
nstance the spectral power distribution of the source of the scanner)
he estimation error can be further decreased. © 2009 Society for
maging Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.�2009�53:1�010501��

NTRODUCTION
etermining the sensitivity of a scanner or camera can be
erformed using two methods. The spectral responsivity of

he detector can be determined directly using a monochro-
ator or interference filters.1,2 This will be called the direct

r narrowband method. The responsivities of the detectors
an also be determined indirectly using reflecting color
amples.3,4 This method will be called the broadband or in-

eceived Mar. 24, 2008; accepted for publication Dec. 6, 2008; published
nline Feb. 4, 2009.
v062-3701/2009/53�1�/010501/10/$20.00.

. Imaging Sci. Technol. 010501-
irect characterization method. There are two different types
f the broadband method: the spectral5 and the colorimetric
haracterization.6 The applicability of these methods is
ighly dependent on the reflectance spectra of the selected
olor samples.7,8 Using the broadband method, color
amples of known reflectance spectra are scanned. One
ould expect that the characterization of the responsivity of

he detector would be very simple using a regression
ethod.9 Using more reflectance spectra in the regression
odel should improve the estimation of the detector

esponsivity determination. Using earlier published
ethods5–8 experiments have shown that with some samples

ne could improve the estimation, but with other color
amples this was not possible. For example, there are many
edundant color samples in the Munsell, or the Natural
olor System (NCS) atlases.7,8 The use of these violates, in

he regression methods, the condition of independent vari-
bles (avoiding correlation) of the characterization process.

The colorimetric characterization method handles the
nput device as a “black box.” In this method we do not
xamine the functioning of the different parts of the device
it is not necessary to determine the spectral power distri-
ution of the source, the spectral transmission of the color
lters, and the spectral responsivity of the detectors). Only

he input and the output values are known, the transforma-
ion function between device dependent RGB and device
ndependent CIE XYZ or CIELAB color space has to be
etermined with linear or polynomial regression.6,10 In the
olorimetric characterization it is very relevant to question
he nature of the optimal color sample set.8 Vien Chung and
tephen Westland created a selection method in which the
uclidean distance Di,j = ��i��� ,�j����2 between the reflec-

ance spectra of the test samples should be as high as pos-
ible for any (�1���, �2��� , . . .�n���) color sample pairs.
owever in the broadband characterization it is practical to

elect color samples with spectra which have a wide range
the range is defined as max������−min������=R� �0 ,1�),
r high relative spectral deviation [see Eq. (3)], because
olor samples with a narrow range, or low chroma, provide

ery little information in the course of the characterization
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rocess. The next section will show that the distance func-
ion between two different reflectance spectra should be
ased on the correlation function [see Eq. (4)], instead of
he Euclidean distance, if the primary goal is improvement
f the condition of the regression method.

In the case of the spectral characterization, the spectral
esponsivity function must be determined.5 In this case the
ollowing model-equations can be used:4

ri,j = �
�

S����j���si����� → ŝi����� , �1�

�
�

S����j���ŝi����� = r̂i,j � y = X · b + u , �2�

here i=1,2 ,3 (for the R,G,B measuring channels);
=1, . . . ,n is the number of color samples. ri,j is the re-
ponse of the detector i for measuring sample j, S��� is the
pectral power distribution of the source, �j��� is the reflec-
ance spectrum of the j-th color sample, and, si��� is the
pectral responsivity of ith detector, and the ˆ sign is used to
how the estimate.

In the case of broadband characterization, the detector
esponsivity cannot be determined directly but can be esti-

ated using mathematical or statistical methods.5 Equation
2) can be transformed into the y= Xb+u regression equa-
ion, where y is the response of the detector, X is the product
f the spectral power distribution of the source and of the
eflectance spectrum of a color sample, and b describes the
esponsivity of the detector which has to be estimated. One
ossibility is to estimate the detector responsivity b= si��� as
linear regression using the least squares method.11 How-

ver, the conditions of linear regression are not always satis-
ed, therefore this method is very sensitive to noise. Thus

he errors of estimation may be very high.12

Nevertheless, a possibility exists to decrease noise sensi-
ivity by using only the singular vectors and singular values
or the approach. This method is the principal eigenvector

ethod (PE).7 In spite of the fact that this method has lower
oise sensitivity than the least squares method, the applica-

ion of this method has some limitation. For accurate mod-
ling, some a priori information is needed and this method
gnores this information, e.g., the restriction that the color
ensitivity functions must be smooth functions. If the spec-
ral power distribution of the scanner’s source has sharp
eaks, then after using the PE method, sharp peaks (local
axima) will be observed in the responsivity functions.

In summary, one can see that there are a number of
haracterization methods which are different from each
ther in their detector responsivity error estimation and de-
ands on computation and cost. However, most broadband

haracterization methods (both spectral and colorimetric)
se a regression calculation scheme. The question is whether

he conditions of the regression methods are satisfied or not

atisfied. e

. Imaging Sci. Technol. 010501-
PECTRAL CHARACTERIZATION OF DETECTOR
ESPONSIVITY
egression Methods for Characterizing Detector
esponsivity

n the regression model, the response depends on the spec-
ral power distribution of the source, the reflectance spec-
rum of the color sample, and the detector spectral
esponsivity. In this case an overdetermined equation system
s received, where the equations are highly correlated. Unfor-
unately the least squares or quadratic programming meth-
ds, or any other similar methods, will supply satisfactory
esults only if some conditions are fulfilled, otherwise the
stimation could be unreliable. First, it has to be assumed
hat there is no systematic error in the measurement. If a
inear regression method is used, some systematic errors (for
nstance the dark current) can be corrected by adding the
ark current component to the model and the systematic
rror can be handled in a very simple way. However, there
re further problems that cannot be handled in such a
imple way. Such problems are caused by the correlation
mong the reflectance spectra of the color samples. On the
ne hand, the low number of base color pigments, from
hich the color samples are mixed, produces correlations.
his causes autocorrelations (errors of the estimation are
ot independent from each other) and the inner correlation
auses multicollinearity. On the other hand the reflectance
pectra of the different color samples have different slopes.
For instance the reflectance spectrum of a neutral sample
as a lower slope compared to the reflectance spectra of
amples with high chroma.) Thus the variances of the errors
ill not be the same. This symptom is called
eteroscedasticity. If the variances of the errors is not
omoscedous then the estimation will not be distorted, but

he estimation will be inefficient (estimation of variances
ill increase). The received responsivity curves will show
igh oscillations. This situation can be explained as follows:
he X matrix of the regression model contains the products
f the reflectance spectra of the samples, the spectral power
istribution of the source(s), and the responsivity spectra of

he detectors. This causes the heteroscedasticity to be lower
f the source has a continuous spectral power distribution
like CIE illuminant A), but becomes large for fluorescent
amps with band-plus-line spectra.

The oscillation effect can also be caused by the
verdetermined regression model. The redundant reflectance
amples are correlated with each other, therefore the estima-
ion error can increase. This effect is the (stochastic)

ulticollinearity, where the reflectance of sample xi from a
ample database X depends from other reflectance
ample(s). [If the reflectance spectrum of the color sample xi

an be constructed using the reflectance spectra of other
amples, (for instance, xi =axj +bxk) then there is a deter-

inistic multicollinearity. (xi correlates with xj and xk, and
heir correlation value is unity)]. Autocorrelation (estima-
ion errors correlate) and stochastic multicollinearity (corre-
ation of the independendent variables) are not the same

ffect. However if there is multicollinearity (caused by

Jan.-Feb. 20092
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verdetermined regression models) and there is
eteroscedasticity (errors of estimation are not identical, for

nstance, they depend on the independent variables) that can
ause autocorrelation. {xi correlates with xj [there is a (sto-
hastic) muticollinearity], ui correlates with xi, and uj corre-
ates xj (there is a heteroscedasticity), then ui can correlate
ith uj (can also cause autocorrelation)}. Autocorrelation

auses the estimation to be distorted. If there is multicol-
inearity and there are measurement errors, then even if the
eflectance spectra of the samples are measured accurately,
igh estimation errors may be caused. One cannot assume

hat the independent variables are deterministic, because
hey are the result of measurements that also have some
ncertainties.

valuation Methods for Characterizing Color Scanners
nd Cameras
e have tested many methods, from least squares regression

LSQR),11 quadratic programming (QPROG),3 principal ei-
envector method (PE),7,12 projection onto convex set
POCS),12 and some other ones. Tests have shown that the
unctioning of the different methods was highly influenced
y how well the method fulfilled the requirements of the
odel. It was observed that the PE model is one of the best

stimation methods, because it uses a lower number of
quations, which are more significant, and therefore the un-
ertainty of estimation will be lower. If too few principal
igenvectors are used, the estimation will be distorted. If too
any principal eigenvectors are used, the estimation will be

nefficient (variance of estimation will increase), similar to a
east squares regression calculation.

Least squares regression and quadratic programming
ethods are forms of regression methods. Therefore these
ethods have the same requirements as regression methods.

ulfillment of assumptions of the regression methods can be
ested with hypothesis tests. We have tested fulfillment of
ssumptions by these tests and methods. (Null hypothesis:
here is no autocorrelation). This was investigated by the
urbin Watson test and the general LM test.
omoscedasticity can be tested by the Ramsey test,
oldfield Quandt test, Breusch Pagan test, etc. Multicol-

inearity can be measured by the variance inflation factor
VIF), or condition number. Normality of estimation error
an be measured by One-sample Kolmogorov–Smirnov test
r �2 test.

POCS method determines convex sets, but the partition
annot be determined if the color samples are highly corre-
ated. Since PE vectors are uncorrelated vectors, there is no

ulticollinearity (principal vectors are independent from
ach other).

In spite of the fact that the principle eigenvector method
roduces the best estimate—because this method uses few
rthogonal principal eigenvectors, and this way decreases the
ffect of autocorrelation—it is also very sensitive to the
ource and the reflecting samples. Principal eignenvectors
re noncorrelated vectors, but the error of estimation is not
ecessarily identical for all eigenvectors. If the PE method is
 t

. Imaging Sci. Technol. 010501-
odified using a smoothing function, the oscillations pro-
uced by heteroscedasticity can be reduced, see Figure 1.

If this modification is used, where the postsmoothing
arameters are automatically set up for the given target

unction, the correlation between the real and the estimated
ensitivity curves can be increased, and the CIELAB color
ifferences between the real and estimated responsivities can
e decreased at the same time. (This method is called the
dapted principal Eigenvector method.) Decreasing the color
ifferences becomes more significant if the source of the
canner is also considered, since the oscillation effect pro-
uced by heteroscedasticity (and multicollinearity) are more
ignificant in the case of fluorescent lamp irradiation. While
he oscillation effect of heteroscedasticity can be decreased
y using the smoothing parameters, the effect of
eteroscedasticity itself is not eliminated.

ntroducing Selection Methods—Decreasing the Number
f the Reflecting Samples
he previous section shows that if the color samples are not

elected properly, heteroscedasticity will occur. For spectral
haracterization, the statistical distribution of the color
amples is also important, as the mapping is from low-
imensional device response space to high-dimensional
pectral reflectance space. If the proper method is used to
elect the samples, the requirements of the detector
esponsivity estimation method can more easily be satisfied.
he following method shows how optimal selection of color

amples can be achieved.
In the new method introduced here, color samples are

eparated into two batches: The first group, classified as so-
alled representative color samples; the second group will
erve as test color samples. Sensitivity curves can be esti-

ated with the representative color samples, but the color
ifferences will be calculated using all color samples. This
tatistical clustering method for reflectances and sources

ethod (SCRS) has three steps.
The first step is the initial filtering. For this we have to

efine a deviation function and a scatter coefficient. (The
eviation function describes the slope of the spectral reflec-

igure 1. Results of a camera channel �R� determination using PE and
dapted PE �PE and smoothing function�, where the smoothing param-
ters and the number of principal eigenvectors are automatically set up.
ance functions.)

Jan.-Feb. 20093
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In this initial filtering, the color samples, which have no
dditional information for the characterization, must be put
nto the test color samples set. These samples are the neutral
gray) samples (with low chroma). Their spectra are typi-
ally similar over the 400 to 700 nm wavelength range. To
roup the samples into these two groups, their dispersion
as to be measured. There are two common measures of
ispersion, the range and the relative deviation. The range is
imply the highest value minus the lowest value of the re-
ectance of a given jth color sample. (It is represented as

(range): �max��j����−min��j����	=Rj � �0 ,1�,
=1,2 , . . . ,n. The other possible measure is the relative
pectral deviation of a given color sample defined as:

RD =
�
�

����� − �̄�2d�� �̄ , �3�

here �̄=E������ and ���� is the spectral reflectance of the

olor sample, �̄ is a constant, independent of wavelength.
The advantage of both indicators is that the results are

ractions. Both indicators show the spectral dispersion of a
eflectance spectrum. These values are low in the case of
eutral samples and high in the case of color samples with
igh chroma. One can set a minimal value (a scatter coeffi-
ient): If for a sample, the value of the relative spectral de-
iation (or the range) is lower than the given scatter coeffi-
ient, the sample will not be included in the representative
olor sample base (e.g., gray samples), and will be put into
he test sample set. With this step the heteroscedasticity can
e avoided.

The second step is clustering. For this, a distance func-
ion has to be defined. Cheung and Westland8 used the
uclidean distance between two reflectance spectra in their
ethod. For the distance function, we use the correlation

Figure 2. Selecting 24 color sample
etween two reflectance spectra in the following form: I

. Imaging Sci. Technol. 010501-
d��i���,�j���� = 1 − r��i���,�j����

= 1 −
cov��i���,�j����


var�i���
var�j���
�4�

0 � d��i���,�j���� � 1,

here r��i��� ,�j���� is the correlation between ith and jth
eflectance spectra. If the correlation between two reflectance
pectra is high then the value of distance function is low. If
here is no correlation between two reflectance spectra, then
he value of the distance function is unity. If there is negative
orrelation between the two spectra, then the value of the
istance function can increase to two.

If correlation functions are used for clustering, one can
et significant clusters where the inner elements (color
amples) of a cluster are highly correlated, but the correla-
ion between two chosen clusters is below a given threshold;
hus autocorrelation can be avoided. Thus samples from dif-
erent clusters have to be selected into the group of repre-
entative samples. It is practical to choose the color sample
rom each cluster with the highest value of the relative spec-
ral deviation �RD�.

After performing this selection we have k representative
olor samples, where the reflectance spectra of these samples
xhibit low correlation and there is low heteroscedasticity. If
he reflectance spectra of these samples are multiplied by the
pectral power distribution of the source, a unique color
timuli is received for the given source. Figure 2 shows the
esults of a selection process.

For the broadband spectral characterization, the main
roblem is whether the assumptions of the regression
ethod are satisfied or not satisfied. This is the case irre-

pective of which version of the regression method is used.

unsell atlas with the SCRS method.
s from M
n the overdetermined regression models, the main prob-

Jan.-Feb. 20094
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ems are the multicollinearity, heteroscedasticity, and the
utocorrelation. If we manually select some reflectance
amples of different hues, we can decrease the variance of
stimation in the regression model,8 because correlations
mong reflectance samples are decreased. In this way the
ffect of multicollinearity (independent variables are corre-
ated) can be decreased, and if there is heteroscedasticity, the
ffect of autocorrelation can also be decreased [multicol-
inearity and heteroscedasticity can also cause autocorrela-
ion (see below)]. The Cheung and Westland method can
lso decrease the multicollinearity because their optimal se-
ection method selects reflectance samples, where the Euclid-
an distance between every two reflectance spectra is maxi-
al. In spite of the fact that this method can decrease
ulticollinearity directly, and the autocorrelation indirectly,

his method does not consider the heteroscedasticity. Our
roposed method improves all assumptions of the regression
ethods directly. The estimation error can be decreased sig-

ificantly if the assumptions of the regression methods are
atisfied. One way of improving the regression methods is to
ulfill the assumptions of the regression formulas. The fol-
owing example compares some selection methods in the
ase of a real flatbed scanner characterization.

eal Flatbed Scanner Characterization
haracterizing real flatbed scanners is a more difficult task
ecause there is no a priori information on detector
esponsivities. Because the real and the estimated responsiv-
ty curves cannot be compared, selecting an optimal number
f color samples is accordingly more difficult.

First, after scanning color samples there are
=1,2 , . . . ,n responses for i=1,2 ,3 channels, and if the
pectral power distribution of the lamp and the reflecting
pectra of the samples are known, then the spectral
esponsivity curves can be estimated by a linear regression
alculation.

In the target function, the color differences and the
tandard deviations of the color differences between the real
nd the estimated responsivities must decrease simulta-
eously.

z = E��E
a,b
* �ri,j, r̂i,j�� + � · uc���E

a,b
* �ri,j, r̂i,j��� → min,

�5�

here z is a target function, E��E
a,b
* �ri,j , r̂i,j�� is the mean

alue, and uc���E
a,b
* �ri,j , r̂i,j��� is the combined standard un-

ertainty of the color difference between the real and the
stimated responsivities. � is a constant which usually can be
et between 2 and 3, taking into consideration the signifi-
ance levels and the distribution of errors of color differ-
nces. (For instance, �=2, if the significance level is 95, 45%
f the color difference errors have a normal distribution.)

If one uses the spectral power distribution of the lamp
n the scanner as a priori information, a source-dependent
election of the color samples can be made for estimating
he detector responsivities. In this way the effect of

eteroscedasticity and the autocorrelation can be diminished m

. Imaging Sci. Technol. 010501-
o an insignificant level. After selection, the responsivity
urves must be estimated using the above target.

Using an adaptive selection method, as described in the
revious section, the optimal number of color samples can
e determined. Figure 3 shows a flow chart of the procedure.

1st step (initialization): Input, determine the minimal
nd maximal number of clusters (minimal number of clus-
ers can be the relevant principal components of reflecting
amples, maximal number of clusters can be the number of
eflectance samples of a given database B). Estimate the s�
ensitivity curve and r� responses for the full reflecting
ample database with adaptive PE algorithm, which has al-
eady been mentioned above. The z� is the value of the
arget function in case of using Eq. (5); B can be the spectral
eflectance of the samples or the array multiplication of
eflectances and the spectral power distribution of the
ources. In the first case r�=CumSum�B ,S , s��, where S is a
pectral power distribution of the source and B is the spec-
ral reflectance of the samples. In the second case
�=CumSum�B , s��, where B is an array multiplication of
he spectral reflectance of the samples and the spectral
ower distribution of the source. In this way, this selection
ethod can take into consideration the spectral power dis-

ribution of the sources during the selection process.
2nd step (iterations): Let i be the actual number of

lusters [minClust (minimal number of clusters)
= i� =maxClust (maximum number of clusters)]. Sepa-

ate the full set of reflecting samples �B� into the selected
Bs� and the test �Bt� sample base with the SCRS method.
etermine the sensitivity s� of the detector based on the

igure 3. Flowchart of adaptive statistical classification method for select-
ng color samples �adaptive SCRS�.
easured reflecting sample base, but determine the target

Jan.-Feb. 20095
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unction and the responsivity r� based on the full sample
ase. The z� is the value of the target function used in Eq.
5). If z� is lower than the z� the optimal sensitivity curve
opt-s�, and the selected samples �opt-Bs� are saved.

3rd step (printing): Print the optimal number of clus-
ers, the optimal estimated sensitivity curve s�, and the esti-

ated responsivity r�.

ESULTS
n order to test the selection method, an ideal responsivity of
he detector and ideal spectral power distribution of the
ource was assumed. If the model Eqs. (1) and (2) are as-
umed, and a different source and detector, as well as reflect-
ng samples’ spectra are known or can be simulated, differ-
nt methods (adapted PE with or without selection method)
an be used for restoring the given detector responsivity and
ne can estimate how different the responsivity of the detec-
or is from the responsivity of the restored detector.

We have determined, for a number of sources, the color
ifferences between the evaluated and the restored
esponsivities, E��E

a,b
* �, as well as their standard deviations,

��E
a,b
* �. The following test was performed.

A virtual scanner was assumed, where the responsivities
f its detectors corresponded to the CIE x̄��� , ȳ��� , z̄���
olor matching functions (CMFs). The sources adopted were
IE A, CIE D65, and sources of four flatbed scanners (three
ith fluorescent lamps and one LED scanner). The test

amples used were the 1269 color samples of our Munsell
tlas, 205 photographic samples, 2008 color samples of our
CS atlas, and 24 color samples of the Machbeth Color
hecker Chart. Using Eq. (1) the detector responses could
e determined. The aim was to restore the spectral
esponsivities with target function, Eq. (5). Assuming that
he target responsivities, reflectance spectra, and the spectral

Table I. Re

ensitivities Sources
Color

differences
All color
samples

36

�wit

ensitivity= CIE x̄��� function CIE-A E��E
a,b
* � 1.3815

D��E
a,b
* � 0.4134

CIE D65 E��E
a,b
* � 0.9312

D��E
a,b
* � 0.3451

AGFA
STUDIOSCAN

II

E��E
a,b
* � 1.9561

D��E
a,b
* � 0.9311

HP SCANNER 3300C E��E
a,b
* � 1.9312

E��E
a,b
* � 1.5152

HP SCANNER
5470C

E��E
a,b
* � 2.1512

D��E
a,b
* � 1.3341

DEXXA
SCANNER

E��E
a,b
* � 1.5134

D��E
a,b
* � 0.9334
ower distribution of the source are known, the real and l

. Imaging Sci. Technol. 010501-
estored responsivities could be compared. The results
chieved with the new method have been compared with
hose of the Cheung and Westland method and a random
election method, where the color samples have been se-
ected randomly. Data are shown in Table I.

Figure 4, shows the target CIE x̄��� function and the
econstructed responsivity curves using PE method with and
ithout different selection methods.

As shown in Table I, the mean and the standard devia-
ion of color differences between the responses can be sig-
ificantly decreased with optimal sample selection. The
haracterization can be further improved if the spectral
ower distribution of the source is taken into consideration.
n this case, instead of distance function (4) a modified dis-
ance function can be defined:

d�S����i���,S����j���� = 1 − r�S����i���,S����j���� .

�6�

n this way, a source-dependent selection method can be
stablished. The source-dependent selection method is espe-
ially effective in the case of the fluorescent sources. Table II
ompares the results of using the source-dependent and
ource-independent methods.

Cheung and Westland’s method does not take into con-
ideration the spectral power distribution of the light source.
owever in the scanner regression model, the sum of prod-
ct of the detector sensitivity of the spectral power distribu-

ion of the source and of the spectral reflectance of the
amples is used [see Eq. (1)]. Especially in the case of fluo-
escent sources, the spectral power distribution of the source
an improve the estimation, because the lack of multicol-

omparison.

reflecting
mples

selection�

36 selected reflecting
color samples

�with Cheung and Westland’s method�

36 selected reflecting
color samples

�with adaptive SCRS method�

16 0.1904 0.0889

52 0.1622 0.0597

11 0.1415 0.0397

15 0.0505 0.0212

78 0.7309 0.2315

62 0.4043 0.1105

52 0.3511 0.1207

36 0.1612 0.0714

30 0.5153 0.1224

50 0.4602 0.0540

44 0.2583 0.1381

44 0.1673 0.0606
sults of c

selected
color sa

h random

0.98

0.27

0.67

0.27

1.65

0.85

1.34

1.12

2.02

1.12

1.02

0.80
inearity assumption must be satisfied in matrix X of Eq. (2),
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hich is the array multiplication of the spectral reflectance
f the samples and of the spectral power distribution of the
ource.

The results obtained show very low color differences,
ut the assumed responsivities were the theoretical CIE
MFs: x̄��� , ȳ��� , z̄��� and the spectral responsivities of a

olor camera are near to a linear transformation of CIE
MFs. Unfortunately spectral responsivities of flatbed scan-
ers usually are very different from the theoretical CIE
MFs.

Next, in order to act as an example, a real HP 5470C
canner was characterized using the adapted PE method
ith and without selection. The responsivities of the scanner
etectors were measured with an independent spectral mea-
urement and these data were used as target spectra. In the
rst case, the color samples were the 1269 samples of the
unsell atlas. In the second case, the 24 color samples of the
acbeth Color Checker Chart plus 205 photographic

amples, and 2008 color samples of NCS atlas were added to
his database. In both cases, without selection, the color dif-
erences between the real scanned (target) and the estimated
esponsivities was higher than 5�E

a,b
* . In this case, the best

stimator method, the adapted PE method, was used. As
iscussed in the Introduction, without selecting color
amples the determined responsivity curves show oscilla-
ions around the mean values. This is due to heteroscedastic-
ty. Autocorrelation and multicollinearity distort the estima-
ion. If the adaptive selection method is used, the effects of
utocorrelation, multicollinearity, and heteroscedasticity can
e decreased. The responsivity curves have to be estimated
sing the selected (representative) color samples, but the

Figure 4. Comparison of estimates of the CIE x̄��� f
an optimal selection.
olor differences have to be calculated for the all-color s

. Imaging Sci. Technol. 010501-
ample base (using the procedure shown in Fig. 3). The
ecessary parameters (number of eigenvectors, smoothing
arameters, the number of clusters/selected color samples)
an be automatically setup with this procedure. A compari-
on is made of cases when all the 1269 Munsell samples are
sed in determining the spectral responsivities—if 36
amples are selected randomly, or by using Cheung and

estland’s method, or by using the SCRS selection
ethod—can be seen in Table III. The sensitivity curves

ave been estimated using a 36 color sample.
Characterization using color samples only from the

unsell atlas can be performed with a lower estimation er-
or than published earlier (see Refs. 5–8, 13, and 14). The
haracterization method can be further improved if samples
rom more color sample bases are used, and selection can be

ade from a united big color sample set. In this way, the
ffect of multicollinearity can be reduced significantly. In
his study the samples of the Munsell atlas, the 24 element

acbeth color checker chart, 205 photographic samples, and
he 2008 samples form the NCS atlas were united. To char-
cterize a real HP SCANJET 5470C flatbed scanner, nine
olor samples have been selected from the Munsell atlas, 13
rom NCS atlas, eight photographic samples, and six color
amples from the Macbeth color checker chart, using the
arlier adaptive selection method. The results are shown in
able IV. The relative spectral sensitivity of the scanner can
e seen in Figure 5.

The characterization method cannot be significantly
urther improved because the standard deviation of the DAC
alues of the responsivities are in the order of one to three
or each color sample. This produces a mean error of the

*

with general PE method, and using PE method after
unction
canning process of about 0.8�E
a,b

for all color samples.
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In order to verify our results, it is not enough to calcu-
ate the responsivity curves and the color differences between
he scanned and the estimated responsivities, because the
alue of the target function z [see Eq. (6)] might have a low
alue, and the color differences between the scanned and the
stimated responsivities might be very low, but using the

able II. Table II. Comparison of source-dependent and source-independent SCRS select
Sample database= 1269 reflectance samples from Munsell atlas+ 205 photographic
hecker chart. �The number of selected samples is 36.�

ensitivities Selection methods
Color

differences CIE A CIE D6

ensitivity= CIE XYZ LSQR method E��E
a,b
* � 6.3416 5.2351

D��E
a,b
* � 3.8767 2.3425

Random selection E��E
a,b
* � 0.9616 0.6311

D��E
a,b
* � 0.2452 0.2672

Cheung and Westland’s
method

E��E
a,b
* � 0.189 0.1407

D��E
a,b
* � 0.1561 0.0499

Source-independent
selection

E��E
a,b
* � 0.0568 0.0334

D��E
a,b
* � 0.0319 0.0201

Source-dependent selection E��E
a,b
* � 0.0557 0.0331

D��E
a,b
* � 0.0398 0.0184

ensitivity= Camera RGB LSQR method E��E
a,b
* � 6.7427 5.4262

D��E
a,b
* � 3.9426 3.1348

Random selection E��E
a,b
* � 0.9816 0.6711

D��E
a,b
* � 0.2752 0.2715

Cheung and Westland’s
method

E��E
a,b
* � 0.1904 0.1415

D��E
a,b
* � 0.1622 0.0505

Source-independent
selection

E��E
a,b
* � 0.0889 0.0397

D��E
a,b
* � 0.0597 0.0212

Source-dependent selection E��E
a,b
* � 0.088 0.0391

D��E
a,b
* � 0.0502 0.021

Weights/Number of sources 1 1

able III. Expected values, E��E
a,b
* � and standard deviations, D��E

a,b
* � of color dif-

erences between the real scanned and the determined responses of the scanner for the
269 samples of the Munsell atlas �applied characterization method is adaptive PE
ethod� for four methods of selecting the characterizing samples �see text�.

Munsell color samples E��E
a,b
* � D��E

a,b
* �

All samples 1269 samples of Munsell atlas
without selection:

6.77 5.52

Random selected samples �36�: 5.19 4.37

Selected samples with Cheung and Westland’s
method �36�:

2.90 2.40

Selected samples with SCRS �36�: 1.65 1.04
stimated responsivity curves in another color sample base f

. Imaging Sci. Technol. 010501-
using Eq. (1)], one might get different results. Therefore to
e sure of the effectiveness of the introduced method, scan-
er detector responsivities have been determined using in-

erference filters (the narrowband spectral characterization
ethod). For this, the source of the scanner was switched off

nd an external CIE-A standard lamp was used. With inter-

ods with the Cheung and Westland method and randomly selected reflectance samples.
s+ 2008 reflectance samples from NCS atlas+ 24 color samples from Macbeth color

Sources

of
1–

Mean of CIE
F3.1–
F3.15

Mean of
CIE HP 1–

HP5

AGFA
STUDIO
SCAN II

HP
SCANJET
3300C

HP
SCANJET
5470C

DEXXA
FLATBED
SCANNER Average

87 9.4362 8.9456 11.4612 10.4629 11.5744 7.4772 8.956

23 6.4789 5.8932 5.1788 4.8832 7.4663 3.4652 6.0771

51 1.4104 1.9048 1.5623 1.2991 1.421 0.9921 1.4255

23 0.7542 0.983 0.8032 1.0312 1.0422 0.7631 0.7834

4 0.2152 0.5012 0.7032 0.3412 0.4972 0.2455 0.2742

69 0.151 0.329 0.3904 0.1576 0.4515 0.1655 0.1854

03 0.1767 0.1944 0.1703 0.1023 0.0805 0.1395 0.155

76 0.1164 0.1481 0.0924 0.0586 0.0451 0.0831 0.1018

41 0.0898 0.103 0.121 0.0699 0.0699 0.0924 0.0872

94 0.0476 0.0696 0.0831 0.0863 0.0534 0.088 0.0501

26 9.7351 9.1643 11.7413 10.6288 11.824 7.8117 9.2319

81 6.3728 4.9162 4.4161 5.721 6.1787 3.7811 5.8791

12 1.4104 1.9731 1.6578 1.3452 2.023 1.0244 1.4773

41 0.7542 1.0401 0.8562 1.1236 1.125 0.8044 0.8152

52 0.2152 0.512 0.7309 0.3511 0.5153 0.2583 0.2873

01 0.151 0.3402 0.4043 0.1612 0.4602 0.1673 0.1888

14 0.1401 0.2139 0.2315 0.1207 0.1224 0.1381 0.1476

71 0.098 0.149 0.1105 0.0714 0.054 0.0606 0.0925

47 0.1191 0.1747 0.1401 0.0817 0.0999 0.1042 0.1176

31 0.0666 0.1027 0.1048 0.0511 0.0661 0.0783 0.0695

15 5 1 1 1 1

able IV. Expected values, E��E
a,b
* � and standard deviations, D��E

a,b
* � of color dif-

erences between the real responsivities and the estimated responsivities. �Applied
haracterization method is adaptive PE method, see text.�

Color samples E��E
a,b
* � D��E

a,b
* �

All samples without selection: 7.17 5.41

Random selected samples
�for 36 selected samples�:

6.02 4.19

Selected samples with Cheung and Westland’s
method �for 36 selectedsamples�:

2.86 2.33

Selected samples with SCRS
�for 36 selected samples�:

1.19 0.91
ing meth
sample

5

Mean
CIE F

F12

8.45

6.42

1.38

0.78

0.21

0.14

0.14

0.08

0.08

0.03

8.73

6.33

1.45

0.83

0.24

0.15

0.14

0.07

0.10

0.06

12
erence filters, the detector responsivity and the
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onsystematic (measurement) errors can be determine di-
ectly, with ISO GUM15 and Monte-Carlo simulation. The
esults can be seen in Figure 6. The detector responsivity
unctions obtained by the new method, by the Cheung and

estland method (see Fig. 5), and by the narrowband
ethod (see Fig. 6), are very close to each other.

In Fig. 6 mean responsivities and their combined stan-
ard uncertainties can be seen in both the case of the nar-

Figure 5. Relative spectral responsivities determine
and Westland’s method.

Figure 6. Relative spectral responsivities determine

method �with interference filters�.

. Imaging Sci. Technol. 010501-
owband spectral characterization method and the new
ethod, determined on an HP 5470C scanner. Using these

alues, together with the estimated uncertainties, the spectral
ethod was compared with the broadband method. Table V

ompares the two determination methods.
Comparing the results of Tables IV and V one can see

hat despite the fact that the responsivity curves using the
irect (spectral) and the indirect (broadband) methods are

broadband adaptive SCRS method and Cheung

the broadband �adaptive SCRS� and narrowband
d with
d using
Jan.-Feb. 20099
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early the same, the color differences are lower if we use the
ndirect (broadband) method with the statistical classifica-
ion selection method. Theoretically, lower uncertainty could
e achieved if instead of the quasimonochromatic light of
he incandescent lamp filtered with interference filters, tun-
ble lasers would be used, but these were not at our disposal.
ctually the narrowband method to determine the spectral

esponsivities was only used to control our measurement
ata, and we have not dealt with this method in detail.

ONCLUSIONS
he conditions of the regression model using broadband
haracterization for scanners and cameras were investigated.
f these conditions are not satisfied, the estimation of detec-
or responsivity would be distorted and/or the determina-
ion would be inefficient.

The importance of optimal color sample selection was
mphasized. Selection methods which improve the condi-
ion of the characterization method are judged to be effec-
ive. The selection method, based on statistical classification,
ntroduced in this article improves all broadband character-
zation methods based on a regression analysis. In this case,
he error of estimation can be decreased very significantly
ecause the conditions of the regression models are im-
roved. The selection method can be used for any arbitrary
olor sample set. The selection methods improve the as-
umptions of the characterization method directly. In this
ay, the error of the estimation of sensitivity curves can be

ery significantly decreased. In the case of characterization

able V. Expected values, E��E
a,b
* � and standard deviations, D��E

a,b
* � of color dif-

erences using the narrowband spectral method and the adaptive SCRS method.

Color samples for all color selected samples �3506�.

UM method for all samples E��E
a,b
* � 2.87

D��E
a,b
* � 2.16

onte-Carlo simulation for all
amples

E��E
a,b
* � 2.78

D��E
a,b
* � 2.07

daptive SCRS for all samples E��E
a,b
* � 1.19

D��E
a,b
* � 0.91
sing regression models, other selecting methods that in-

. Imaging Sci. Technol. 010501-1
rease the effect of multicollinearity and autocorrelation in-
irectly can also be very useful. However, better results can
e achieved if the assumptions of the characterization
ethod are investigated and one selects samples for the

haracterization where the assumptions are satisfied.
In case of flatbed scanners, where the illuminant is a

uorescent source, the selection method should also take
nto consideration the spectral power distribution of the
ource, because the assumptions of the regression method

ust be fulfilled and can only be investigated in this way.

EFERENCES
1 F. Martínez-Verdú, J. Pujol, and P. Capilla, “Calculation of the Color

Matching Functions of Digital Cameras from Their Complete Spectral
Sensitivities”, J. Imaging Sci. Technol. 46, 15 (2002).

2 S. O. Park, H. S. Kim, J. M. Park, and J. K. Eem, “Development of
Spectral Sensitivity Measurement System of Image Sensor Devices”, Proc.
IS&T/SID 3rd Color Imaging Conference (IS&T, Springfield, VA, 1995).

3 G. D. Finlayson, S. Hordley, and P. M. Hubel, “Recovering Device
Sensitivities with Quadratic Programming”, Proc. IS&T/SID 6th Color
Imaging Conference (IS&T, Springfield, VA, 1998) pp. 90–95.

4 F. König and P. G. Herzog, “A Generalized Method for Spectral Scanner
Characterization”, Proc. Color Imaging Science 2000 Conf., edited by L.
MacDonald and M. R. Luo (Univ. of Derby, Derby, UK, 2000) pp.
48–57.

5 H.-L. Shen and J. H. Xin, “Colorimetric and Spectral Characterization of
a Color Scanner Using Local Statistic”, J. Imaging Sci. Technol. 48, 342
(2004).

6 G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera
colorimetric characterization based on polynomial modeling”, Color
Res. Appl. 26, 76 (2001).

7 J. Y. Hardeberg, “Acquisition and reproduction of color images:
Colorimetric and multispectral approaches”, Ph.D. thesis, Ecole
Nationale Supérieure des Télécommunications, France (1999).

8 V. Cheung and S. Westland, “Methods for Optimal Color Selection”, J.
Imaging Sci. Technol. 50, 481 (2006).

9 B. Kobus and B. Funt, “Camera calibration for color research”, Proc.
SPIE 3644, 576–585 (1999).

10 R. S. Berns, Billmeyer and Saltzman’s Principles of Color Technology
(Wiley, New York, 2000).

11 G. D. Finlayson and M. S. Drew, “Constrained least-squares regression
in color spaces”, J. Electron. Imaging 6, 484 (1997).

12 G. Sharma and H. J. Trussel, “Characterization of Scanner Sensitivity”,
Proc. IS&T and SID’s Color Imaging Conference (IS&T, Springfield, VA,
1993) pp. 103–107.

13 G. Sharma, “Targetless Scanner Color Calibration,” Proc. IS&T/SID 7th
Color Imaging Conference (IS&T, Springfield, VA, 1999) pp. 69-74.

14 M. J. Vrhel and H. J. Trussell, “Color Scanner Calibration via a Neural
Network. Proceedings”, IEEE International Conference on Acoustics,
Speech and Signal Processing, Vol. 6. (IEEE, Piscataway, NJ, 1999), pp.
3465–3468.

15 International Organization for Standardization, Guide to the Expression
of Uncertainty in Measurement (International Organization for

Standardization, Switzerland, 1993).

Jan.-Feb. 20090


