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bstract. This article proposes a new algorithm for illuminant esti-
ation based on the concept of chromagenic color constancy,
here two pictures are taken from each scene: A normal one and
ne where a colored filter is placed in front of the camera. The basic

ormulation of the chromagenic algorithm has inherent weaknesses,
amely, a need for perfectly registered images and occasional large
rrors in illuminant estimation. Our first contribution is to analyze the
lgorithm performance with respect to the reflectances present in a
cene and demonstrate that fairly bright and de-saturated
eflectances (e.g., achromatic and pastel colors) provide signifi-
antly better chromagenic illuminant estimation. We thus propose
he bright chromagenic algorithm and show that it not only remedies
he large error problem but also allows us to relax the image regis-
ration constraint. Experiments performed on a variety of synthetic
nd real data show that the newly designed bright chromagenic al-
orithm significantly outperforms current illuminant estimation meth-
ds, including those having a substantially higher complexity.
2008 Society for Imaging Science and Technology.

DOI: 10.2352/J.ImagingSci.Technol.�2008�52:4�040906��

NTRODUCTION
he human visual system is, to a certain extent, color
onstant,1–3 that is, it discounts the color of the illumination.
his is why, for example, snow always appears white, no
atter under which illuminant it is observed.

However, it has proven difficult to emulate color con-
tancy in imaging workflow. This is not only a problem in
mage reproduction but also for a variety of computer vision
asks, such as tracking,4 indexing,5 and scene analysis,6

here stable measures of reflectance are sought or assumed
or objects in a scene.

Solving for color constancy is a two-step process. First,
he color of the prevailing illuminant is estimated. At a sec-
nd stage, the color bias due to illumination is removed.
his second part is, in fact, relatively easy7 and so most color
onstancy algorithms focus on the illuminant estimation
roblem.

Numerous algorithms for illuminant estimation have
een proposed and can broadly be categorized in two
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roups. Algorithms in the first group make simple assump-
ions about the scene being observed. MaxRGB assumes that
maximally reflective patch exists in the image. Gray World

ssumes the average reflectance in a scene is gray8 or some
ort of gray.9,10 Another group of algorithms comprises more
ophisticated approaches such as neural networks,11 color by
orrelation,12 a Bayesian method that correlates the RGBs in
he image with plausible RGBs under various illuminants to
nd the best illuminant, and Gamut Mapping methods.13,14

enerally, the most complex algorithms perform better, but
t the expense of a (much) greater computational
omplexity.

The chromagenic algorithm makes a different assump-
ion altogether. Like stereo, where two images are used to
ecover three-dimensional (3-D) position of points in the
cene, and photometric vision, where two polarizing filters
n opposite directions can be used to identify and remove
pecular highlights,15 two images are used: One normal and
ne where a colored filter is placed in front of the camera.
he filter is chosen so that the relationship between filtered
nd unfiltered RGBs depends strongly on illumination. Such
filter is called a chromagenic filter.

The standard chromagenic color constancy algorithm16

orks in two stages: The training stage is a preprocessing
tep where the relationship between filtered and unfiltered
GBs is calculated using a given filter, camera sensitivities,
nd a number of candidate lights. Then, those relations are
ested on other images in order to estimate the actual scene
lluminant. While the general outcome of the algorithm
hows good performance, two problems usually remain: For
ertain combinations of reflectances and illuminants, the er-
or between the estimated and actual light can be large. Also,
n order to achieve good performance, one has to compare
GB transitions that occur between identical reflectances. It

s, in essence, a pixel-level method and so the algorithm can
ail when the pair of images is not exactly registered.

Our approach, first mentioned by Fredembach and
inlayson,17 starts by asking the question that if everything
lse (lights, camera sensitivities, and the chromagenic filter)
s equal, what is the influence of different scene reflectances
n the transforms and the estimation error? To answer this

uestion, we first select 287 typical lights and 1995
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eflectances from the Simon Fraser database,18 and a filter
rom a set of 53 Wratten photographic filters. Using these
lements, synthetic images, composed of a randomly selected
lluminant and of one to eight distinct reflectances, are cre-
ted. Testing the algrithm on these images allows evaluating
hich RGBs exhibit a good (very low errors) or bad (very
igh errors) estimate of the illuminant. The results show that
chromatic reflectances yield lower errors than strongly
hromatic ones. This outcome is, however, not sufficient to
llow the algorithm to work on real images. Indeed, image
egistration is still a problem and noise levels in dark achro-

atic pixels can impact performance. However, indepen-
ently of the image capture conditions, a white reflectance
which is achromatic) will still be the brightest value after
ltering. Restricting the algorithm to test correspondences
etween the “whitest” RGBs of both filtered and unfiltered

mages will effectively use the fact that achromatic
eflectances are more reliable for the chromagenic algorithm,
hile focusing on parts of the image that have a high signal-

o-noise ratio.
Practically, we average the RGB values of the brightest

–3% of the original image and compare them to the bright-
st 1–3% values of the filtered image. By using the brightest
eflectances only, we arrive at a similar conclusion than
ominaga et al.,19 where it was first surmised that brighter
eflectances would perform better based on signal-to-noise
atio considerations and then proceeded to show that this
as indeed the case. In contrast, we start with all possible

eflectances and look for the a set that is more reliable.
esaturation, not brightness, is actually the main correlation
ith good-performing reflectances. We chose bright achro-
atic reflectances as a target because they are reliably found

n images, are easy to identify, permit to solve the registra-
ion constraint, and are far from the worst performing colors
dark, saturated colors).

This modified algorithm is tested on four different im-
ge databases and its results are compared to those achieved
y both simple and complex illuminant estimation algo-
ithms. Results show that that our algorithm significantly
utperforms other available methods, according to the me-
ian angular error and the Wilcoxon sign test, error mea-
ures recommended by Hordley and Finlayson.20 The rest of
his article is organized as follows. We first review the math-
matical bases of the chromagenic theory and discuss how
he filter and the camera sensors affect the chromagenic per-
ormance. Then we propose our new algorithm, the bright
hromagenic algorithm, based on a detailed reflectance error
nalysis followed by comparative experiments on four differ-
nt image sets that range from purely synthetic to real
mages.

HROMAGENIC ALGORITHM
hromagenic color constancy is performed using two im-

ges of the same scene: A normal image and one where a
olored filter is placed in front of the camera. The relation-
hip between those two images is then used to estimate the

cene illuminant. c

. Imaging Sci. Technol. 040906-
The idea of using colored filters to improve vision tasks
s not new. In optometry, chromagen lenses are used to sub-
ectively improve the quality of color vision for color-blind
bservers21 and special colored filters are also used to im-
rove the reading speed of some dyslexic patients.22 In the
ase of color constancy, pairs of images taken with and with-
ut flash can be used to estimate the original scene

lluminant,23–25 although using an additional light source
uch as a flash requires a “controlled” environment: The
bject must not be too close or too far, and the ambient light
ust not be too dim or too bright.

The rest of this section analyzes the chromagenic theory,
rst by detailing the chromagenic illuminant estimation pro-
edure and then by discussing specifically designed filters
nd sensors.

hromagenic Illuminant Estimation
he standard chromagenic illuminant estimation algorithm
roceeds as follows: Let S��� be the descriptor of surface
eflectances, E��� the scene illuminant Spectral Power Dis-
ribution (SPD), Qk��� the camera sensitivities (we consider
ere trichromatic cameras, so k= �R,G,B�) and F��� be the
ransmittance of the color filter placed in front of the
amera.

The sensor responses of the unfiltered, �� , and filtered,

�
F, image can be written as:

�� = �
�

E���S���Qk���d� , �1�

��
F = �

�

E���S���F���Qk���d� . �2�

hus, there are, for each scene, six responses per pixel that
orm the input to the illuminant estimation problem.

Naively, one might expect that since images are three
imensional (red, green, and blue for conventional cameras),

hen two images taken under different conditions (in this
ase, using a filter) form the basis of a six-dimensional space.
owever, if the transmittance of the filter is known, so is the

elationship between the two images; the two images do not
rovide independent information.

Let us first consider the equations of filtered and unfil-
ered image formation (1) and (2). The filtered image can be
xpressed using a second illuminant, EF���, equivalent to
utting the filter F��� in front of the light source E���, i.e.,
F���=F���E���; � and �F can therefore be considered as

he sensor responses of a single surface under two different
lluminants. It has been shown26,27 that when the same sur-
aces are viewed under two lights, the corresponding RGBs
an, to a good approximation, be related by a linear trans-
orm and so we use a 3�3 matrix to relate the RGBs cap-
ured with and without the colored filter, thus:

��
F = T�� , �3�

here T is a 3�3 linear transform that depends on both the

hromagenic filter and the scene illuminant.

Jul.-Aug. 20082
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Equation (3) implies that, given the chromagenic filter
nd sensor responses under a known illuminant, one can
redict the filtered responses. In the problem of illuminant
stimation, however, only the filtered and unfiltered re-
ponses are known, not the illuminant. Moreover, the task of
nding the illuminant corresponds to finding T. If we know
ll possible illuminants a priori we can, for a given filter:
etermine the transforms T for every illuminant; estimate
hich of these precomputed transforms best fits the pair of
ltered-unfiltered responses; and thus, determine the il-

uminant.
Before outlining the actual algorithm, it is worth point-

ng out two cases where, depending on the filter or the sen-
or sensitivities, chromagenic color constancy is not possible:
f the filter has a neutral density; or if the camera sensors
ehave like Dirac delta functions. If the chosen filter has a
eutral density, i.e., its transmittance does not vary across

he spectrum, the relationship between filtered and unfil-
ered RGBs will be a constant scaling (the same for all
ights).

This property can be written as:

F��� = �, ∀ � , �4�

here � is a constant value. It follows that:

�F = ��, ∀ S,E . �5�

onsequently, the six-dimensional responses will in fact
pan only three dimensions and thus the chromagenic algo-
ithm cannot solve for color constancy.

If the kth sensor behaves like a Dirac function whose
on-null response is at the wavelength �k, Eqs. (1) and (2)
ecome:

�k = E��k�S��k�Qk��k� , �6�

�k
F = E��k�S��k�F��k�Qk��k� . �7�

t follows that �k
F =F��k� �k and so the responses are, again,

hree dimensional and their relation depends neither on the
eflectances nor on the scene illuminant.

Additionally, while not as limiting as the neutral density
ase, using a rank-deficient filter will deliver poor
hromagenic color constancy since significant information is
ost (e.g., by using a deep red filter one loses all information
bout the blue pixels).

Barring the cases outlined above, the transforms can be
recomputed by choosing a set of n typical scene il-

uminants: Ei���, i=1, . . . ,n and a set of m surface
eflectances: Sj���, j=1, . . . ,m representative of the real
orld. For each illuminant i, we create a 3�m matrix Qi

hose jth column contains the sensor response of the jth
urface under the ith illuminant. We also create Qi

F, which
ontains the equivalent filtered responses. For each il-

uminant, we can then define the transform matrix as: e

. Imaging Sci. Technol. 040906-
Ti = Qi
FQi

+, �8�

here+denotes the Moore–Penrose pseudo-inverse opera-
or: Q+ =QT�QQT�−1.

Ti can thus be described as the transform that best
aps, in a least square sense, unfiltered to filtered responses

nder illuminant i. Because it is a least squares fit, Ti will
ot, in practice, map the responses without errors. What
atters, however, is that the error committed when mapping

esponses under illuminant i is smallest when the corre-
ponding transform Ti is used.

Once the n transforms have been precomputed, the il-
uminant estimation proceeds as follows: let Q and QF de-
ote the 3�m matrices of unfiltered and filtered RGBs of
rbitrary reflectances under an unknown light. For each
lausible illuminant we calculate the fitting error, ei, as:

ei = �TiQ − QF�, i = 1, . . . ,n �9�

nder the assumption that Ei��� is the actual scene il-
uminant. The transform that minimizes the error is sur-

ised to be the scene illuminant; the estimated illuminant is

est���, where

est = argmin�ei�, i = 1, . . . ,n . �10�

It can be shown that if both reflectances and illuminants
re exactly described by three basis functions each, i.e., they
re three dimensional, then the chromagenic algorithm de-
ivers perfect illuminant estimation. In natural scenes, how-
ver, these dimensions are generally higher28,29 and so esti-
ation errors ensue.

While in general the chromagenic algorithm can deliver
ood color constancy, it has two major weaknesses: The first
ne is that, though good on average, the performance can,
n occasion, be (very) poor. The second problem comes

rom Eq. (9), which implies that the fitting error for each
andidate illuminant is evaluated on a per-pixel basis. For
he algorithm to deliver an optimal performance, the two
mages therefore have to be perfectly registered, a demanding
equirement when images are taken outside of the lab. Reg-
stration algorithms can be of some help, but since an exact
egistration at pixel level is necessary, they may not be suf-
cient.

hoice of Filter and Sensors
wo important aspects of the chromagenic algorithm are the
lter choice and the camera sensors, for they can greatly

nfluence the performance of the algorithm and are the only
controllable” parameters in the image formation process.

Given a filter set (in our case the filter set is a selection
f 53 Kodak Wratten filters30) we need, for chromagenic pur-
oses, to select one that is noncutoff and whose transmit-

ance varies across the visible spectrum. Among the then
ossible filters, it was shown16 that, they all deliver a good

evel of performance in practice. Finlayson et al.31 have, how-
ver, reported that designing a filter specifically for
hromagenic processing gave, on average, better results than

xisting Wratten filters.

Jul.-Aug. 20083
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Since the filters were only simulated, not physically cre-
ted, our experiments will be carried out using an actual

ratten filter. Arguably, one might also design sensors for
hromagenic illuminant estimation. But, pragmatically,
hen choosing sensors one has to consider aspects of image
uality such as color rendering and image noise that strongly
epend on the sensors. So, although optimal sensors for
hromagenic illuminant estimation have been discussed,31

e will work with conventional camera sensors.

RIGHT CHROMAGENIC ALGORITHM
he previous section mentioned that the average perfor-
ance of the chromagenic algorithm can be enhanced using

pecific filters and sensors. These potential improvements do
ot, however, address the main limitations of the
hromagenic algorithm: Possible large estimation errors and
he need for perfectly registered images.

Looking back at Eqs. (1) and (2), we see that the sensor
esponses depend on the scene illuminant, the chromagenic
lter, the sensor sensitivities, and the surface reflectances. It

ollows that the linear transforms Ti must also depend—to
ome degree—on those factors. Among them, the illuminant
s the unknown; achievable improvements due to choosing
oth the filter and the sensors sensitivities were mentioned
reviously. The only remaining variable in the equation is

herefore the scene reflectances. Building a model based on
eflectances can be difficult for one has, in general, no con-
rol over which reflectances are present in a scene. This un-
ertainty is the reason why simple estimation methods such
s gray-world and Max-RGB are unreliable; if every scene
ontained at least a maximally reflective surface per color
hannel (e.g., at least a blue and a yellow surface), Max-RGB
ould be very accurate.

An additional difficulty is that the input to illuminant
stimation algorithms are not reflectances but RGBs, which
re composed of all of the image formation process’ param-
ters. To circumvent these issues, we start by quantifying the
nfluence of reflectances on the transforms Ti. We then

odel the best and worst performing RGBs. The results lead

Figure 1. Left: The Sony DXC-930 sensitivities. Rig
experiments.
s to formulate the bright chromagenic algorithm, which has f

. Imaging Sci. Technol. 040906-
hree properties: It improves the average illuminant estima-
ion performance, it reduces the maximal errors observed
hen the estimation is erroneous and, more importantly, it

llows the algorithm to be used on unregistered images.

eflectances Analysis
or the chromagenic algorithm to work well, the transforms

i that map RGBs to their filtered counterparts should de-
end as much as possible on the illuminant. Here, we want

o quantify the variance of the transforms when the il-
uminant changes and compare it to the variance observed
hen the illuminant is fixed but the reflectances vary. To
erform this assessment, we follow existing methodology16,31

n our choice of parameters.
The illuminants belong to a set of 87 measured il-

uminant SPDs that include most common light sources.
hese SPDs are sampled every 10 nm, from 380 to 780 nm.
arnard et al.18 provide more details about this set, while the

et itself is available online.32 For surface reflectances, we use
synthesized set of 1995 Munsell surface reflectances.33 The

eflectances are also sampled every 10 nm from
80 to 780 nm; more details about that set are given by
arkkinen and Jaaskelainen.28

Concerning the choice of camera sensitivities and filter,
e use the sensors of a Sony DXC-930 camera18,20 and a
ratten 81B filter (a yellowish filter). Both the filter and the

ensor sensitivities are shown in Fig. 1.
We start by creating the transforms Ti according to Eq.

8) by imaging all the 1995 reflectances under the 87 il-
uminants, and thus have 87 distinct transforms. The vari-
bility of the transforms, i.e., how differently they map the
eflectances depending on the illuminant, is assessed with
he inter-transform variance �E

2:

�E
2 =

1

87
�
i=1

87

�ti − �T�2, �11�

here ti is the 9�1 vector representation of the 3�3 trans-

transmittance of the 81B Wratten filter used in the
ht: The
orm Ti and �T is the average of all ti.

Jul.-Aug. 20084
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Equation (11) quantifies the transform’s variation across
lluminants: The larger the variance, the more discriminative
he transforms, and so the better the algorithm will perform.
or a better perspective, one must compare �E

2 with the
ariation in transforms due to choosing different reflectance
ets. Calculating the equivalent variance generated by differ-
nt reflectances is somewhat more complicated. Let S denote
he entire reflectance set; a partition of S into N subsets of
qual size, sj, can be written as:

�j=1
N �sj� = S �12�

nd

sj � sk = �, ∀ j, k � �1,N	, j � k . �13�

Let Ti
sj be the transform obtained with Eq. (8) when the

ubset sj is imaged under illuminant i. The inter-transform
ariance for reflectances �S

2 is calculated as

�S
2 =

1

87
�
i=1

87

�Si
2 , �14�

here

�Si
2 =

1

N
�
j=1

N

�ti
sj − �T

Si�2. �15�

In this formulation, �T
Si is the mean of all ti

sj, i.e., the
ean of all subset-induced transforms under illuminant i.

An important aspect of this calculation is how to parti-
ion S. On one hand, there should be enough subsets for the
est to be meaningful, but since the chromagenic algorithm
ssumes three-dimensional signals, too small subsets will in-
roduce large errors. While most daylight illuminants are at
east 3-D, this is not necessarily the case with reflectances, so,

combination of reflectances is required. Our tests, per-
ormed using subsets from 1 to 256 reflectances indicate

igure 2. Inter-transform reflectance variance, �S
2, using a synthetic test

ith multiple reflectances from the Munsell set under a given illuminant.
he values shown are the average over 10,000 tests.
Fig. 2) that subsets of 16 reflectances form a good compro- e

. Imaging Sci. Technol. 040906-
ise. Instead of seeking every possible subset (there are

16
1995 of them), we repeat the 16 reflectances test 10,000

imes and average the results over all the observations of �S
2.

he results of this experiment are: �E
2 =0.0306 and

S
2 =0.0753.

Based on these results, we can conclude that the linear
ransforms used in the chromagenic algorithm vary signifi-
antly with the reflectances used in training. It follows that
here will also be a significant variability in testing. A subset
f reflectances that are better suited to illuminant estimation
ust therefore exist, and the performance will increase the
ore of these “good” reflectances are present in the scene.

odeling In- and Outliers
stimation accuracy will partly depend on the set of tested
eflectances: Which ones are “better”? Because there is a

ultitude of illuminant-reflectance combinations, we will
nalyze the performance of the algorithm on scenes with a
ingle reflectance (where good estimates can still be
btained16).

For each scene we estimate the RGB of the light and
alculate the angle to the actual RGB of the illuminant. The
ransforms Ti are calculated as before, thus creating 87 of
hem. The test set for this experiment consists of all possible
ingle reflectance-illumination combinations. A larger set of
87 illuminants is used, together with the 1995 reflectances,
.e., there are 
570,000 pairs of filtered and unfiltered RGBs.
he larger illuminant set used in testing covers the same
amut as the 87 training lights; the chromagenic algorithm
ill select one of the 87 lights as the scene illuminant.

Figure 3 shows the angular errors (i.e., the angle be-
ween the RGBs of the estimated and actual illuminant) for
ll the 570,000 pairs. The angular errors range from 0 to 42°,
ith a mean of 9.3 and a median of 5. For this particular
ataset, our experiments indicate that an angular error of 3°
r less is necessary for acceptable color cast removal. From
hese results, it follows that one needs reduced overall and,
specially, maximum errors—an angular error of 42° is

igure 3. Sorted errors for the single reflectance test. The mean error
alue is 9.3 degrees and the median 5°.
quivalent to mistaking green for yellow.

Jul.-Aug. 20085
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To understand what is happening, we look at the RGBs
hat comprise the top and bottom 20% of the error, which
orresponds to angular errors of 0–2.3° and 20.5–42° for
ach group, respectively. A brightness-saturation (i.e., S and

of the HSV space) scatter plot of these RGBs is shown in
ig. 4(a) for the highest errors and Fig. 4(b) for the lowest
nes; we also analyzed the behavior of the algorithm with
espect to hue but found no significant hue dependency. It is
lear that low errors correlate with fairly de-saturated RGBs
pastel tones and achromatic), whereas high errors correlate
ith dark and saturated RGBs. This finding is corroborated
y the result of Fig. 5, which displays elliptical summaries for
he high and low error sets. The ellipses, each of which ac-
ounts for 90% of its respective data, overlap little.

Importantly, the set of good-performing reflectances is
uite large and diverse. The main characteristic they have in
ommon is their low saturation value. Before proceeding

Figure 4. �a� Brightness-saturation scatter plot of t
scatter plot of the 20% best performing RGBs.

igure 5. Equivariance ellipses of both sets, each containing 90% of their
espective data, showing they are mostly disjoint.
urther, one must decide how these well-performing

. Imaging Sci. Technol. 040906-
eflectances will be chosen, and several parameters have to
e taken into account. The first one is that the good
eflectances should be easy to pick out, so to provide stability
o the algorithm’s estimation. The second concern is that the
asy-to-pick-out good reflectances should be reliably present
ithin natural scenes. Finally, one wants to avoid dark colors
ecause of their lower signal-to-noise ratio. Considering the
equired parameters, we chose to use bright achromatic
eflectances in our algorithm.

The idea of using brighter reflectances has been dis-
ussed before, notably by Tominaga et al.19 where brighter
eflectances were preferred because of their higher signal-to-
oise ratio that would provide better illuminant classifica-

ion. We reach a similar conclusion, but for different reasons.
ndeed, the good-performing reflectances, for chromagenic
olor constancy, are primarily desaturated colors and are not
pecifically brightness related. Indeed, we use the “brightest”
olors because their RGB values are most different from the
olors that perform worst, i.e., a simple thresholding scheme
nables us to reliably find suitable RGBs for accurate il-
uminant estimation. Moreover, using the brightest surfaces
as the additional advantage of permitting to remove the

mage registration constraint, a point we will come back to
n the rest of the article.

Assuming a uniform distribution of colors in an image,
e propose that it is easy to find RGBs and their filtered

ounterparts that belong to this preferred set. We simply
ook for a small percentage of the brightest image regions.

e therefore modify the chromagenic-algorithm formula-
ion so that only bright image pixels are considered.

he Algorithm
hus, the Bright Chromagenic algorithm is defined as:

Preprocessing: For a database of m lights Ei��� and n
urfaces Sj��� calculate Ti �Qi

FQi
+ where Qi and Qi

F repre-
ent the matrices of unfiltered and filtered sensor responses
o the n surfaces under the ith light and � denotes a
seudo-type inverse.

worst performing RGBs. �b� Brightness-saturation
he 20%
Operation: P surfaces in an image yield 3�P matrices
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and QF. From these matrices a certain percentage of the
rightest pixels is chosen, giving the matrices Q and QF,
here the brightest pixels are the ones with the largest
2 +G2 +B2 value. Then the estimate of the scene illuminant

s �� Eest where

Eest = arg mini�erri��i = 1,2, . . . ,m�

nd

erri = �TiQ − QF�

ecause we are proposing to look only at bright image re-
ponses, the transform matrices might be calculated using a
east-squares estimator where bright values are weighted

ore strongly. This is what is meant by a pseudo-type in-
erse. However, subsequent experiments did not indicate any
angible benefits from building transforms using only the
right image RGBs. So, for the experiments presented in the
ext section, the conventional (unweighted) Moore–Penrose

nverse is used.
The bright chromagenic formulation is robust since it

oes not make assumptions about which reflectances might
r might not be present in the scene, i.e., if there are no
right reflectances in the image, the bright chromagenic al-
orithm will still have an equivalent performance to the
riginal chromagenic algorithm. Because we “exclude”—
elect them only if no others are available—the worst per-
orming RGBs, we expect the bright chromagenic algorithm
o significantly reduce the worst errors.

Moreover, if the scenes admit a diversity of reflectances,
hen it follows that (if the filter does not vary too drastically
cross the spectrum) the brightest unfiltered RGBs will be
apped onto the brightest filtered RGBs. If one is relatively

onservative with the number of bright pixels used to esti-
ate the illuminant, the bright chromagenic algorithm will

hen be able to estimate illuminants even when the images
re not registered. We typically use the top 1–3% of the
rightest pixels. Both these properties are verified in our
xperiments. We stress here that no assumptions are made
n the scene content; the brightest pixels are sought what-
ver they may be, i.e., we do not need the presence of a
hite-like surface in the scene.

XPERIMENTS
n this section, we analyze the performance of the bright
hromagenic algorithm, and compare it to various other il-
uminant estimation methods on four datasets of increasing
ifficulty: Synthetic reflectances and lights; real reflectances
nd synthetic lights; real images taken in a controlled envi-
onment; and real-world images taken with “unknown” fil-
er and camera. For the first three tasks, the bright
hromagenic algorithm is compared to other illuminant es-
imation methods whose results on the same datasets have
een reported (we took the results directly from the refer-
nced published articles). Concerning the fourth dataset, the
omparison was carried out with readily implementable al-
orithms. The algorithms are evaluated according to the

20
ramework of Hordley and Finlayson where it was shown t

. Imaging Sci. Technol. 040906-
hat, if one wants to summarize the performance of an il-
uminant estimation algorithm over a dataset, one should
refer the median angular over the mean or root mean
quare error. The mean error is also reported for the SFU
ataset because of its prevalence in the literature.

Angular error is an intensity independent error measure
hat is widely used in the literature.18,20,34 It is the measure
etween the sensor responses of a white reflectance under
oth the estimated and actual scene illuminant. Let these
esponses be �Eest and �E respectively, the angular error eAng

s calculated as:

eAng = acos� �E
T�Eest

��E���Eest
�
 . �16�

The use of a median statistic permits to assess if the
ifference of performance between to algorithms is statisti-
ally significant at chosen confidence level. That significance
s given by using the Wilcoxon unranked sign test35 at a 95%
onfidence level.

To simplify the writing, we will use the following nota-
ions: SM is the set of 1995 synthesized Munsell
eflectances,33 E87 and E287 are the sets of, respectively, 87
nd 287 illuminants.32

ynthetic Reflectances and Lights
he test on synthetic images is run according to the testing
rotocol proposed by Barnard et al.,18 detailed hereafter.

Training: The linear transforms are created by imaging
he whole of SM under E87, thus generating 87 transforms.

e use the Sony-DXC camera sensitivities and the 81B
ratten filter, whose transmittance is shown in Fig. 1.

Testing: 1000 images containing n different reflectances
re generated, where n= �1 ,2 ,4 ,8 ,16,32�; these reflectances
re randomly taken from SM. We then illuminate these im-
ges with one light taken at random from E; sample filtered
nd unfiltered images are shown in Fig. 6.

The illuminant of each image is estimated using both
he bright chromagenic and the original chromagenic algo-
ithms. For images where n	4, the bright chromagenic ver-
ion estimates the illuminant based on the four brightest
eflectances only.

The results are displayed in Table I, where the last col-
mn indicates the ranking of the considered algorithms, ac-
ording to Wilcoxon’s sign test. An algorithm is ranked bet-

igure 6. Sample pairs of synthetic images with 16 reflectances under
andom illuminants from E287.
er than another if its median is lower and if the difference is
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tatistically significant at the 95% level. If the sign test is
nconclusive, the algorithms will be ranked equally.

An additional result, shown in Fig. 7, is the reduction in
aximal error achieved by the bright chromagenic algo-

ithm. This experiment validates our selection of the bright
GBs to reduce the high maximal errors observed with the
riginal chromagenic algorithm.

eal Reflectances and Synthetic Lights
n this second test, we use spectral outdoor reflectance im-
ges measured—as opposed to synthesized—by Nascimento
t al.36 Figure 8 shows the eight images that will be used (the
mages can be obtained online37). Note these images mea-
ure only reflectances. To generate RGB images, we use the
cene lights and camera sensors as in the previous
xperiment.

Training: The training step is unchanged from the pre-

able I. Average median angular error �degrees� for 1000 tests at each complexity
evel. The last column is the rank, based on the 32 surfaces test, according to the

ilcoxon sign test with a confidence level of 95% �as proposed by Hordley35�. The
esults show that the bright chromagenic algorithm performs significantly better than
ll other methods. Noticeably, the more complex methods form a group that is, in turn,
ignificantly better than the simpler scene assumptions algorithms.

umber of reflectances: 1 2 4 8 16 32 Rank

hromagenic 6.0 5.2 4.5 3.5 3 2. 2.0 2

ax RGB 9.7 7.9 6.1 4.0 2.9 2.6 6

ray World 9.1 7.3 5.8 4.9 4.8 4.8 8

atabase GW 9.5 6.7 4.8 3.4 2.8 2.5 4

P GM 9.6 6.7 4.8 3.3 2.7 2.4 4

eural Network 8.8 7.1 5.0 4.0 2.9 2.6 6

olor by Corr. 6.9 5.0 3.5 3.1 2.4 2.3 2

right Chromagenic 6.0 5.2 4.5 2.8 2.1 0.9 1

igure 7. Comparison of the maximal angular error between the original
nd the bright chromagenic algorithm; one can see the significant reduc-

ion achieved by selecting only the brightest RGBs. From 1 to 4
eflectances, the maximal error is identical since there are not enough
eflectances to distinguish both algorithms.
ious experiment, i.e., the transforms are created on a dif- i

. Imaging Sci. Technol. 040906-
erent reflectance set than the one tested.
Testing: Images are created by illuminating the eight

eflectance scenes with E287, which generates 2296 “half-
ynthetic” images. We then proceed to test our algorithm on
ach of those images, selecting the top 3% of the brightest,
onsaturated, pixels to estimate the illuminant.

Results from this dataset, Table II, exhibit the same
rend as in the all synthetic experiment, i.e., the bright
hromagenic significantly outperforms other methods.

FU Dataset
he next set is the nonspecular Simon Fraser University

SFU) dataset, which is described in detail by Barnard et al.18

he dataset consists of 31 colorful objects captured under 11
lluminants. Figures 9 and 10 show some objects under one
ight and one object under all the available lights, respec-
ively. In the second case it is apparent that the images are
ot registered (in fact, the objects were rotated in between

wo pictures when creating the dataset).
This experiment differs from the previous ones because

nly the RGBs of the images (as opposed to reflectances) are
rovided. This, plus the nonregistration of the image, will
rovide a difficult test for the bright chromagenic algorithm.

The SFU dataset has been used in several illuminant
stimation comparisons because ground truth is provided in
ddition to the images themselves. That is, both the SPD of
he 11 illuminants (they are actually a subset of E87) and the
amera sensitivities are given (the camera used to take the
mages is the Sony-DXC 930 whose sensitivities are shown
n Fig. 1 and that was used in the previous tests). To perform
hromagenic illuminant estimation requires pairs of images
aken with and without a colored filter. However, with only

able II. Summary of the results on the Nascimento images. This table displays the
ean angular error values �degrees� over the 2296 images.

lgorithm Median Rank

hromagenic 6.7 2

ax RGB 8.7 3

ray World 13 4

right Chromagenic 3.5 1

igure 8. The eight reflectance images measured by Nascimento et al.
see Ref. 36� that compose the second test.
mage RGBs available, one cannot retrospectively model the
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ltered responses. As it turns out, 8 out of the 11 illuminants
resent in the set come in pairs: The original lamp lights and

hose lights filtered with a blue filter. Since the actual il-
uminant SPDs are known, one can derive the filter that was
sed by dividing the spectra of the lights by the filtered ones.
he eight light sources (two pairs of four lights) that are
onsidered and the derived filter are shown in Fig. 11.

Figure 9. Some objects of the SFU dataset under one illuminant.

igure 10. One object from the SFU dataset under the 11 illuminants.
ote that the lights in the second row are the same as the ones of the first

ow with a bluish filter placed in front of them. One can also see that the
mages are not registered.

Figure 11. Left: The eight light sources considered
sources, while the continuous ones are from the filte

data.

. Imaging Sci. Technol. 040906-
Training: The transforms Ti are obtained by imaging
he synthetic reflectances SM under the illuminants of E87.
he filter is the one derived from the eight illuminants and

hown in Fig. 11; the camera sensitivities are the same as in
revious experiments.

Testing: To test the algorithm, we estimate the il-
uminant of all the possible pairs of images (124 pairs in
otal) using the top 3% of the brightest pixels in both filtered
nd unfiltered images independently.

These pixels typically belong to one or two of the sur-
aces in the scene (we do not need a white reflectance per se,
e simply use the brightest ones available). Since the images

re not registered, it provides a test for the hypothesis that,
n general, the brightest pixels in both images come from the
ame surfaces, and that the bright chromagenic algorithm
oes away with the need for registration.

The angular errors reported in the first two columns of
able III show that, despite its simplicity, the bright
hromagenic algorithm outperforms in terms of both mean
nd median angular error all other algorithms at the 95%
onfidence level. The original chromagenic algorithm is not
hown here since its registration requirement is not fulfilled.
erhaps the most remarkable aspect of the bright
hromagenic algorithm is that, despite modeling the trans-
orms on synthetic data with a filter derived from measure-

ents, it is still able to accurately estimate the illuminants of
eal, significantly nonregistered, images.

xperiment. The dashed lines are spectra of the light
rces. Right: The Filter derived from the light source

able III. Mean and median angular errors �degrees� over the SFU dataset. The ranks
re significant at the 95% confidence level.

lgorithm Mean Median Rank

right Chromagenic 4.8 3.4 1

ax RGB 6.4 4.1 4

ray World 11.9 9.3 7

atabase GW 10.0 7.0 5

eural Network 8.9 7.8 5

P Gamut Mapping 5.5 3.8 2

olor by Corr. 6.3 6.0 2
in this e
red sou
Jul.-Aug. 20089



R
T
o
p
(
w
c

C
F
t
c
c
p
e
w
g
u
t
a

a
o
d
r
l
a
r
s
t

T
t
s
a
M
t
t
a

t
p
b
o
i

t
g
t
w

R

n
e
c

m

c
s

C
A
r
c
f
m
c
f
b
e
h
t

t
t
r
o
I
i
m
t
s
a

F
f
i

T
r

A

B

M

G

C

L

Fredembach and Finlayson: Bright chromagenic algorithm for illuminant estimation

J

eal Images
he last experiment is designed to evaluate the performance
f the bright chromagenic algorithm in situ. Whereas the
revious datasets were obtained in “controlled conditions”
purely synthetic data and controlled lighting environment),
e use here a set of real-world images taken with a digital

amera whose specifications are unknown.

hromagenic Photography
or the illuminant estimation to be meaningful, one must
ake a couple of precautions when capturing the images. The
amera that was used was a Nikon D70 single lens reflex
amera. The camera was set up to capture linear Raw, un-
rocessed, images. In fact, even with Raw settings, the cam-
ra and associated software will process the image some-
hat; it is, however, as unprocessed as one can have with a
eneral purpose digital camera. To prevent the camera from
sing a different white balance between filtered and unfil-

ered images, all images were captured with the white bal-
nce set to “daylight.”

Additional technical aspects to consider are that the im-
ge pairs should be as registered as possible (so that the
riginal chromagenic algorithm can also be tested), and also
evoid of over—or underexposed regions, which make the
elationship between filtered and unfiltered pixels meaning-
ess. To that effect, the images were captured using a tripod
nd a remote shutter release (to minimize registration er-
ors) and the settings of the camera aperture and shutter
peed were set to “manual” mode where we aimed to cap-
ure the entire dynamic range of the image.

For the filter, we used an actual 81B-type Wratten filter.
he captured images were then exported, using Nikon cap-

ure, as 16 bits/channel linear TIFF images. The dataset con-
ists of 86 pairs of images taken under a variety of indoor
nd outdoor illuminants. In every scene, we placed a
acbeth color checker that is used to accurately determine

he color of the prevailing light, thereby providing a ground
ruth to assess the accuracy of illuminant estimation
lgorithms.

From the dataset, we then created separate training and
esting sets. The training set consists of the 24 Macbeth
atches present in all the images. The testing set is created by
lacking the color checker from the images. Images from the
riginal (with the color chart) and the testing set are shown

n Fig. 12.
We note that, despite the precautions taken, the regis-

ration between images is not perfect and some image re-
ions can be overexposed. Additionally, multiple illumina-
ion is sometimes present in images, which can lead to errors
hen estimating the prevailing illuminant.

Training: We create 86 linear transforms, using the 24
GBs of the color checker present in each image.

Testing: We estimate the illuminant for both the origi-
al and bright chromagenic (using the top 3% brightest pix-
ls) algorithms on the 86 pairs of images that have the color
hart clipped out.

The results are shown in Table IV and illustrate that the

ost accurate illuminant estimation is given by the bright e

. Imaging Sci. Technol. 040906-1
hromagenic algorithm. The results otherwise exhibit the
ame behavior than previous experiments.

ONCLUSIONS
chromagenic illuminant estimation algorithm exploits the

elationship between RGBs captured by a camera and those
aptured through a colored filter. Different lights induce dif-
erent relationships and so, the illuminant color can be esti-

ated by testing precomputed relations in situ. While the
hromagenic approach can work well, it occasionally per-
orms poorly. Moreover, typical chromagenic camera em-
odiments, such as a stereo rig or multiple surveillance cam-
ras (a filter can easily be placed over one camera) do not
ave pixel registration as is assumed in the chromagenic

heory.
In this article, a detailed error analysis demonstrated

hat bright pixels in images lead to smaller chromagenic es-
imation errors. This led to the bright chromagenic algo-
ithm, which bases its estimation only on a fixed percentage
f the brightest pixels in the filtered and unfiltered images.
mportantly, these pixels are chosen independently in each
mage so there is no need for image registration. Experi-

ents on various sets of synthetic and real data demonstrate
hat the bright chromagenic algorithm delivers a statistically
ignificant better illuminant estimation than all other tested
lgorithms. The performance is especially promising consid-

igure 12. Top two rows: Examples of unfiltered/filtered image pairs
rom our real image set used in training. Bottom two rows: the testing
mages, where the charts have been cropped out.

able IV. Mean and median angular errors �degrees� over the 86 real images. The
anks are significant at the 95% confidence level.

lgorithm Mean Median Rank

right Chromagenic 7.09 4.15 1

ax RGB 7.87 7.0 3

ray World 11.0 10.8 5

hromagenic 7.96 5.1 2
4 Gray 10.3 9.6 4
ring that, if the camera sensitivities are known, the trans-
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orms can be precomputed on synthetic data even without
nowing the content of the test scenes, such as demonstrated
n the SFU test (third experiment).
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