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Abstract. This article proposes a new algorithm for illuminant esti-
mation based on the concept of chromagenic color constancy,
where two pictures are taken from each scene: A normal one and
one where a colored filter is placed in front of the camera. The basic
formulation of the chromagenic algorithm has inherent weaknesses,
namely, a need for perfectly registered images and occasional large
errors in illuminant estimation. Our first contribution is to analyze the
algorithm performance with respect to the reflectances present in a
scene and demonstrate that fairly bright and de-saturated
reflectances (e.g., achromatic and pastel colors) provide signifi-
cantly better chromagenic illuminant estimation. We thus propose
the bright chromagenic algorithm and show that it not only remedies
the large error problem but also allows us to relax the image regis-
tration constraint. Experiments performed on a variety of synthetic
and real data show that the newly designed bright chromagenic al-
gorithm significantly outperforms current illuminant estimation meth-
ods, including those having a substantially higher complexity.
© 2008 Society for Imaging Science and Technology.
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INTRODUCTION

The human visual system is, to a certain extent, color
constant,'™ that is, it discounts the color of the illumination.
This is why, for example, snow always appears white, no
matter under which illuminant it is observed.

However, it has proven difficult to emulate color con-
stancy in imaging workflow. This is not only a problem in
image reproduction but also for a variety of computer vision
tasks, such as tracking,' indexing,” and scene analysis,’
where stable measures of reflectance are sought or assumed
for objects in a scene.

Solving for color constancy is a two-step process. First,
the color of the prevailing illuminant is estimated. At a sec-
ond stage, the color bias due to illumination is removed.
This second part is, in fact, relatively easy’ and so most color
constancy algorithms focus on the illuminant estimation
problem.

Numerous algorithms for illuminant estimation have
been proposed and can broadly be categorized in two
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groups. Algorithms in the first group make simple assump-
tions about the scene being observed. MaxRGB assumes that
a maximally reflective patch exists in the image. Gray World
assumes the average reflectance in a scene is gray’ or some
sort of gray.”'’ Another group of algorithms comprises more
sophisticated approaches such as neural networks,'' color by
correlation,' a Bayesian method that correlates the RGBs in
the image with plausible RGBs under various illuminants to
find the best illuminant, and Gamut Mapping methods.'>"
Generally, the most complex algorithms perform better, but
at the expense of a (much) greater computational
complexity.

The chromagenic algorithm makes a different assump-
tion altogether. Like stereo, where two images are used to
recover three-dimensional (3-D) position of points in the
scene, and photometric vision, where two polarizing filters
in opposite directions can be used to identify and remove
specular highlights,”” two images are used: One normal and
one where a colored filter is placed in front of the camera.
The filter is chosen so that the relationship between filtered
and unfiltered RGBs depends strongly on illumination. Such
a filter is called a chromagenic filter.

The standard chromagenic color constancy algorithm'®
works in two stages: The training stage is a preprocessing
step where the relationship between filtered and unfiltered
RGBs is calculated using a given filter, camera sensitivities,
and a number of candidate lights. Then, those relations are
tested on other images in order to estimate the actual scene
illuminant. While the general outcome of the algorithm
shows good performance, two problems usually remain: For
certain combinations of reflectances and illuminants, the er-
ror between the estimated and actual light can be large. Also,
in order to achieve good performance, one has to compare
RGB transitions that occur between identical reflectances. It
is, in essence, a pixel-level method and so the algorithm can
fail when the pair of images is not exactly registered.

Our approach, first mentioned by Fredembach and
Finlayson,'” starts by asking the question that if everything
else (lights, camera sensitivities, and the chromagenic filter)
is equal, what is the influence of different scene reflectances
on the transforms and the estimation error? To answer this
question, we first select 287 typical lights and 1995
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reflectances from the Simon Fraser database,'® and a filter
from a set of 53 Wratten photographic filters. Using these
elements, synthetic images, composed of a randomly selected
illuminant and of one to eight distinct reflectances, are cre-
ated. Testing the algrithm on these images allows evaluating
which RGBs exhibit a good (very low errors) or bad (very
high errors) estimate of the illuminant. The results show that
achromatic reflectances yield lower errors than strongly
chromatic ones. This outcome is, however, not sufficient to
allow the algorithm to work on real images. Indeed, image
registration is still a problem and noise levels in dark achro-
matic pixels can impact performance. However, indepen-
dently of the image capture conditions, a white reflectance
(which is achromatic) will still be the brightest value after
filtering. Restricting the algorithm to test correspondences
between the “whitest” RGBs of both filtered and unfiltered
images will effectively use the fact that achromatic
reflectances are more reliable for the chromagenic algorithm,
while focusing on parts of the image that have a high signal-
to-noise ratio.

Practically, we average the RGB values of the brightest
1-3% of the original image and compare them to the bright-
est 1-3% values of the filtered image. By using the brightest
reflectances only, we arrive at a similar conclusion than
Tominaga et al.,' where it was first surmised that brighter
reflectances would perform better based on signal-to-noise
ratio considerations and then proceeded to show that this
was indeed the case. In contrast, we start with all possible
reflectances and look for the a set that is more reliable.
Desaturation, not brightness, is actually the main correlation
with good-performing reflectances. We chose bright achro-
matic reflectances as a target because they are reliably found
in images, are easy to identify, permit to solve the registra-
tion constraint, and are far from the worst performing colors
(dark, saturated colors).

This modified algorithm is tested on four different im-
age databases and its results are compared to those achieved
by both simple and complex illuminant estimation algo-
rithms. Results show that that our algorithm significantly
outperforms other available methods, according to the me-
dian angular error and the Wilcoxon sign test, error mea-
sures recommended by Hordley and Finlayson.** The rest of
this article is organized as follows. We first review the math-
ematical bases of the chromagenic theory and discuss how
the filter and the camera sensors affect the chromagenic per-
formance. Then we propose our new algorithm, the bright
chromagenic algorithm, based on a detailed reflectance error
analysis followed by comparative experiments on four differ-
ent image sets that range from purely synthetic to real
images.

CHROMAGENIC ALGORITHM

Chromagenic color constancy is performed using two im-
ages of the same scene: A normal image and one where a
colored filter is placed in front of the camera. The relation-
ship between those two images is then used to estimate the
scene illuminant.
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The idea of using colored filters to improve vision tasks
is not new. In optometry, chromagen lenses are used to sub-
jectively improve the quality of color vision for color-blind
observers” and special colored filters are also used to im-
prove the reading speed of some dyslexic patients.”? In the
case of color constancy, pairs of images taken with and with-
out flash can be used to estimate the original scene
illuminant,” > although using an additional light source
such as a flash requires a “controlled” environment: The
object must not be too close or too far, and the ambient light
must not be too dim or too bright.

The rest of this section analyzes the chromagenic theory,
first by detailing the chromagenic illuminant estimation pro-
cedure and then by discussing specifically designed filters
and sensors.

Chromagenic Illuminant Estimation
The standard chromagenic illuminant estimation algorithm
proceeds as follows: Let S(\) be the descriptor of surface
reflectances, E(\) the scene illuminant Spectral Power Dis-
tribution (SPD), Qi(\) the camera sensitivities (we consider
here trichromatic cameras, so k={R,G,B}) and F(\) be the
transmittance of the color filter placed in front of the
camera.

The sensor responses of the unfiltered, p, and filtered,

;_)F , image can be written as:
;_)=J EMM)S(M)Q(N)dN, (1)
p'= J E(NS(NF(N)Qi(N)d. (2)

Thus, there are, for each scene, six responses per pixel that
form the input to the illuminant estimation problem.

Naively, one might expect that since images are three
dimensional (red, green, and blue for conventional cameras),
then two images taken under different conditions (in this
case, using a filter) form the basis of a six-dimensional space.
However, if the transmittance of the filter is known, so is the
relationship between the two images; the two images do not
provide independent information.

Let us first consider the equations of filtered and unfil-
tered image formation (1) and (2). The filtered image can be
expressed using a second illuminant, Ef(\), equivalent to
putting the filter F(\) in front of the light source E(\), i.e.,
EF(N)=F(\)E(N); p and pf can therefore be considered as
the sensor responses of a single surface under two different
illuminants. It has been shown’®*’ that when the same sur-
faces are viewed under two lights, the corresponding RGBs
can, to a good approximation, be related by a linear trans-
form and so we use a 3 X3 matrix to relate the RGBs cap-
tured with and without the colored filter, thus:

pf' = Tp, (3)

where T is a 3 X 3 linear transform that depends on both the
chromagenic filter and the scene illuminant.
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Equation (3) implies that, given the chromagenic filter
and sensor responses under a known illuminant, one can
predict the filtered responses. In the problem of illuminant
estimation, however, only the filtered and unfiltered re-
sponses are known, not the illuminant. Moreover, the task of
finding the illuminant corresponds to finding 7. If we know
all possible illuminants a priori we can, for a given filter:
Determine the transforms T for every illuminant; estimate
which of these precomputed transforms best fits the pair of
filtered-unfiltered responses; and thus, determine the il-
luminant.

Before outlining the actual algorithm, it is worth point-
ing out two cases where, depending on the filter or the sen-
sor sensitivities, chromagenic color constancy is not possible:
If the filter has a neutral density; or if the camera sensors
behave like Dirac delta functions. If the chosen filter has a
neutral density, i.e., its transmittance does not vary across
the spectrum, the relationship between filtered and unfil-
tered RGBs will be a constant scaling (the same for all
lights).

This property can be written as:

F\)=a, VN, (4)
where « is a constant value. It follows that:

pf=ap, VS,E. (5)
Consequently, the six-dimensional responses will in fact
span only three dimensions and thus the chromagenic algo-
rithm cannot solve for color constancy.

If the kth sensor behaves like a Dirac function whose
non-null response is at the wavelength N\, Eqs. (1) and (2)
become:

pr=EM\) S\ Qr(Np), (6)

pr = E)SONDF(N ) Qel(\y). (7)

It follows that pf =F(\}) px and so the responses are, again,
three dimensional and their relation depends neither on the
reflectances nor on the scene illuminant.

Additionally, while not as limiting as the neutral density
case, using a rank-deficient filter will deliver poor
chromagenic color constancy since significant information is
lost (e.g., by using a deep red filter one loses all information
about the blue pixels).

Barring the cases outlined above, the transforms can be
precomputed by choosing a set of n typical scene il-
luminants: E;(\), i=1,...,n and a set of m surface
reflectances: Sj(N), j=1,...,m representative of the real
world. For each illuminant 7, we create a 3 X m matrix Q;
whose jth column contains the sensor response of the jth
surface under the ith illuminant. We also create Qf , which
contains the equivalent filtered responses. For each il-
luminant, we can then define the transform matrix as:
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T;=QiQ;, (8)

where+denotes the Moore—Penrose pseudo-inverse opera-
tor: Q*=Q7(QQ") ™.

T; can thus be described as the transform that best
maps, in a least square sense, unfiltered to filtered responses
under illuminant i. Because it is a least squares fit, T; will
not, in practice, map the responses without errors. What
matters, however, is that the error committed when mapping
responses under illuminant 7 is smallest when the corre-
sponding transform Tj is used.

Once the n transforms have been precomputed, the il-
luminant estimation proceeds as follows: let Q and QF de-
note the 3 X m matrices of unfiltered and filtered RGBs of
arbitrary reflectances under an unknown light. For each
plausible illuminant we calculate the fitting error, e;, as:

e,=|T.Q-QY, i=1,...,n 9)

under the assumption that Ej(\) is the actual scene il-
luminant. The transform that minimizes the error is sur-
mised to be the scene illuminant; the estimated illuminant is
E.(\), where

est =argmin(e;), i=1,...,n. (10)

It can be shown that if both reflectances and illuminants
are exactly described by three basis functions each, i.e., they
are three dimensional, then the chromagenic algorithm de-
livers perfect illuminant estimation. In natural scenes, how-
ever, these dimensions are generally higher™* and so esti-
mation errors ensue.

While in general the chromagenic algorithm can deliver
good color constancy, it has two major weaknesses: The first
one is that, though good on average, the performance can,
on occasion, be (very) poor. The second problem comes
from Eq. (9), which implies that the fitting error for each
candidate illuminant is evaluated on a per-pixel basis. For
the algorithm to deliver an optimal performance, the two
images therefore have to be perfectly registered, a demanding
requirement when images are taken outside of the lab. Reg-
istration algorithms can be of some help, but since an exact
registration at pixel level is necessary, they may not be suf-
ficient.

Choice of Filter and Sensors
Two important aspects of the chromagenic algorithm are the
filter choice and the camera sensors, for they can greatly
influence the performance of the algorithm and are the only
“controllable” parameters in the image formation process.
Given a filter set (in our case the filter set is a selection
of 53 Kodak Wratten filters™) we need, for chromagenic pur-
poses, to select one that is noncutoff and whose transmit-
tance varies across the visible spectrum. Among the then
possible filters, it was shown'® that, they all deliver a good
level of performance in practice. Finlayson et al.”" have, how-
ever, reported that designing a filter specifically for
chromagenic processing gave, on average, better results than
existing Wratten filters.
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Figure 1. Left: The Sony DXC-930 sensitivities. Right: The transmittance of the 8 1B Wiratten filter used in the

experiments.

Since the filters were only simulated, not physically cre-
ated, our experiments will be carried out using an actual
Wratten filter. Arguably, one might also design sensors for
chromagenic illuminant estimation. But, pragmatically,
when choosing sensors one has to consider aspects of image
quality such as color rendering and image noise that strongly
depend on the sensors. So, although optimal sensors for
chromagenic illuminant estimation have been discussed,’’
we will work with conventional camera sensors.

BRIGHT CHROMAGENIC ALGORITHM

The previous section mentioned that the average perfor-
mance of the chromagenic algorithm can be enhanced using
specific filters and sensors. These potential improvements do
not, however, address the main limitations of the
chromagenic algorithm: Possible large estimation errors and
the need for perfectly registered images.

Looking back at Egs. (1) and (2), we see that the sensor
responses depend on the scene illuminant, the chromagenic
filter, the sensor sensitivities, and the surface reflectances. It
follows that the linear transforms T; must also depend—to
some degree—on those factors. Among them, the illuminant
is the unknown; achievable improvements due to choosing
both the filter and the sensors sensitivities were mentioned
previously. The only remaining variable in the equation is
therefore the scene reflectances. Building a model based on
reflectances can be difficult for one has, in general, no con-
trol over which reflectances are present in a scene. This un-
certainty is the reason why simple estimation methods such
as gray-world and Max-RGB are unreliable; if every scene
contained at least a maximally reflective surface per color
channel (e.g., at least a blue and a yellow surface), Max-RGB
would be very accurate.

An additional difficulty is that the input to illuminant
estimation algorithms are not reflectances but RGBs, which
are composed of all of the image formation process’ param-
eters. To circumvent these issues, we start by quantifying the
influence of reflectances on the transforms 7;. We then
model the best and worst performing RGBs. The results lead
us to formulate the bright chromagenic algorithm, which has
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three properties: It improves the average illuminant estima-
tion performance, it reduces the maximal errors observed
when the estimation is erroneous and, more importantly, it
allows the algorithm to be used on unregistered images.

Reflectances Analysis

For the chromagenic algorithm to work well, the transforms
T; that map RGBs to their filtered counterparts should de-
pend as much as possible on the illuminant. Here, we want
to quantify the variance of the transforms when the il-
luminant changes and compare it to the variance observed
when the illuminant is fixed but the reflectances vary. To
perform this assessment, we follow existing methodology'®"'
in our choice of parameters.

The illuminants belong to a set of 87 measured il-
luminant SPDs that include most common light sources.
These SPDs are sampled every 10 nm, from 380 to 780 nm.
Barnard et al.'® provide more details about this set, while the
set itself is available online.” For surface reflectances, we use
a synthesized set of 1995 Munsell surface reflectances.” The
reflectances are also sampled every 10 nm from
380 to 780 nm; more details about that set are given by
Parkkinen and ]aaskelainen.28

Concerning the choice of camera sensitivities and filter,
we use the sensors of a Sony DXC-930 camera'®® and a
Wratten 81B filter (a yellowish filter). Both the filter and the
sensor sensitivities are shown in Fig. 1.

We start by creating the transforms T; according to Eq.
(8) by imaging all the 1995 reflectances under the 87 il-
luminants, and thus have 87 distinct transforms. The vari-
ability of the transforms, i.e., how differently they map the
reflectances depending on the illuminant, is assessed with
the inter-transform variance o7

187

= (t;— up)? (11)

87i=1

where t; is the 9 X 1 vector representation of the 3 X 3 trans-
form T; and ur is the average of all #;.
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Figure 2. Infertransform reflectance variance, o2, using a synthetic test
with multiple reflectances from the Munsell sef under a given illuminant.
The values shown are the average over 10,000 fesfs.

Equation (11) quantifies the transform’s variation across
illuminants: The larger the variance, the more discriminative
the transforms, and so the better the algorithm will perform.
For a better perspective, one must compare op with the
variation in transforms due to choosing different reflectance
sets. Calculating the equivalent variance generated by differ-
ent reflectances is somewhat more complicated. Let S denote
the entire reflectance set; a partition of S into N subsets of
equal size, sj, can be written as:

UN (s)=S$ (12)
and

siNse=0, Vj, kell,N], j#k. (13)

Let T? be the transform obtained with Eq. (8) when the
subset s; is imaged under illuminant i. The inter-transform
variance for reflectances crﬁ is calculated as

1 87
2 2
o5 = —2 0%, (14)
875
where
N
o= EE (£ = u)?. (15)
j=1

In this formulation, x5 is the mean of all ¢/, i.e., the
mean of all subset-induced transforms under illuminant i.

An important aspect of this calculation is how to parti-
tion S. On one hand, there should be enough subsets for the
test to be meaningful, but since the chromagenic algorithm
assumes three-dimensional signals, too small subsets will in-
troduce large errors. While most daylight illuminants are at
least 3-D, this is not necessarily the case with reflectances, so,
a combination of reflectances is required. Our tests, per-
formed using subsets from 1 to 256 reflectances indicate
(Fig. 2) that subsets of 16 reflectances form a good compro-
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Figure 3. Sorted errors for the single reflectance test. The mean error
value is 9.3 degrees and the median 5°.

mise. Instead of seeking every possible subset (there are
C1o” of them), we repeat the 16 reflectances test 10,000
times and average the results over all the observations of .
The results of this experiment are: 03=0.0306 and
0%=0.0753.

Based on these results, we can conclude that the linear
transforms used in the chromagenic algorithm vary signifi-
cantly with the reflectances used in training. It follows that
there will also be a significant variability in testing. A subset
of reflectances that are better suited to illuminant estimation
must therefore exist, and the performance will increase the
more of these “good” reflectances are present in the scene.

Modeling In- and Outliers

Estimation accuracy will partly depend on the set of tested
reflectances: Which ones are “better”? Because there is a
multitude of illuminant-reflectance combinations, we will
analyze the performance of the algorithm on scenes with a
single reflectance (where good estimates can still be
obtained'®).

For each scene we estimate the RGB of the light and
calculate the angle to the actual RGB of the illuminant. The
transforms T; are calculated as before, thus creating 87 of
them. The test set for this experiment consists of all possible
single reflectance-illumination combinations. A larger set of
287 illuminants is used, together with the 1995 reflectances,
i.e., there are ~570,000 pairs of filtered and unfiltered RGBs.
The larger illuminant set used in testing covers the same
gamut as the 87 training lights; the chromagenic algorithm
will select one of the 87 lights as the scene illuminant.

Figure 3 shows the angular errors (i.e., the angle be-
tween the RGBs of the estimated and actual illuminant) for
all the 570,000 pairs. The angular errors range from 0 to 42°,
with a mean of 9.3 and a median of 5. For this particular
dataset, our experiments indicate that an angular error of 3°
or less is necessary for acceptable color cast removal. From
these results, it follows that one needs reduced overall and,
especially, maximum errors—an angular error of 42° is
equivalent to mistaking green for yellow.
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Figure 4. (a) Brighiness-saturafion scatter plot of the 20% worst performing RGBs. (b) Brightness-saturation

scatter plot of the 20% best performing RGBs.
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Figure 5. Equivariance ellipses of both sets, each containing Q0% of their
respective data, showing they are mostly disjoint.

To understand what is happening, we look at the RGBs
that comprise the top and bottom 20% of the error, which
corresponds to angular errors of 0-2.3° and 20.5-42° for
each group, respectively. A brightness-saturation (i.e., S and
V of the HSV space) scatter plot of these RGBs is shown in
Fig. 4(a) for the highest errors and Fig. 4(b) for the lowest
ones; we also analyzed the behavior of the algorithm with
respect to hue but found no significant hue dependency. It is
clear that low errors correlate with fairly de-saturated RGBs
(pastel tones and achromatic), whereas high errors correlate
with dark and saturated RGBs. This finding is corroborated
by the result of Fig. 5, which displays elliptical summaries for
the high and low error sets. The ellipses, each of which ac-
counts for 90% of its respective data, overlap little.

Importantly, the set of good-performing reflectances is
quite large and diverse. The main characteristic they have in
common is their low saturation value. Before proceeding
further, one must decide how these well-performing

J. Imaging Sci. Technol.

040906-6

reflectances will be chosen, and several parameters have to
be taken into account. The first one is that the good
reflectances should be easy to pick out, so to provide stability
to the algorithm’s estimation. The second concern is that the
easy-to-pick-out good reflectances should be reliably present
within natural scenes. Finally, one wants to avoid dark colors
because of their lower signal-to-noise ratio. Considering the
required parameters, we chose to use bright achromatic
reflectances in our algorithm.

The idea of using brighter reflectances has been dis-
cussed before, notably by Tominaga et al."” where brighter
reflectances were preferred because of their higher signal-to-
noise ratio that would provide better illuminant classifica-
tion. We reach a similar conclusion, but for different reasons.
Indeed, the good-performing reflectances, for chromagenic
color constancy, are primarily desaturated colors and are not
specifically brightness related. Indeed, we use the “brightest”
colors because their RGB values are most different from the
colors that perform worst, i.e., a simple thresholding scheme
enables us to reliably find suitable RGBs for accurate il-
luminant estimation. Moreover, using the brightest surfaces
has the additional advantage of permitting to remove the
image registration constraint, a point we will come back to
in the rest of the article.

Assuming a uniform distribution of colors in an image,
we propose that it is easy to find RGBs and their filtered
counterparts that belong to this preferred set. We simply
look for a small percentage of the brightest image regions.
We therefore modify the chromagenic-algorithm formula-
tion so that only bright image pixels are considered.

The Algorithm
Thus, the Bright Chromagenic algorithm is defined as:
Preprocessing: For a database of m lights Ei(\) and n
surfaces Sj(\) calculate T;~ Qf Q; where Q; and Qf repre-
sent the matrices of unfiltered and filtered sensor responses
to the n surfaces under the ith light and + denotes a
pseudo-type inverse.
Operation: P surfaces in an image yield 3 X P matrices
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Q and QF. From these matrices a certain percentage of the
brightest pixels is chosen, giving the matrices Q and Qf,
where the brightest pixels are the ones with the largest
R*+G*+ B? value. Then the estimate of the scene illuminant
iS Ppest Where

E.q=arg min,(err)(i=1,2, ...,m)
and

err; = [ 1,Q - Q'

Because we are proposing to look only at bright image re-
sponses, the transform matrices might be calculated using a
least-squares estimator where bright values are weighted
more strongly. This is what is meant by a pseudo-type in-
verse. However, subsequent experiments did not indicate any
tangible benefits from building transforms using only the
bright image RGBs. So, for the experiments presented in the
next section, the conventional (unweighted) Moore—Penrose
inverse is used.

The bright chromagenic formulation is robust since it
does not make assumptions about which reflectances might
or might not be present in the scene, i.e., if there are no
bright reflectances in the image, the bright chromagenic al-
gorithm will still have an equivalent performance to the
original chromagenic algorithm. Because we “exclude”—
select them only if no others are available—the worst per-
forming RGBs, we expect the bright chromagenic algorithm
to significantly reduce the worst errors.

Moreover, if the scenes admit a diversity of reflectances,
then it follows that (if the filter does not vary too drastically
across the spectrum) the brightest unfiltered RGBs will be
mapped onto the brightest filtered RGBs. If one is relatively
conservative with the number of bright pixels used to esti-
mate the illuminant, the bright chromagenic algorithm will
then be able to estimate illuminants even when the images
are not registered. We typically use the top 1-3% of the
brightest pixels. Both these properties are verified in our
experiments. We stress here that no assumptions are made
on the scene content; the brightest pixels are sought what-
ever they may be, i.e.,, we do not need the presence of a
white-like surface in the scene.

EXPERIMENTS

In this section, we analyze the performance of the bright
chromagenic algorithm, and compare it to various other il-
luminant estimation methods on four datasets of increasing
difficulty: Synthetic reflectances and lights; real reflectances
and synthetic lights; real images taken in a controlled envi-
ronment; and real-world images taken with “unknown” fil-
ter and camera. For the first three tasks, the bright
chromagenic algorithm is compared to other illuminant es-
timation methods whose results on the same datasets have
been reported (we took the results directly from the refer-
enced published articles). Concerning the fourth dataset, the
comparison was carried out with readily implementable al-
gorithms. The algorithms are evaluated according to the
framework of Hordley and Finlayson® where it was shown
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Figure 6. Sample pairs of synthefic images with 16 reflectances under
random illuminants from Eyg.

that, if one wants to summarize the performance of an il-
luminant estimation algorithm over a dataset, one should
prefer the median angular over the mean or root mean
square error. The mean error is also reported for the SFU
dataset because of its prevalence in the literature.

Angular error is an intensity independent error measure
that is widely used in the literature."***** It is the measure
between the sensor responses of a white reflectance under
both the estimated and actual scene illuminant. Let these
responses be pgey and pg respectively, the angular error ey,
is calculated as:

0:0r,,
€ang = acos| (16)

ledlles I

est

The use of a median statistic permits to assess if the
difference of performance between to algorithms is statisti-
cally significant at chosen confidence level. That significance
is given by using the Wilcoxon unranked sign test’ at a 95%
confidence level.

To simplify the writing, we will use the following nota-
tions: Sy is the set of 1995 synthesized Munsell
reflectances,” Eg; and E,g, are the sets of, respectively, 87
and 287 illuminants.’

Synthetic Reflectances and Lights
The test on synthetic images is run according to the testing
protocol proposed by Barnard et al.,'® detailed hereafter.

Training: The linear transforms are created by imaging
the whole of S,; under Eg;, thus generating 87 transforms.
We use the Sony-DXC camera sensitivities and the 81B
Wratten filter, whose transmittance is shown in Fig. 1.

Testing: 1000 images containing # different reflectances
are generated, where n={1,2,4,8,16,32}; these reflectances
are randomly taken from SM. We then illuminate these im-
ages with one light taken at random from E; sample filtered
and unfiltered images are shown in Fig. 6.

The illuminant of each image is estimated using both
the bright chromagenic and the original chromagenic algo-
rithms. For images where 1> 4, the bright chromagenic ver-
sion estimates the illuminant based on the four brightest
reflectances only.

The results are displayed in Table I, where the last col-
umn indicates the ranking of the considered algorithms, ac-
cording to Wilcoxon’s sign test. An algorithm is ranked bet-
ter than another if its median is lower and if the difference is
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Table 1. Average median angular error (degrees) for 1000 tests at each complexity
level. The last column is the rank, based on the 32 surfaces test, uccordin% to the
Wilcoxon sign test with a confidence level of 95% (as proposed by Hordley*®). The
results show that the bright chromagenic algorithm performs significantly better than
all other methods. Noticeably, the more complex methods form a group that is, in turn,
significantly better than the simpler scene assumptions algorithms.

Number of reflectances: 1 2 4 8 16 32 Ronk

Chromagenic 60 52 45 35 32 20 2
Max RGB 97 719 61 40 29 26 6
Gray World 91 73 58 49 48 48 8
Database GW 95 67 48 34 28 25 4
LP GM 96 67 48 33 27 24 4
Neural Network 88 71 50 40 29 26 6
Color by Corr. 69 50 35 31 24 23 2
Bright Chromagenic 60 52 45 28 21 09 1

" Performance Comaprison: Max error
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Figure 7. Comparison of the maximal angular error between the original
and the bright chromagenic algorithm; one can see the significant reduc-
tion achieved by selecting only the brightest RGBs. From 1 to 4
reflectances, the maximal error is idenfical since there are not enough
reflectances to distinguish both algorithms.

statistically significant at the 95% level. If the sign test is
inconclusive, the algorithms will be ranked equally.

An additional result, shown in Fig. 7, is the reduction in
maximal error achieved by the bright chromagenic algo-
rithm. This experiment validates our selection of the bright
RGBs to reduce the high maximal errors observed with the
original chromagenic algorithm.

Real Reflectances and Synthetic Lights
In this second test, we use spectral outdoor reflectance im-
ages measured—as opposed to synthesized—by Nascimento
et al.”® Figure 8 shows the eight images that will be used (the
images can be obtained online™). Note these images mea-
sure only reflectances. To generate RGB images, we use the
scene lights and camera sensors as in the previous
experiment.

Training: The training step is unchanged from the pre-
vious experiment, i.e., the transforms are created on a dif-
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Figure 8. The eight reflectance images measured by Nascimento et al.
(see Ref. 36) that compose the second fest.

Table Il. Summary of the results on the Nascimento images. This table displays the
mean angular error values (degrees) over the 2296 images.

Algorithm Median Rank
Chromagenic 6.7 2
Max RGB 8.7 3
Gray World 13 4
Bright Chromagenic 35 1

ferent reflectance set than the one tested.

Testing: Images are created by illuminating the eight
reflectance scenes with E,g;, which generates 2296 “half-
synthetic” images. We then proceed to test our algorithm on
each of those images, selecting the top 3% of the brightest,
nonsaturated, pixels to estimate the illuminant.

Results from this dataset, Table II, exhibit the same
trend as in the all synthetic experiment, i.e., the bright
chromagenic significantly outperforms other methods.

SFU Dataset

The next set is the nonspecular Simon Fraser University
(SFU) dataset, which is described in detail by Barnard et al.’®
The dataset consists of 31 colorful objects captured under 11
illuminants. Figures 9 and 10 show some objects under one
light and one object under all the available lights, respec-
tively. In the second case it is apparent that the images are
not registered (in fact, the objects were rotated in between
two pictures when creating the dataset).

This experiment differs from the previous ones because
only the RGBs of the images (as opposed to reflectances) are
provided. This, plus the nonregistration of the image, will
provide a difficult test for the bright chromagenic algorithm.

The SFU dataset has been used in several illuminant
estimation comparisons because ground truth is provided in
addition to the images themselves. That is, both the SPD of
the 11 illuminants (they are actually a subset of Eg;) and the
camera sensitivities are given (the camera used to take the
images is the Sony-DXC 930 whose sensitivities are shown
in Fig. 1 and that was used in the previous tests). To perform
chromagenic illuminant estimation requires pairs of images
taken with and without a colored filter. However, with only
image RGBs available, one cannot retrospectively model the
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Figure 10. One object from the SFU dataset under the 11 illuminants.
Note that the lights in the second row are the same as the ones of the first
row with a bluish filter placed in front of them. One can also see that the
images are not registered.

filtered responses. As it turns out, 8 out of the 11 illuminants
present in the set come in pairs: The original lamp lights and
those lights filtered with a blue filter. Since the actual il-
luminant SPDs are known, one can derive the filter that was
used by dividing the spectra of the lights by the filtered ones.
The eight light sources (two pairs of four lights) that are
considered and the derived filter are shown in Fig. 11.

n . .
400 475 550 625 700
Wavelength (nm)

Table HII. Mean and median angular errors (degrees) over the SFU dataset. The ranks
are significant af the 95% confidence level.

Algorithm Mean Median Rank
Bright Chromagenic 48 34 1
Max RGB 6.4 4] 4
Gray World 1.9 9.3 7
Database GW 10.0 7.0 5
Neural Network 8.9 7.8 5
LP Gamut Mapping 55 38 2
Color by Corr. 6.3 6.0 2

Training: The transforms T; are obtained by imaging
the synthetic reflectances S, under the illuminants of Eg;.
The filter is the one derived from the eight illuminants and
shown in Fig. 11; the camera sensitivities are the same as in
previous experiments.

Testing: To test the algorithm, we estimate the il-
luminant of all the possible pairs of images (124 pairs in
total) using the top 3% of the brightest pixels in both filtered
and unfiltered images independently.

These pixels typically belong to one or two of the sur-
faces in the scene (we do not need a white reflectance per se,
we simply use the brightest ones available). Since the images
are not registered, it provides a test for the hypothesis that,
in general, the brightest pixels in both images come from the
same surfaces, and that the bright chromagenic algorithm
does away with the need for registration.

The angular errors reported in the first two columns of
Table III show that, despite its simplicity, the bright
chromagenic algorithm outperforms in terms of both mean
and median angular error all other algorithms at the 95%
confidence level. The original chromagenic algorithm is not
shown here since its registration requirement is not fulfilled.
Perhaps the most remarkable aspect of the bright
chromagenic algorithm is that, despite modeling the trans-
forms on synthetic data with a filter derived from measure-
ments, it is still able to accurately estimate the illuminants of
real, significantly nonregistered, images.

Derived Filter

Relative Transmittance

0 . L L
400 475 550 625 700
Wavelength (nm)

Figure 11. Left: The eight light sources considered in this experiment. The dashed lines are spectra of the light
sources, while the confinuous ones are from the fillered sources. Right: The Filter derived from the light source

data.
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Real Images

The last experiment is designed to evaluate the performance
of the bright chromagenic algorithm in situ. Whereas the
previous datasets were obtained in “controlled conditions”
(purely synthetic data and controlled lighting environment),
we use here a set of real-world images taken with a digital
camera whose specifications are unknown.

Chromagenic Photography

For the illuminant estimation to be meaningful, one must
take a couple of precautions when capturing the images. The
camera that was used was a Nikon D70 single lens reflex
camera. The camera was set up to capture linear Raw, un-
processed, images. In fact, even with Raw settings, the cam-
era and associated software will process the image some-
what; it is, however, as unprocessed as one can have with a
general purpose digital camera. To prevent the camera from
using a different white balance between filtered and unfil-
tered images, all images were captured with the white bal-
ance set to “daylight.”

Additional technical aspects to consider are that the im-
age pairs should be as registered as possible (so that the
original chromagenic algorithm can also be tested), and also
devoid of over—or underexposed regions, which make the
relationship between filtered and unfiltered pixels meaning-
less. To that effect, the images were captured using a tripod
and a remote shutter release (to minimize registration er-
rors) and the settings of the camera aperture and shutter
speed were set to “manual” mode where we aimed to cap-
ture the entire dynamic range of the image.

For the filter, we used an actual 81B-type Wratten filter.
The captured images were then exported, using Nikon cap-
ture, as 16 bits/channel linear TTFF images. The dataset con-
sists of 86 pairs of images taken under a variety of indoor
and outdoor illuminants. In every scene, we placed a
Macbeth color checker that is used to accurately determine
the color of the prevailing light, thereby providing a ground
truth to assess the accuracy of illuminant estimation
algorithms.

From the dataset, we then created separate training and
testing sets. The training set consists of the 24 Macbeth
patches present in all the images. The testing set is created by
blacking the color checker from the images. Images from the
original (with the color chart) and the testing set are shown
in Fig. 12.

We note that, despite the precautions taken, the regis-
tration between images is not perfect and some image re-
gions can be overexposed. Additionally, multiple illumina-
tion is sometimes present in images, which can lead to errors
when estimating the prevailing illuminant.

Training: We create 86 linear transforms, using the 24
RGBs of the color checker present in each image.

Testing: We estimate the illuminant for both the origi-
nal and bright chromagenic (using the top 3% brightest pix-
els) algorithms on the 86 pairs of images that have the color
chart clipped out.

The results are shown in Table IV and illustrate that the
most accurate illuminant estimation is given by the bright
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Figure 12. Top two rows: Examples of unfiltered /fillered image pairs
from our real image set used in fraining. Botiom two rows: the fesfing
images, where the charts have been cropped out.

Table IV. Mean and median angular errors (degrees) over the 86 real images. The
ranks are significant at the 95% confidence level.

Algorithm Mean Median Rank
Bright Chromagenic 7.09 4.15 1
Max RGB 1.87 7.0 3
Gray World 11.0 10.8 5
Chromagenic 7.96 5.1 2
L* Gray 103 9.6 4

chromagenic algorithm. The results otherwise exhibit the
same behavior than previous experiments.

CONCLUSIONS

A chromagenic illuminant estimation algorithm exploits the
relationship between RGBs captured by a camera and those
captured through a colored filter. Different lights induce dif-
ferent relationships and so, the illuminant color can be esti-
mated by testing precomputed relations in situ. While the
chromagenic approach can work well, it occasionally per-
forms poorly. Moreover, typical chromagenic camera em-
bodiments, such as a stereo rig or multiple surveillance cam-
eras (a filter can easily be placed over one camera) do not
have pixel registration as is assumed in the chromagenic
theory.

In this article, a detailed error analysis demonstrated
that bright pixels in images lead to smaller chromagenic es-
timation errors. This led to the bright chromagenic algo-
rithm, which bases its estimation only on a fixed percentage
of the brightest pixels in the filtered and unfiltered images.
Importantly, these pixels are chosen independently in each
image so there is no need for image registration. Experi-
ments on various sets of synthetic and real data demonstrate
that the bright chromagenic algorithm delivers a statistically
significant better illuminant estimation than all other tested
algorithms. The performance is especially promising consid-
ering that, if the camera sensitivities are known, the trans-
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forms can be precomputed on synthetic data even without
knowing the content of the test scenes, such as demonstrated
on the SFU test (third experiment).
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